
DFC standard documentation
(presented as a Gitbook to improve readability)

Why we need a standard ?​ 2

What is the DFC standard ?​ 3

General strategy to build that standard​ 3

Status of the project​ 3

Semantic specification​ 4
Business model and ontology​ 4

Products​ 4
Transformation​ 5
Sales operations​ 6
Transaction​ 6

Product ontology​ 6

Technical specification​ 9
Overall strategy for building a reliable spec​ 9
Design decisions​ 9
Architecture representations​ 9
Appendix 1. Decisions points and choices​ 9

Stateless or stateful?​ 9
Service franularity​ 9
Specifications​ 9

URL structure​ 9
Gateways between protocols​ 9
De facto standards or semantic web ?​ 9

Serialization: JSON-LD vs XML-RDF vs TTL …​ 9
Transport layer​ 9
Directionality​ 9
Multi- or single-resource requests?​ 9
Identification and authentication​ 9
Right delegation between platforms and DFC​ 9
Centralized or decentralized data storage​ 9
Metadata repository​ 9

Users​ 9
Products​ 9

Places​ 9
Appendix 2. General principles.​ 9

Federation vs syndication​ 9
Libraries to develop in semantic​ 9
The reality principle​ 9

Access sources​ 10
Usage licences​ 10
Github repositories​ 10

Contact us​ 10

A.​ Why we need a standard ?

The problems are:

●​ Multiple duplication of production information by producers, and inability to seamlessly
manage stock

●​ Difficulty to adopt a big data approach and build new services due to data incompatibility
(ex: logistics)

The objective is:

●​ Enable producers to seamlessly manage their product and inventory catalog while
selling their products through multiple channels using multiple platforms.

●​ To enable the development of shared logistics solutions using logistic information from all
the platforms in use

●​ To allow the implementation of interoperable management tools allowing for example a
producer to generate integrated reports gathering sales data from different platforms

●​ Allow the reporting or visualization (via maps for instance) of data coming from multiple
platforms

●​ To allow actors with different business models and technologies to work together without
changing their way of working and tools

●​ Etc.

For this we need:

●​ That the data follows a shared semantic standard so that it can be shared from one actor
to another even if the actors have different data models, speak different languages.

1

●​ To be able to link the data to unique identifiers allowing their reconciliation when
necessary (eg unique product identifier, unique company identifier, unique person
identifier, unique place identifier)

●​ An architecture allowing this ecosystem to work in a decentralized manner, including the
areas of identification/authentication, segmentation of the API on high or low granularity
service logic, etc.

B.​ What is the DFC standard ?

The DFC standard is composed of 2 complementary blocks :
1- a semantic block which is a unified and agreed upon sectoral activity description, presented
both in a human (model) and machine (ontology) readable format. This description can be
modularized : in the case of DFC, we have separated the “business part” (what we do, how,
who, where) and the “product part” (how to describe the nature of the things manipulated in the
model) and have joined them in a “full model and ontology”. This is the “common language” that
enable the actors using the platforms to communicate.
2- a technical specification on how data should be exchanged between actors implementing the
standard. This is the technical language that enable platforms to communication (= share or
mutualize data).

C.​ General strategy to build that standard
a.​Remain independent

We could have setup a standardization group within GS1. We chose not to as GS1 were asking
us to sign a form to tell we commit to use the GS1 standards. How can we commit to use a
specific solution when we have not yet investigated our problem, the potential solutions
available, etc. ? We are pretty happy we made that decision, as we remained free to work with
Open Food Facts for products identification, which wouldn’t have been possible in the context of
a GS1 standardization group.

b.​Collaborate with Open Food Facts for product
identifiers and ontologies

2

We need a general common universal product id base to be able to match products between
platform, and know if we talk about the same product, or another. In the agro-industry and retail
industry agents use the EAN, GS1 product id codes. In the context of local and alternative food
systems, short food chains, very few producers have subscribed to GS1 services, they don’t
have EAN. And probably most won’t want to subscribe and pay the 85€ min yearly fee. So we
have chosen to collaborate with Open Food Facts and use their identification system as our
universal products identifiers. When there is an EAN, Open Food Facts use it as product
identifier. When there is not they attribute one randomly, for free. We can call those ids “pseudo
EAN”.
As we don’t want to force all actors to open their data (this should remain the agent decision),
we will have our own “DFC universal product” catalog but we will use Open Food Facts API to
generate ids for products which don’t have EAN. We also have chosen to use the same
taxonomies as Open Food Facts to describe products, so a product file in the DFC catalog will
be super easy to open and duplicate into Open Food Facts anytime the agent want to open their
data.

c.​Collaborate with “The Commons” for shared data
storage

We also choose a “neutral” agent to host the shared data of the consortium : this DFC universal
products catalog. That avoid any conflict of interest among the consortium partners.

d.​Iterative process and prototype base development
When building both the semantic and technical specifications of the standard, we need real life
cases to test if what we imagine is adapted, works well, enable to do what we want to do. So we
are developing a prototype to not only make a “proof of concept” and show the potential of the
standard to solve the problems mentioned above, but also to build and improve step by step the
semantic and technical standard.

D.​ Status of the project
a.​First releases

We released in November 2017 a first version of the semantic standard, then a second version
in June 2018, and we just released a new version in May 2019. You can access the
corresponding ontology through Github. For the technical specification, we started to work on it
in october 2018 and we just released a first specification through this document.

3

https://github.com/datafoodconsortium/ontology

b.​The POC to test the v.0 of the standard
We needed to start working on the prototype to build a first version of the technical standard,
understand the current status of the data and of the first platforms willing to adopt the standard.
We built a prototype on the use case of sharing of products catalogs between platforms and
mutualization of logistic flows.
This prototype will be developed in 3 steps:

1- Producers can access their universal catalog and visualize what they propose to each
of their distribution channels. Before going further and talk about products transportation, we
need to make sure the ontology enable us to correctly manage products information between
platforms.

2- Producers will be able to see, beyond their cross-platforms catalog, logistic flows
planned whatever their distribution channel.

4

3- Producers will be able to define some filters to display compatible logistics flows from
other producers within the ecosystem using the same standard.

We have now specified more precisely the UX of the first step of the prototype (document in
French). And already it raises a lot of questions, about synchronization of data for example :
when a producer has connected and imported data from various platforms, solved conflicts, etc.
If he modifies a data in one platform, and make another change for the same product in another
one, etc. How do we synchronize ? For now we don’t have platforms reading and updating info
from a universal shared catalog. We don’t know yet how we are going to manage such issues,
but we’ll move forward one step at a time !

