Variations in WebView (Public Version)

Author: paulmiller@
Reviewed by: -
Last Updated: 2018-05-18

One-page overview

Summary

We're adding Variations (Chrome's experiment system) to Android WebView (the Chromium-based
Android widget for embedding web content in Android apps).

Platforms
Android

Team
paulmiller@ (eng), sbirch@ (PM)

Launch bug
https://crbug.com/793888

Code affected
WebView (src/android webview/) and Variations (src/components/variations/).

Motivation

PlzNavigate exposed WebView's lack of Variations as a major risk to stability and drain on engineering
time. While PlzNavigate was ramped up experimentally in Chrome, we had to launch from 0% to 100% in
WebView. This led to many stable-channel bugs due to incompatible behavior changes. While PlzNavigate
was especially bad, every WebView feature (and many Chrome features which affect WebView) carries
this same risk.

https://crbug.com/793888
https://cs.chromium.org/chromium/src/android_webview/
https://cs.chromium.org/chromium/src/components/variations/

Design

Experiment setup

The process for creating experiments, and the server-side Variations implementation, will be the same across
Chrome and WebView. "Android WebView" has been added as a separate platform, alongside "Android",
"Windows", etc. This implies that existing experiments (which were not explicitly configured to include
WebView) will not automatically apply to WebView. It also implies that WebView's Variations seed (the list of
experiments and the circumstances for enabling them) will differ from Chrome's.

Getting the seed

Like Chrome, WebView must periodically download a Variations seed from Google. Unlike Chrome, WebView
runs inside the processes of many other Android apps; WebView must disseminate the seed to all
WebView-using apps on the device. We handle this in a new service, running in a separate process, which
downloads seeds and disseminates them to apps on request:

| 1
| Google Android device
—> app
| | | | | |
Variations Server > WebView Service > app
| |
—> app
| |
|

The Variations Server here is the same server that Chrome uses.

Neither the Server—Service nor Service—App transfer is guaranteed to complete successfully, and may result
in a truncated seed. Therefore the service and every app will each keep 2 seed files: "old" and "new". New
seeds will be written to the "new" file, and later the "old" file will be replaced with the "new" file. If the "new"
seed is found to be truncated, it will be ignored and the "old" seed will remain in use.

The seed file will be a serialized proto containing the same fields as VariationsSeedFetcher$SeedInfo: the
seed data, the signature and compression flag for that data, the country code, and the date the seed was
downloaded.

The proto wire format is such that if the file is truncated in the middle of a field, parsing will report an error. If
the file is truncated between fields, no error will be detected. However, we expect to see every field in the seed
file; therefore if not all fields parse successfully, we will know the seed was truncated.

Loading the seed in the app

Variations' design is such that the experiments must be configured on startup and can't change while
Chrome/WebView is running. Therefore we need to block WebView startup on loading an app's local copy of
the seed. Loading the seed takes < 2 milliseconds on Nexus devices, but this may be worse on low-end
devices. There will be a 20 millisecond timeout; if the seed is not available in time, WebView will continue with
all Variations experiments disabled. (Total WebView startup times varies greatly across devices, but I've
measured it to be 100-200 milliseconds on Nexus devices.)

Because of this timeout, and because no app will have a seed the first time it uses WebView, we can't
guarantee seed availability. Therefore, enabling a feature at 100% doesn't guarantee it will be enabled for
everyone. Similarly, any feature that defaults to "on" cannot reliably use Variations as a killswitch.

Requesting a seed from the service

If the app doesn't have a seed, or its seed is old, the app will request a new seed from the Service. We can't
block startup on this; if the Service process isn't already running, starting it takes hundreds of milliseconds.

https://cs.chromium.org/chromium/src/components/variations/android/java/src/org/chromium/components/variations/firstrun/VariationsSeedFetcher.java?q=%5CbSeedInfo%5Cb

Apps will request the seed via this Binder call:

interface ISeedServer {
void getSeed(in ParcelFileDescriptor dest, long date);

The app will supply an open file descriptor for its "new" seed file, to which the Service will write the new seed.
The app will report the "date" field of its current seed, if any; the Service will only write a new seed if it's newer
than what the app already has. The app will rate-limit its requests across runs by writing the time of its last
request in its data directory.