5

https://drive.google.com/open?id=1MhV4M47wFw5e1UadvB0M3RLQN7FPH3Iz

So developing this prototype will enable us to test real life the semantic specification of the
standard (the ontology) and the technical specifications (the protocols, etc.) described below,
and improve them step by step.

E.​ Semantic specification

This specification has been built since March 2017, through alternation between field interviews
and modelization. We have been supported in that work by an ontologist, Bernard Chabot.

a.​Business model and ontology

The human readable modelization can be represented as follow:

Click here to access a zoomable version of the document.

i.​ Products
●​ We have identified the different concepts of products we manipulate. We distinguished

the product “need” (what I want as a customer), from the product “answer” (what I
propose as a distributor to satisfy your need), from the product “supply” (what I propose

6

https://docs.google.com/document/d/1vLYI4pv-lqcy7WLoMN9XWROPh1FayXFU5g4zA5blmEQ/edit?usp=sharing
https://docs.google.com/presentation/d/157i0ySW3T89KviZHmderXl7X0ywuvtz0QunaHJcEF_Q/edit?usp=sharing

as a producer that enable distributors to meet their promises to customers), all those
products being manipulated without any “location” notion.

●​ Then a producer identifies a location where their products are supposed to be when they
become real product. We call them “localized products”, which is a combination between
an ID product (what product it is) and an ID place (where it is). For instance, the potatoes
of “Awesome farm” are in theory localized in the farm itself.

●​ When the potatoes get harvested they become “physical products”, real products that
you can hold in your hand. A physical product is also always located somewhere, and
belongs to a product batch.

ii.​ Transformation
●​ Some products are “composed products”, they are made of other products, processed in

some way to make a new product, like a tomato sauce for instance. There is a
theoretical transformation that plans a transformation process without any notion of
where the products are located, the “recipe” that connects products with one another
independently from where they could be. For instance as an artisan cookies maker I can
tell that I put 100g flour, 20g chocolate, 2 eggs, etc. in my cookies. In that case I express
the recipe in term of “functional products”, I need flour and chocolate. I can be more
precise and tell which type exactly of flour and chocolate I use and talk more in term of
“technical products”, like wheat flour T110. And I can even tell exactly the flour from
which farmer I used in my recipe, so express the recipe in terms of other “supplied
products”. This is what we call the “as planned transformation flow”.

●​ Then this recipe becomes something more like a “production workflow” that adds some
notion of location. I have to move the tomato from “Awesome farm” to “TheKitchen”, the
onions from “The Other Farm” to “TheKitchen”, etc. When all my components are in
“TheKitchen” I can start the production process, cook, mix, bottle, etc. And get some jar
of tomato sauce as output, which are located in “TheKitchen”. But this is still only a plan,
a production map, I still don’t have the products, I’m just organizing and planning the
operations. We realized when iterating that transforming the nature of a located
product was exactly the same flow as transforming the place where this product is
supposed to be located. As the localized product is a combination of an ID product and
an ID place, one flow was transforming the ID product, the other the ID place. So we are
treating transportation as a specific transformation flow. Input will be for instance
100 x potatoes 1kg located in “Awesome Farm” and output will be 100 x potatoes 1kg
located in “The Great Town Shop”.

●​ Then when physical products are concerned this flow becomes a “realized
transformation flow”.

7

iii.​ Sales operations
●​ A distributor (an enterprise) constitutes its catalog, made of “catalog items”, and build

offers for them given their customer categories. The product offered can be, depending
on the sales and marketing strategy of the distributor, a functional product (ex: tomatoes
to stuff), a technical product (ex: beefsteak tomatoes) or a supplied product (ex:
beefsteak tomatoes from Awesome Farm). A given agent can have a catalog on various
repositories (i.e. platforms) so a same enterprise can have multiple catalog items for the
same product, if they use multiple platforms for instance. We will be able to match them
using the unique product identifier.

●​ A sale session aggregates offers under certain shopping conditions (opening / closing
dates, etc.)

●​ The customer makes an order with various order lines in a specific sale session and
choose a shipping option - that can be delivery (they are delivered to their home or
business address) or pick-up (they need to collect the product in a location defined by
the distributor) - and a payment option among those defined by the distributor.

●​ The sale happens in a place that can be physical (a physical store) or virtual (an online
store). Note that this works as well for a physical store: technically each day the store
opens and close at a define time, and each day can be considered as a specific sale
session. In the case of physical store sales, the shipping option is implicitly “collect on
site”.

iv.​ Transaction
●​ When an agent has ordered products and products has been delivered through a last

transformation flow (transport), the ownership of the product changes hands. The
transaction is then officially happening and the previous product owner can invoice the
customer.

b.​Product ontology
Here is a simplified representation of the product ontology:

8

Click here to access a zoomable version of the document.

The question of products identification is treated in the technical standard and won’t be
discussed here. We came up with that model through various iterations, you can especially
check that spreadsheet illustrating the cases we used to illustrate and validate our last iteration.
We chose to characterize products through various orthogonal facets that enable precise
understanding, rich research and comparisons. This will be really useful for several use cases.
They will enable platforms to order products received from automated data exchange in their
own appropriate taxonomy. Also, actors will be able to make searches in a pull of products from
various platforms using various custom taxonomies.

So we choose the following “criteria” to uniquely identify products:

●​ Product type: this is a basic sales oriented taxonomy (are you selling carrots or soap ?).
●​ Then some facets help identify more precisely the products:

○​ If the product has a unique “living/mineral” source, what is the source? For
instance a steak has as source a living cow from a specific breed. If a product is
composed it can be decomposed through the “transformation flow” mentioned
above and each component can be described following the same process.

○​ If the product has a unique “living/mineral” source, what part or product of this
source is used? For instance honey comes from a unique living source which is
a bee from a specific breed. The part of product of source concerned here is
“honey”. If we talk about a carrot, the source will be the carrot variety, and the
part concerned will be “the root”. If I talk about carrots seeds, the part concerned
will be the seeds. If I sell carrots with the leaves it will be “whole plant”.

○​ Every product sold will have gone through some sort of processes, at a
minimum a tomato has been “harvested” from the living tomato plant. So even
what we call “raw products” have undergone some basic process. Salt will have
been “dried”, etc.

○​ Each product has a geographical origin, it comes from somewhere. It can be a
territorial origin (ex: France, Nice, etc.) or a general global origin (ex: north
west atlantic sea) so this facet can have values from two taxonomies even
though there is only one facet. A cocoa bean can be from the same producer (big
farmer owning lots of parcels for instance), go through the same harvesting,

9

https://docs.google.com/presentation/d/157i0ySW3T89KviZHmderXl7X0ywuvtz0QunaHJcEF_Q/edit?usp=sharing
https://drive.google.com/open?id=1l0wCwerm1ZW6zkUF4uB_A8u6B-MRaY3DmKSZKK9Z0vc

fermenting, drying processes, come from the same variety of cocoa plant, BUT
come from a different location.

○​ Products can have certifications/labels
○​ Products can have some physical characteristics (soft, tender, etc.)
○​ Products can have some specific claims (“gluten free”, “zero salt”, etc.)
○​ And products can have a specific brand

●​ And to finish a product is also identified with a dimension and unit, like potatoes are
sold by 1 x kg, a jar of tomato sauce is sold by 1 x item, the item here being a “jar of 500
ml tomato sauce”.

Behind each of those facets, we need taxonomies, or it can be a free field but then it’s hard to
make searches !
As we understand how complex it is to maintain taxonomies alone, we decided, just as we did
for product identification (see technical specification / metadata repository), to use Open Food
Facts taxonomies. They are not totally aligned with the way we wanted to describe products so
for the first real life test (prototype) we will ignore some of our facets. We are working hand in
hand to make our complementary approaches converge.

Depending on the use case, we might have to ask a user to fill in some unfilled info if they are
needed by the integrated platform to process the data. For instance, if a product is in the
category “apple” but no variety was filled in. And the data receiving platform has two categories
“acidic apple” and “sugary apple”, how can the receiving platform know where to put the product
? So in that case, the UX will require to as the user to fill in missing data.

F.​Technical specification
a.​Overall strategy for building a reliable spec

The overall strategy is to implement the prototype in roughly two phases:
●​ Phase 1 : implementing an MVP of the prototype, to showcase the potential of the

project and help raise additional funds.
●​ Phase 2 : the full implementation of the prototype. It will complete phase 1 to enable

industrialization and professionalization of the standard through improvement of the
tools, of the technical architecture, and of the possibilities of integration with external
actors.

b.​Design decisions
 Phase 1 Phase 2

10

Protocole Data must be expressed in a semantic
way in the API and must respect the
OWL DFC model
User-friendly and easy to implement

Phase 1 + professional protocol

Stateless or stateful Stateless

Granularity low granularity service Phase 1+ high granularity via queries

URL REST resource driven sémantic,
without parameter

Phase 1 + parameters enabling queries
(SPARQL or HyperGraphQL)

Service
specifications

OpenAPI except for the input/output
data structure, for which use OWL.
LDP specification compliant.

- Complete OpenAPI specifications for
standard services. LDP specification
compliant
- SPARQL spec for high granularity
service by Query.

Serialization JSON-LD
LDP specification compliant

JSON-LD (JSON-LD in the data attribute
if HyperGraphQL)
LDP specification compliant

Transport layer HTTP + LDP HTTP + LDP​
HTTP + SPARQL or HyperGraphQL

Single or
multi-source

Simple access to one logical source Query on multiple sources

Right delegation No (all or nothing, all decided by the
platform)

Yes (web ACL if SOLID used)

Identification and
authentication

OIDC (hosted by “les communs”) OIDC (or web-idOIDC if mature via Solid)

Data storage Distributed Phase 1 + centralized cache to improve
performances

User data ID centralized by user Phase 1 or web-id/OIDC if mature enough
in order to achieve a decentralized
authentication

Product data ID provided by Open Food Facts Decentralized ID management using the
semantic web and SOLID

Federation or
syndication

Ontology: Federation
Taxonomy: Federation
Storage: Syndication

11

Identification and authentication : Federation
Validation: ?
Synchronisation / caching: Federation
Notification: ?
Serialisation : Federation
Others aspects of the protocol: Federation

Interface Native web components Phase 1 + Startin’blox or SemViz

Federation: all entities follow the same protocol
Syndication: entities may have different protocols

c.​Architecture representations

Here we try to represent some of the designs choices above between phase 1 and phase 2:

-​ Single or multi-source
-​ Identification and authentication
-​ Data storage

Phase 1

Phase 2

12

https://www.draw.io/?lightbox=1&highlight=0000ff&edit=_blank&layers=1&nav=1&title=architecture%20DFC#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1f1C_Inb7sOeufswQkv2nnpLgWsGbhW98%26export%3Ddownload
https://www.draw.io/?lightbox=1&highlight=0000ff&edit=_blank&layers=1&nav=1&page=1#G1f1C_Inb7sOeufswQkv2nnpLgWsGbhW98

13

d.​Appendix 1. Decisions points and choices
i.​ Stateless or stateful?

When several requests are made, should they be independant or can they rely on each other?
●​ In a “stateless” setting, no state information is retained on the server itself. If we do 2

requests, the second one does not need to know the results of the first one, but it will
have to contain all the required information for the server to be able to return an answer
from scratch.

●​ In a “stateful” setting, state information (session) is retained on the server. The 2nd
request will be done on the basis of the input and output of the 1st request .

Some of the main advantages of each approach impact performance and scaling:

●​ A stateless architecture makes it much easier to scale horizontally, which means to
deploy additional servers (often identical) hosting the same application on which the load
is spread. Whereas if stateful, the servers store a state and in order to perform horizontal
scaling, either this state will need to be synchronized between servers or the same user
will always have to be directed to the same server - which makes it harder and less
efficient to implement.

●​ In a stateful architecture each request does not need to repeat steps that were already
performed or provide the same information again. The most common use of this is for
identification/authentication, which then only needs to be done on the first request saving
significant processing time.

The common best practice today is to use stateless services, making each request
independant. It makes for easier debugging, maintenance and scaling but needs additional
development for identification and authentication especially.

Conclusion: implement stateless service

ii.​ Service granularity
The notion of service granularity describes what functional level will a service address, rather
high level like an entire user or very details like a specific attribute of this user.
A highly granular service will split the interactions into low level functional blocks, whereas a
standard service will provide richer and more complete interactions, but not splittable.

For instance:

-​ A service that manage the product catalog including product categories, stock, etc. This
would be a low granularity service

-​ A highly granular service would just be the stock information. The name of the product.
Etc. Everything is split in small high granularity services, that can either be assembled on
the service side as one low granularity service, or let the client assemble these high
granularity services itself. For the use case of mutualized logistic flows, we could have a
specific service on "routes" without any information on what is transported. Another

14

service on orders, to find out what was ordered. And then have a view that combines the
different services.