Downloading a seed from Google

Whenever the Service gets a request, the Service may schedule a JobService to download a new seed. The
JobService will be scheduled iff the Service's copy of the seed is sufficiently old, and the JobService is not
already scheduled. The Service and the JobService will run in the same process.

The advantages of using a JobService are:
- The JobService can be made to wait for network access before running.
- The system schedules JobServices from multiple apps together to minimize battery impact.
- Since the Service is foreground, it may be killed at any time due to memory pressure. The download
may take longer than the lifetime of the Service. A JobService is more likely to complete successfully.

The JobService will use Chrome's "firstrun" seed download code, implemented in Java, rather than Chrome's
native downloader. This is because the WebView Service doesn't load native code, to keep it light weight. The
Java downloader doesn't support delta-compression of seeds, so we'll want to add this as a future
optimization. (See "Follow-up work", below.)

Rejected Designs ideas for disseminating the seed to apps

| investigated nine alternatives, falling into these categories:

Rather than loading the seed from flash, transfer it from some other process. This could be a Service or
ContentProvider, and could share the seed via Binder, Messenger, or ashmem.

Unfortunately, WebView can't rely on starting another process to get the data; starting a process is slow, and
we can't afford to delay WebView that much. | tested a bare-bones ContentProvider on Nexus 6, N2G47S, and
found latency to range from 1-10 milliseconds when the ContentProvider's process was already running, but
150-400 milliseconds when it wasn't. | also tested binding (measured from right before the bindService call to
the onServiceConnected callback); | found the latency to range from 10-20 milliseconds if the Service was
already running, and 150-200 milliseconds when it wasn't.

The process could be made persistent, but that would make the process's memory cost persistent. Testing on
Nexus 6 (arm32), N2G47S, WebView's variations_service process has a PSS of ~4 MB when no other apps
are using WebView. On Nexus 9 (arm64), it's ~11 MB [1]. We could mitigate the impact by disabling Variations
on very low-memory devices, although that would skew results for performance-focused experiments.

GMS contains a persistent process for frequently-used services, so we could serve the seed via GMS.
Unfortunately, there is no existing GMS API that would support our needs. We would have to implement and
maintain a new API. This would be a large and ongoing burden on the WebView team, given GMS' extensive
bureaucratic and technical launch requirements. (Even simple changes require a unique, 20-strong dogfood
population; myriad forms, docs, and tickets to be filed; participation in the regular integration days; etc.)

Rather than copying the seed into each app, store one copy in some globally-readable location. This
could be a world-readable directory within WebView's data directory, or in /sdcard.

Unfortunately (for us, but fortunately for security), Android is moving away from globally-readable files, and
pushing apps to share data via IPC mechanisms instead. MODE_WORLD READABLE was deprecated in JB
and effectively removed (it throws a SecurityException) in N. File.setReadable()/setExecutable() may be
completely blocked via SELinux in a future release.

https://cs.chromium.org/chromium/src/components/variations/android/java/src/org/chromium/components/variations/firstrun/VariationsSeedFetcher.java
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE

Every parent directory of the world-readable file (meaning WebView's data directory, or Chrome's in the case of
Monochrome) would additionally need to permit execute permission, which weakens the app sandbox.

We can't use /sdcard because 59.06% of apps which use WebView don't declare
READ_EXTERNAL_STORAGE permission [2] and so can't access /sdcard. Android is trying to move away
from /sdcard as well, so this percentage is likely to decrease. Additionally, /sdcard behavior varies across
devices; some have multiple external storage directories, or removable sdcards, and /sdcard's performance
characteristics may differ from the rest of the filesystem.