Some pros and cons of each approach:

 Pros Cons

High
granularity
service

- Easier to maintain and debug
- Less data being transmitted as only
what is needed is requested
- More flexible and future proof
- Easier autorisation management

More services to keep track of

Low
granularity
service

- Less service calls
- Easier to develop
- Performance gains when it comes
to assembling data via for instance
joints at the DB level

- Services are more complex and
difficult to maintain
- Often requires ad-hoc
development when new usage
appear

The main advantage of highly granular services in the context of interoperability with
authorization management is the simplicity of development on the server side. For
instance it is easy to answer in an interface that the owner of some data denies access to it for a
specific client. The service will just use the standard HTTP responses (401 or 403). This
becomes more complex if this entity is nested in another (as for a low granularity service). In this
case, the server will respond well to the interface with the root data but will have to express one
way or another that its answer is not complete because it lacks a part for which the user has no
rights.

Conclusion: implement the needed low granularity services for phase 1 and in phase 2,
implement in addition more granular query based services

iii.​ Service standard
An old standard exists to describe API, coming from the XML world but today applicable to most
data format: WSDL. This norm is complex as it is very generic and is able to describe almost
any kind of API, not only HTTP, and not only synchronous or unidirectional. Working hand in
hand with WSDL, and nearly as complex, the UDDI standard allowed for registration and
discovery of services.

OpenAPI on the other hand focuses on HTTP and on the service usage from a resource point of
view, which makes it much simpler. It allows to document et specify the API (the endpoint,
the URLs structure, the serialisations...).

15

The capability of being able to specify by a given standard, the form of the url, the ability to work
in a Query logic, the serialization, the use of a model and its visibility with each request is
summarized in this table:

 Spec
OpenAPI

URL Query Sérialisation Data model
accessible per
API

Data model in the
API response

REST + OpenAPI Yes No No Yes (json) Yes but
OpenAPI
specific

Yes but OpenAPI
specific

REST resource
driven semantic

Yes No No Yes
(rdf/ttl/json-ld)

Yes but
OpenAPI
specific

Yes (owl)

REST application
driven (SPARQL)

Partial Yes Yes
(SAPRQL)

Yes
(rdf/ttl/json-ld)

Yes (owl) Yes

GraphQL Partial Yes Yes (GraphQL) Yes (json)) Yes but
OpenAPI
specific

No

hyperGraphQL Partial Yes Yes
(GraphQL)

Yes (json-ld in
data property)

Yes (owl) Yes (owl)

1.​ URL structure

Resource driven (logique REST)
A URL is a unique address pointing to a single resource. This resource can be a container that
contains several atomic resources.

1: http://serveur/idContainer/idRessource1
2: http://serveur/idContainer/idRessource1/attribut1/
3: http://serveur/idContainer/idRessource1/attribut1/attribut2/
4: http://serveur/idContainer/idRessource1/attribut1/idRessource2/attribut2/...

A URL may also contain parameters, using the special characters ‘?' to mark the start of the
parameters and '&' to separate each parameter. Previous examples translated with parameters:

1: http://serveur/idContainer?idRessource=idRessource1
2: http://serveur/idContainer?idRessource=idRessource1&attribut=attribut1
3: http://serveur/idContainer?idRessource=idRessource1&attribut=attribut1.attribut2

16

4: difficile à exprimer voir 6

With pagination parameters to load data by package rather than all at once:

5: http://serveur/idContainer?idRessource=idRessource1&start=0&length=100

Application driven
The more parameters an API can handle, the more generic the API becomes that encompass
the entire application. This type of URL changes the design of an API since it no longer creates
an API by type of resource but a generic API capable of meeting the different needs of the
application.
The tendency is to make parameters that contain json objects which makes APIs much more
generic (search, projection (choice of fields), sorting ...). The syntax use is usually based on the
MongoDB NoSql database “standard”.

6 :
http://serveur/idContainer?search={attribut1:{$gte:value1}}&projection={attribut1:1,attribut2:1,
attribut3:0}&sort={attribut1:1,attribut2:2}&start=0&length=100

The request above means retrieving the resources related to the container idContainer :

●​ Whose attribute1 is greater than value1
●​ Only retrieve attribute1, attribute2 but not attribute3,
●​ Sorted according to attribute1, then attribute2
●​ Starting with the first document found and returning 100 documents

The more complex parameters the API contains, the less it is possible to use the OpenAPI
specification because the result and structure of the query are variable. If the strategy is moving
towards this type of url, it is probably better to take the step towards using queries.

Query
The ultimate use of advanced parameters is called Query. This is a normalized query passed in
a single parameter with all the information needed for server using this standard to execute the
request. In the semantic world it is SPARQL. GraphQL offers another standardization specific to
this technology for queries.

The disadvantage of SPARQL queries is the inherent complexity of the semantic web. GraphQL
can be an alternative, but it will require to transform the OWL ontology into GraphQL types. The
drawback with the graphQL approach is that the model consisting of types is not exposed with
the data returned.
HyperGraphQL is an implementation of GraphQL dedicated to the semantic web in order to
connect to a tripleStore. The API provides data in their json-ld form with context in owl schemas.

17

2.​ Gateways between protocols
Ideally Both protocols (de facto standard and semantic standard) should be accepted by the
platforms. The API in de facto standard could then be based on the semantic API to avoid
duplicated maintenance (putting SPARQL in front). This represents a significant cost to setup
and configure.

The following table shows where it is possible to go from one standard to another (if the de facto
standard is used in phase 1 and the semantic one in phase 2):

Source Destination Comment

SPARQL GraphQL - It is possible to convert a GraphQL query into a SPARQL query.
- It seems possible to overlay graphQL on a SPARQL API but it's
quite experimental.
- There is HyperGraphQL also which allows to connect directly to
a Jena semantic base. the SPARQL and GraphQL API can then
coexist based on the same database.

SPARQL REST
resource
driven

REST APIs can be based quite easily on SPARQL APIs to simplify
their use, through the semantic bus for example.

GraphQL REST
resource
driven

The REST APIs can be based quite easily on GraphQL APIs to
simplify their use, through the semantic bus for example

GraphQL SPARQL A SPARQL API can only be based on a semantic database (jena
or rdf for example)

REST
resource
driven

SPARQL A SPARQL API can only be based on a semantic database (jena
or rdf for example)

REST
resource
driven

GraphQL GraphQL is designed to connect to resource-driven APIs by
adding resolvers to the server. It also allows dynamic aggregations
/ searches on several APIs of several actors.

To build the prototype, we need a user-friendly protocol that is easy to set up quickly while
offering the possibility of making a more professional API available. For the sake of
maintainability of it all, the user-friendly API should be pluggable into the professional API.

Conclusion: the actors of the consortium agree on a shared vision on the need to have 2
APIs:

●​ a "professional" API using SPARQL

18

https://www.npmjs.com/package/graphql-to-sparql
https://comunica.github.io/Article-ISWC2018-Demo-GraphQlLD/

●​ A more user friendly API in JSON-LD only on "read" data permissions.

3.​ De facto standards or semantic web ?
Do we want to respect the standards of the semantic web, or develop a simpler API, potentially
more intuitive, enjoyable, and easy to use?

The standard syntax for querying semantic data is SPARQL (W3C). The standard for semantic
APIs takes this query standard and is based on an HTTP url to which is added a parameter
(usually endpoint or search) that contains the request. From this, the server request will be done
via HTTP (LDP at the margin) and SPARQL, and the answer will be given in semantic data
(json-ld or rf or ttl) with a granularity that depends on the request SPARQL but in a generally
high granularity service logic.

In the non-semantic world and low granularity services, still predominant, the most used API
standards today are

●​ OpenAPI (managed by a large consortium)​
It is not compatible with json-ld as it is and probably will not be, because the concepts
are competing especially in terms of model. It respects the logic of the common good
with a broad consortium and shared governance.

●​ Graphql (pushed by Facebook while trying to build a community) .​
Very centralized by Facebook without trying to make a consortium.

They do not respect the semantic web standards and are not managed by the W3C.

There is here a fine balance to be found between potential for interoperability, coverage of a
wide variety of use cases, etc. and usability and ease of usage.
Here we find ourselves in a situation where we can choose to develop an API using
web-semantic standards (http + json-ld + sparql) standardized by the W3C but complex and not
or more accessible technologies (OpenApi, graphQL) which are de facto standards.

Conclusion:

All the actors in the consortium agree that compared to our goal, our willingness to allow flexible
cooperation between actors on all issues where it makes sense, we want to move towards the
use of the API standard SPARQL to ensure the flexibility of use cases and to use the power of
the semantic web. The development in addition of a second API based on OpenAPI would
make it easier to reuse and guarantees easy access to the standard. This vision is of course
coupled with the vision of a high granularity services architecture, necessary to use the power of
the semantic web.

They warn nevertheless about the complexity of implementation of high granularity
services and the risk of slowing the project if we started on this option for the prototype.

19

They are also realistic about a low skill level by the current teams of the SPARQL API
standard.

The API of the DFC standard will be "REST resource driven semantics". This means
HTTP requests (a URL per usage / resource) documented by writings and in OpenAPI that
return the Json-LD. This contains the OWL semantic model and not the model under the
Open-API standard. The API can return multiple nested resources without respecting the
high granularity service logic.

Platforms can use the implementation they want including solid servers but must expose
the API of the standard.

Eventually, a cache server will increase search performance and use SPARQL and / or
GraphQL for this. This cache will also expose the API of the standard.

iv.​ Serialization: JSON-LD vs XML-RDF vs TTL …
In our case data serialization is the process of converting the semantic data to a format that
allows sharing it in a form that then allows recovery of its original structure.
Historically the standard used was RDF (XML), which has evolved to TTL which simplifies the
syntax. The last evolution is JSON-LD, which is like JSON but expresses a context which allows
an equivalence with RDF or TTL, but which is not serialized on files. TTL simplifies RDF, while
JSON-LD offers another radically different way of doing things using the most common standard
(JSON).
When we enter the semantic world, we can have trouble reading RDF or TTL, while JSON-LD is
easy to read. JSON-LD is the standard that has been chosen by Google and Facebook in their
journey towards the semantic web.

Conclusion: the consortium's vision is therefore that we must adopt the JSON-LD
standard.

The consortium, however, anticipates that this choice will require a bit of thinking around the
server implementing, because standard SOLID servers return semantic data in RDF or TTL. We
could also contribute to the global common good so that SOLID servers can provide JSON-LD.

v.​ Transport layer
HTTP has become the unquestioned standard to exchange data unidirectionally.
FTP is still relevant to exchange files containing data like ods or xlsx values but is not adapted
to our needs.
HTTP can be improved with the REST logic. This good practice makes the best use of the
HTTP standard to harmonize APIs.

20

In the semantic world, another standard complements the HTTP: Linked Data Platform. This
standardizes the structure of the requested semantic content. It is based on 2 concepts:
containers and resources. Containers contain resources. A resource can reference containers
that contain data linked to it. A resource can itself be a container.
Some contradictions exist between REST and LDP. The header link for example is used to
indicate the links that a resource has with another resource in REST while it is used to indicate
what is the nature of the resource (Resource, BasicContainer, DirectContainer ...) in LDP.
JSON-LD is compatible with LDP provided that it complies with the Resource / Container logic.
LDP does not impose a form of url and OpenApi remains relevant to describe the API.

Conclusion: use HTTP and LDP while following a REST logic as much as possible

vi.​ Directionality
One key factors to differentiate between protocols is their directionality:

●​ Unidirectional = a client requests from a server and the server responds. The server
cannot initiate the communication.

●​ Bi-directional = the client and the server can send messages without being requested.

The advantage of bidirectionality is that one can also adopt a push mode, where the server
sends data to the client. For example regarding inventory: a product on platform A is purchased,
but this product is also sold on platform B, platform A could "push" the information that the
available stock has changed to platform B.
The need to have uni- or bi-directionality is therefore related to the need to have data
synchronization and notifications in real time. An alternative in the example above using
unidirectionality could be that servers send pull requests, every minute for example, to know if
the stock has changed. Is it sufficient ? Do we want real time or near real time to 1 or 5
minutes?

So far the protocol used in the semantic web is rather unidirectional, HTTP or LDP. It can be a
simple request about a resource (file: LDP or base of triplestore: HTTP) or more complete
queries with Sparql.

There is today very little R&D on bidirectionality in the semantic world, it is still very experimental
(AMQP + SPARQL, XMPP + SPARQL, HTTP2 + SPARQL, WebSocket). The terrain is slippery,
not yet mature. The theoretical ideal would of course be bi-directional, but the rational and
practical solution of the consortium is rather to use unidirectionality. We prefer to focus
our vision towards new and proven standards and technologies. We will see later when
technologies will mature if it makes sense to switch to bidirectional.

Conclusion: implement a unidirectional solution

21

vii.​ Multi- or single-resource requests?
The ability to make multi-resource requests (a query that looks for information across multiple
files) is related to using a TripleStore to store information, not just files. The TripleStore is then
the aggregation of all the triplets of all the files. We can not make sparql multi-resource requests
today in the SOLID server implemented by the MIT (node ​​solid server) but it is possible on a
JENA server. JENA does not implement authentication and rights management solutions, and
these are the points that SOLID offers a solution for. In the SOLID standard, SPARQL
multi-resources is planned, but not yet implemented.

The need for multi-resource queries will influence the choice of server (next point).