/data/local/tmp was also recently locked down.

As above, but with evil hardlink skullduggery. The seed would live in WebView's data directory, and that
directory would not have execute permission. Instead, each app would have a hardlink to the seed file in its
own directory. The seed itself would be world-readable but not world-writable. (All hardlinks to a file share the
same permissions.) This would be a smaller violation of the app sandbox. This (awful) hack wouldn't work with
symlinks, because those traverse the original parent directories, and would be blocked by the directory's lack
of execute permission.

Unfortunately, we have no process with privileges to create this link. A WebView Service wouldn't be able to
access the app's directory, and the app wouldn't be able to make a link into WebView's directory. Apps can
grant each other access to private files by passing file descriptors, but a link cannot be created from a file
descriptor; Files.createLink (Java) and unistd.h's 1ink (native) both take a pair of paths.

Get help from Android framework. Android could give guarantee us a globally-readable filesystem location
to share the seed. Or it could arrange for the seed file to to already be loaded when app processes are forked.

However, given the uptake rate of new Android releases, we don't want to restrict Variations to future Android
versions which have the necessary changes.

Rejected alternative: Phenotype

GMS has the Phenotype API, an experiment framework used by many 1st-party Android apps. We could use
Phenotype rather than Variations to run experiments in WebView. But this has several problems, in order of
increasing estimated severity:

- Phenotype is currently restricted to 1st-party apps. Although WebView is 1st-party code, it runs inside
3rd-party apps, and so cannot access 1st-party GMS APIs.

- Phenotype has different semantics than Variations, e.g. Variations has a 1:1 relationship between flags
and experiments, whereas Phenotype does not. This would complicate experiment design.

- This would diverge WebView from Chrome, complicating launches which cover both platforms. The
differences may alienate non-WebView members of the Chrome team, and discourage proper
experimentation.

We plan to revisit this option if our experimental results (see "Experiments" below) are unmitigably poor.

Metrics

Success metrics

We'll add WebView logs for the existing Variations.SeedFreshness histogram to verify prompt seed
delivery to apps.

Regression metrics

WebView startup is not currently instrumented; we will add UMA histograms to measure time spent
blocked on loading the seed, and success rate of loading the seed (how often we time out). AGSA (See
"Experiments" below) has its own performance metrics which they will monitor.

Experiments

This is a catch-22: we can't run experiments in WebView until this feature is complete. So we've instead
created an experiment in AGSA (Android Google Search App). AGSA uses WebView to show search results
and his highly sensitive to WebView startup latency. AGSA instances inside the experimental group will

https://uma.googleplex.com/p/chrome/histograms?histograms=Variations.SeedFreshness

touch a file in their data directory to indicate that WebView should enable Variations. AGSA will monitor
their own metrics to assess WebView's impact on the host app's performance.

We aim to experiment in m67. Because of WebView's small beta population, we'll have to wait for the
experiment to reach stable to get meaningful data.

The entire implementation need not be complete to begin experimentation; loading the seed from flash
on startup, and starting the WebView Service process shortly after startup, are the steps expected to
impact WebView performance. Downloading actual seeds and running actual Variations studies are not
necessary at this stage.

Rollout plan

See "Experiments", above. If the AGSA experiment results are acceptable, we'll enable Variations in
WebView for all apps, not just AGSA.

Core principle considerations

Speed

These factors may impact performance:

- WebView startup time may be delayed by loading the seed.

- WebView's services process is currently only run when uploading crashes; with Variations, this
process will run more frequently (every time an app requests a new seed), and this work will likely
share CPU time with the host app's startup (since many apps create WebViews on startup).

- The JobService to download new seeds will use network up to once per day.

Startup impact is mitigated by the 20 millisecond timeout. Impact on the host app will be measured in the
AGSA experiment.