In our vision, and in the continuity of the architectural vision described above, to be able to carry
out research on a set of resources (eg a search on all the catalogs or all the logistical needs) we
need to ability to make multi-resource SPARQL queries.
We do not yet know how to put it in place, but we know in our vision that we need to be able to
make multi-resource requests.

Conclusion: we need to be able to do multi-resources requests, but it is unclear how to
achieve this

viii.​ Identification and authentication
Rights management covers the issues of authentication, identification, and rights management
granted by an agent to another agent.

●​ Identification = we know who is the user trying to query the data. Who we are.
●​ Authentication = a technical way to check that the person is who he pretends to be and

not a hacker. It's the validation of who we are.
●​ Authorization = what data and functionality we have access to.

In our case we need a way to perform these steps in an universal way and using the same
credentials across platform, aka SSO. We need it because if we take the case of the prototype,
a producer who wants to visualize his overall catalog will have to request data from all the
platforms he uses. Without SSO, he would have to connect from the prototype to each platform
specifically which in terms of UX is not satisfactory.

Who performs these steps? Is there a single or several servers that know who is who and how
to verify it? This is the difference between centralized and decentralized identification and
authentication.

1- Centralized, it is possible to use a secure access to the server that hosts the data as a
certificate (private key, public key). This is not the case for this project.

22

https://en.wikipedia.org/wiki/Single_sign-on

2- Delegation to a centralized entity. Protocols exist that enable multiple servers to perform
identification/authentication, sharing a common OIDC or OAuth or SAML standard. This solution
involves technical difficulties to become a reliable and trusted server. If an unreliable server is
used, it becomes a risk to the entire system. The most known current servers of identification
and authentication are, Google, Facebook, Github, the French State in France. They are
recognized as authentication providers and used by many sites.
This is the famous "connect with Facebook".

3- Decentralized, we can move towards fully distributed identification and authentication. The
DID specification is a standard on the subject. We can identify and authenticate ourselves on
any SOLID server, thanks to a solution combining webID and OIDC: Webid-OIDC. It is an
associated identification (Webid) and authentication (OIDC) protocol. The WebId carries the url
of the server on which to make the OIDC. Webid-OIDC does not claim to respect DID.

But how to match producer accounts from different platforms if the system is totally
decentralized? The reality is that today producers have one account per platform.
In the spirit of SOLID, a producer does not have accounts on two platforms. His account is on a
single SOLID server. eg if the producer has a SOLID server, he can create his identity on his
own SOLID server, and it is valid on the other servers too. Other servers will ask his server "Do
you authenticate this person?"

If you are connected to a SOLID server, you can connect to any other SOLID server. But how do
we know if this server is in the community or not?
It's a matter of ergonomics, UX: The user will have a list of servers validated by DFC for
example on which he chooses to identify himself / authenticate. When we arrive in the
application, unlike a traditional login with password, we ask with which server we identify. Like
Oauth! But with Solid any server can be server of reference, it is possible to propose to the
producer to identify with any of the platforms in the network. A new server / authentication
node means a manual addition to the list of servers on which authentication is possible -
this is a political decision to be made by the consortium. The maintenance of the list of
servers can be automated by crawling.

If we want to decentralize authentication via federation, it means that an actor who does not
wish to federate on authentication could not join. It's easy to validate the authentication once in
the federation, but it's hard to enter it. Others have to trust the trustworthiness of the new
entrant, because if he mistakenly authenticates himself, he poses a risk to the entire federation.
The choice to decentralize the identification and authentication would imply the choice of the
use of SOLID servers or an equivalent that manages a DID protocol, and thus the "transfer" of a
certain amount of information from the platforms to their SOLID server or equivalent. Knowing
that today producers already have multiple accounts on multiple platforms it would mean that
they are left with several unique identifiers unless they are forced re-create an account in the
new system and migrate the data.

23

https://w3c-ccg.github.io/did-spec/
https://en.wikipedia.org/wiki/WebID#WebID-OIDC

Conclusion: the vision shared by the consortium is towards decentralized identification,
authentication and authorization, via federated SOLID servers. But there is still uncertainty
about how this can be implemented. In particular, decentralized right management require to
have a consistent autorisation semantics across platforms, which in itself is a significant work.
We will use OIDC for the prototype.

ix.​ Right delegation between platforms and DFC
In the prototype, there is no request for consent, but we can clearly indicate what data will be
used just for information.

For the prototype, we will use the OIDC server managed by the commons.

By choosing OIDC centralized authentication / identification, the user consents to DFC having
access to their data when a DFC account is created and linking it to their platform account. The
right management is decentralized on the platforms that can implement their own
system.

On the long term WACL (Web Access Control) should be the ideal solution for platforms
that choose SOLID servers.

x.​ Centralized or decentralized data storage
Do we want the data we store to be on multiple servers, or on only one?

●​ Federation, all actor must respect the SOLID standard, each having a SOLID in front,
that integrated with his servers on the data to be shared.​
Advantage = as we all use the same standard, it simplifies the distributed storage of data
on all SOLID servers in the federation.

●​ Syndication, a translator is needed between the technology of the actors and the
common technology. This option respects more the identity of each one, the actors are
not obliged to use the same storage technology. Both are complementary and
compatible.

Our vision pushes us to favor decentralization, so to move towards a logic of federation, with a
semantic server per actor. But we defend the freedom of choice of each actor, so the vision is a
hybrid model of federation and syndication for those who do not wish to adopt a standardized
semantic server. This also allows for a much easier migration from the existing state, with
multiple different technologies, to a federated one where all use SOLID server.

Conclusion: it seems that we need a centralized server for 3 uses

●​ ID repositories

24

○​ Users
■​ OIDC server of the commons
■​ Depending on SOLID's technological evolutions, this repository could be

decentralized thanks to web-id/OIDC
○​ Products

■​ Open Food Facts
○​ Places

■​ To define
●​ The semantic cache

○​ To guarantee the performances and to be able to make queries (SPARQL,
GraphQL) which cover the data of all the platforms

●​ The Open Food Facts Taxonomy Not Open-Data
○​ For producers to map their catalog based on the Open Food Facts taxonomy.

This mapping from the original taxonomy of the platforms to the Open Food Facts
taxonomy has to be done once manually and can be automated after, which
should facilitate the adoption of DFC.

xi.​ Metadata repository
1.​ Users

To interoperate data between platforms, we need to know that user X on platform 1 is user Y on
platform 2, that they are the same agent. For that we need either a unique identifier for users on
top of a way to authenticate them. The user repository is essential here. It usually includes for
each user a login, a password (hashed of course), an ID, and information about the user.

Centralized repository

One ID per user

25

●​ Principle: All platforms allow connection with the OIDC server of the commons that users
perceive like the DFC server. A platform user must have associated their account with an
OIDC common account to take advantage of DFC features.

●​ Advantage: One OIDC account for the user. Simplicity architecture and implementation
for DFC. Users can continue without the DFC OIDC account but will not be able to enjoy
the associated features.

●​ Disadvantage: Platforms need to perform developments to be able to recognize the
OIDC server of the commons as a means of identification / authentication and allow
existing users to associate their existing account with a DFC OIDC account

One ID per platform

●​ Principle: The platforms (including DFC) each have an identifier on the oidc server of

DFC.
●​ Advantage: Simple architecture and implementation for DFC. No need to ask users to

associate their account with the OIDC DFC server. Platforms can communicate with
each other without DFC. transparent for users.

●​ Disadvantage: It is not possible to differentiate rights by incoming users. A platform 1
grants a set of rights to the platform 2 for example without user distinctions. It is possible,
however, that the user specifies on platform B what is entitled to see the platform A. The
platforms need to realize developments to be able to validate the identification /
authentication OIDC

Decentralized repository

One ID per user

26

●​ Principle: Each platform and DFC have an authentication server. The user must

inform DFC about his access to his own data (user, password token ...). DFC can
then mediate and platform 1 can request data from platform 2 through DFC as it is
the only place where the mapping between the 2 accounts is specified. The
identification and authentication protocols may be different between platforms but
this will increase the complexity of the DFC code.

●​ Advantage: Platforms do not need to reimplement / improve their authentication /
authentication

●​ Disadvantage: multiple accounts for the user. Complex code DFC side

One ID per platform

●​ Principle: The platforms (including DFC) each have an identifier on each platform
●​ Benefit: No need to ask users to associate their account with the OIDC DFC server.

The platforms can communicate with each other without DFC but with a technical
cost (see disadvantage). transparent for users.

27

●​ Disadvantage: It is not possible to differentiate rights by incoming users. A platform 1
grants a set of rights to the platform 2 for example without user distinctions.
However, it is possible for the user to specify on platform B what is entitled to see
platform A. Code relatively complex DFC side but less than solution 1. In the case of
direct access (without DFC), if a new platform arrives in the ecosystem: the new
platform will have to configure all the protocols / token of the others and the others
will have to add the protocol / token of the new one.

Conclusion:

●​ Short term​
The platforms are ready to make an effort to integrate an OIDC authentication into their
platform and allow their users to complete their platform-specific authentication via
OIDC. So we chose a centralized user repository with one user ID.
The chosen OIDC server is that of the collective "Les Communs (the commons)". This
group is a legitimate leader in strategic thinking for the commons and the provision of IT
tools to enable the commons to organize. This server will then be our unique source of
user universal identifiers. To start with and identify matching users on Open Food Facts,
as Open Food Facts is not going to complete their platform authentication via OIDC, we
will use SIRET to identify the corresponding users and user their data. It is possible
because all data of Open Food Fact are Open-Data and don’t need authentication.

●​ Long term: we hope that web-id / OIDC or other DID protocol will mature and that we
will be able to rely on it for decentralized authentication. That would enable us to
manage those unique universal identifiers in a decentralized way. It would also enable to
manage agent characterization information, that are not managed through OIDC (only
basic info like login and password are currently managed). If we need later on to manage
conflicts between agent description facets and decide which info is right, we might need
also some shared database to store those universal conflict-free / trusted information.

>>> Access the source for the drawings

2.​ Products
To be able to determine that two products on two platforms are the same, it is essential to have
a common identifier.

Decentralized repository
If several servers are able to manage product identifiers, this means that the product must only
be created on one platform. If this product is to be used by a second platform, it must refer to
the identifier created on the first platform. This requires an infrastructure capable of

28

https://www.draw.io/?state=%7B%22ids%22:%5B%221Zia2iwl-GkYc77qowCU0kHNzVNgQqa9V%22%5D,%22action%22:%22open%22,%22userId%22:%22115151052281975084839%22%7D#G1Zia2iwl-GkYc77qowCU0kHNzVNgQqa9V

crowdsourcing different sources and is difficult to do without a semantic web. The semantic web
is based on the uri that contains the address of the server on which the initial resource was
created. Other servers can manage information about this product but the identifier remains
linked to the original server.
It is also possible to issue ID ranges per platform. This is the logic of GS1 but it means that it is
not possible for a platform to create an identifier without having previously requested its range
from a centralized entity that realizes the assignment of the identification ranges. It is therefore a
false decentralization because there is a centralized entity from which all the entities of the
consortium depend.

Centralized repository
It is easier to entrust to a single entity the creation of product identifiers. This does not prevent
each platform from managing its own internal identifiers, but platform products will not be
interoperable with other platforms unless they are linked to a central repository identifier. This
means that there is a need for a simple and ergonomic solution so that platform users can easily
link their products that they manage on a platform with a centralized identifier. When choosing
this trusted third party, it is important to make an alliance with a third party that already has a
legitimate leading position and is able to generate identifiers recognized by all market players.
Open Food Fact is able to reference GS1 managed EANs for packaged products and is also
able to generate identifiers in a reserved range (let’s call them “pseudo EAN”). They have a
healthy governance and in line with the values ​​of DFC. They have a leading position in the field
of factual information on food products.

Conclusion:

●​ Short term: given the pre-existence of several platforms that already have their product
identifiers, it seems complex and inconsistent to start with decentralized identifiers. The
most consistent strategy is to use Open Food Fact IDs and generate one for products
that do not have an API. We pay great attention to ergonomics so that platform users
have the least possible difficulty in associating the identifier of their platform with an
Open Food Facts ID.

●​ Long term: moving to completely decentralized management of product identifiers would
be possible thanks to the Semantic Web and Solid but it requires a complex migration
work and a difficult strategy to identify. It is therefore a solution that remains in the vision
but still requires a lot of research and development.

Operational implication
DFC would have a specific universal products catalog, in a separate database from Open Food
Facts, hosted by a trusted third party (Les Communs in France). This will enable DFC to not
force users to open their products data, as any info on Open Food Facts is open data. When a
product is imported on DFC catalog, we would check (using enterprise ID SIRET first, then
hopefully only OIDC) if the user already have corresponding products in Open Food Facts, and
in that case, match the product and use the corresponding existing id (EAN or pseudo EAN). If
no matching product is found, and the product doesn’t have an EAN, we would use the Open

29

Food Facts API to generate a new pseudo EAN. Products on the DFC catalog will be easy to
push to Open Food Facts whenever a user wants to open their data.
On a first step the mapping between products will happen through the prototype, which will send
back universal id information to the original platform. On a second step, each platform might
want to integrate on their own interface a module to link /create a given product to it’s universal
DFC entry.

3.​ Places
Platforms reference places, but there can be cases where a same place is not referenced the
same way in two platforms, so mapping them to GPS coordinates might not give the same
coordinates even if it’s the same place. As for users and products, we need a way to know that
a place in platform A is the same place in platform B. Especially when we move on in the
development of the prototype, step 2 and 3, we will need to be able to identify places, so we can
search places within x km distance of departure or arrival.
We could at some point, like users and products, have ids for places. Open Street Map could be
a good candidate to manage universal location ids, but it seems it is not the case for the
moment, as they reallocate ids when places are delete. Also some addresses are not
recognized today by Open Street Map. GS1 did work on the topic as well, we would need to
investigate better their solution.
This problem has not fully been investigated yet.

e.​Appendix 2. General principles.
i.​ Federation vs syndication

The nuance between syndication and federation applies to all the notions where several servers
jointly concur to achieve an objective.

●​ Federation = all servers respect the same protocol. This facilitates interaction between
the actors of the federation. But if all aspects of the protocol are federated (including
identification and authentication) it can make access to the federation more complicated
because to enter it, one must implement the same protocol and often migrate to common
servers / solutions.

●​ Syndication = each actor has his own protocol, which is translated into the common
protocol to allow interaction. Moving the complexity to the integration layer.

The architecture may also be an hybrid with federation in some limited areas, for example on
the semantic standard, the unique identifiers and the authentication, and syndication otherwise.

ii.​ Libraries to develop in semantic

30

A question was raised about the existence of mature libraries in different programming
languages ​​to manage semantic data in SPARQL. Are there open-source libraries and code
sample in the different languages ​​to query and process web-semantics? As it can exist for
OpenAPI where there are libraries that can generate code samples.

There would be libraries in almost all languages, but these are more or less mature. In
javascript in particular, the standardization is taking place, RDF-JS.. The situation is that with
SPARQL it is more difficult that with OpenAPI or Graphql, who invest a lot of money for the
community, and thus also finance the libraries that will interact with these standards. The
libraries around SPARQL are more "fresh paint", less documented, more difficult to setup.
There is a risk, and to check by each of the actors, so that it does not generate too much
pain.

iii.​ Transition strategy from current to ideal
Base principle: Improve the legacy rather than migrate to new technology

High vs Low granularity services

The reality of the platforms around the consortium today is that they are absolutely not designed
for high granularity services. At best, as some low granularity services connected to each other
via API. If each platform were to implement a standard based on a high granularity services
architecture, each platform would have to re-assemble these high granularity services in
low-granularity corresponding to their own low granularity services to be able to share their
services. data via API ... Re-develop in their API a kind of "connector" between their services
and high granularity services of the standard.

So the approach for the prototype is rather not to go to a 100% high granularity service state,
but rather only on some relevant perimeter, without pushing the high granularity service logic to
the extreme, but granular enough so that the API is simple to use. Depending on the potential of
reusability of the service by others. For example, separating the product and inventory
information is quite clear.

To try to go as granular as possible, we can use as soon as necessary an aggregation bus (like
the semantic bus developed by Simon), for example to switch from several high granularity
services to a low granularity service, according to the respective configurations of each platform.

Semantic web

A semantic approach in high granularity service would also require platforms to transform their
database by a BDD TripleStore for example and that it is not the purpose of DFC to impose it.
Also, developers do not master SPARQL today

31

https://github.com/assemblee-virtuelle/Semantic-Bus

Conclusion: the actors of the consortium finally preferred to start by first developing a
user friendly API using OpenAPI, in JSON-LD.

Of course, we keep in mind the goal of moving towards a fully semantic and professional API
when the DFC project budget has been secured. This approach being a little less experimental,
it will allow us to connect 2 data sources to the prototype. This will require us to code existing
API transformations into "REST resource driven semantic" APIs that respect the DFC ontology.

G.​ Access sources
a.​Usage licences

b.​Github repositories

c.​Meeting notes
Notes:
https://docs.google.com/document/d/17ADh0ygn5soLPDB4MPDOptEhW4_pPtOb79WFQVczB
L8/edit
PPT:
https://docs.google.com/presentation/d/1wqUUbnY_HX8G0r7MpS6W_gFt-kewiGpoxnr5A8xoIn
E/edit#slide=id.g470b61b977_0_0

H.​ Contact us
​

32

https://docs.google.com/document/d/17ADh0ygn5soLPDB4MPDOptEhW4_pPtOb79WFQVczBL8/edit
https://docs.google.com/document/d/17ADh0ygn5soLPDB4MPDOptEhW4_pPtOb79WFQVczBL8/edit
https://docs.google.com/presentation/d/1wqUUbnY_HX8G0r7MpS6W_gFt-kewiGpoxnr5A8xoInE/edit#slide=id.g470b61b977_0_0
https://docs.google.com/presentation/d/1wqUUbnY_HX8G0r7MpS6W_gFt-kewiGpoxnr5A8xoInE/edit#slide=id.g470b61b977_0_0

	DFC standard documentation
	A.​Why we need a standard ?
	B.​What is the DFC standard ?
	C.​General strategy to build that standard
	a.​Remain independent
	b.​Collaborate with Open Food Facts for product identifiers and ontologies
	c.​Collaborate with “The Commons” for shared data storage
	d.​Iterative process and prototype base development

	D.​Status of the project
	a.​First releases
	b.​The POC to test the v.0 of the standard

	E.​Semantic specification
	a.​Business model and ontology
	i.​Products
	ii.​Transformation
	iii.​Sales operations
	iv.​Transaction

	b.​Product ontology

	F.​Technical specification
	a.​Overall strategy for building a reliable spec
	b.​Design decisions
	c.​Architecture representations
	d.​Appendix 1. Decisions points and choices
	i.​Stateless or stateful?
	ii.​Service granularity
	iii.​Service standard
	1.​URL structure
	2.​Gateways between protocols
	3.​De facto standards or semantic web ?

	iv.​Serialization: JSON-LD vs XML-RDF vs TTL …
	v.​Transport layer
	vi.​Directionality
	vii.​Multi- or single-resource requests?
	viii.​Identification and authentication
	ix.​Right delegation between platforms and DFC
	x.​Centralized or decentralized data storage
	xi.​Metadata repository
	1.​Users
	2.​Products
	3.​Places

	e.​Appendix 2. General principles.
	i.​Federation vs syndication
	ii.​Libraries to develop in semantic
	iii.​Transition strategy from current to ideal

	G.​Access sources
	a.​Usage licences
	b.​Github repositories
	c.​Meeting notes

	H.​Contact us