We plan to delta-compress seed downloads as a future optimization (see "Follow-up work", below) but
are not including this in the initial launch. WebView's current seed size ~3KB, much smaller than
Chrome's ~260KB. This optimization will become more impactful as WebView's seed grows from new
experiments.

Security

The seed is downloaded via HTTPS and stored in WebView's private data directory. Android's app
sandboxing prevents other apps from reading or writing to this directory. The getSeed Binder API
described under "Design" may be called by any installed app. Therefore any app can observe but not
modify the WebView Service's copy of the seed. If some party were able to modify the seed, they would
be able to enable/disable whatever experiments were implemented in WebView at the time, for all
WebViews on the system. If there are any bugs in the protobuf library we use to parse the seed, they
might be able to exploit those with a specially-crafted seed.

Any app can modify its own copy of the seed, since it's stored in the app's own data directory. So it's
possible for apps to enable/disable experiments for their own WebView instances, without affecting any
other apps on the system. However, since WebView runs inside the processes of other apps, apps already
have complete control over their own WebView instances.

(Bonus 5th S) Space

The main drawback of this design is the cost of copying the seed into every app that uses WebView, on
flash space and write endurance.

74.45% of apps use WebView [2]. If a user uses 100 unique apps, and we naively assume 74 of those apps
use WebView, then upon pushing a new 3 KB seed, their device would write 222 KB to these apps. The
writes would occur intermittently as each app was used. If over years of adding experiments, WebView's
seed were to eventually grow to match Chrome's 260 KB, the cost would rise to 19 MB, which may be
unacceptable.

Chrome is working to reduce seed size by perhaps 80%, by removing expired experiments, and filtering
out experiments by target milestone and channel. (See https://crbug.com/761684.) WebView can share in
these optimizations. Still, we'll need to monitor the growth of WebView's seed over time.

Privacy considerations

WebView already collects UMA histograms based on Android's metrics consent setting (the checkbox
shown in Android's setup wizard). Just like in Chrome, Variations will annotate WebView's UMA data with
which experiments were enabled at the time.

Since the set of enabled experiments is decided randomly by the client, a Googler with raw logs access
could use experiment info to fingerprint a given (app, user, device) tuple. However, UMA already uploads
a "client ID", a randomly-generated number for pseudonymously identifying UMA data (unique per (app,
user, device) tuple). The client ID contains 122 random bits, sufficient to avoid collisions; it is an accurate
fingerprint by design. An experiment-based fingerprint would have a number of random bits equal to:

l0g,([Ti=1.n G))

(where n is the number of experiments, and G; is the number of assignable groups in experiment i). This
would give it equal or lesser accuracy compared to the client ID, which already has total accuracy.

Testing plan

Variations is not visible to the user, so testers need not verify any user-visible behavior. Instead, testers
should enable Variations in WebView via flag, to exercise Variations during their normal testing and check
for crashes:

$ adb shell 'echo " --enable-webview-variations" > /data/local/tmp/webview-command-line'

Testers should also verify that the AGSA experiment functions with the latest WebView versions. Testers
should verify that when the experiment is enabled, the "finch-exp" file appears, and that WebView
creates a dummy seed file when the "finch-exp" file is present.

The specific steps would be:
1. Get access filesystem access:
$ adb root
$ adb remount
2. Clear any existing WebView seed files from AGSA:
$ adb shell rm
/data/data/com.google.android.googlequicksearchbox/app webview/variations*
Install the latest "release" build of of AGSA and NowDevUtils.
Restart AGSA (force stop in settings and then do a search).
5. Verify that the "finch-exp" file doesn't exist:
$ adb shell 1ls /data/data/com.google.android.googlequicksearchbox/files/webview
In NowDevUtils, side menu "Flags", select "Manage config flags" and search for
AgsaWebview__finch_experiment_file_policy.
Change the value of the finch_experiment_file_policy to 1 (create file)
Restart AGSA.
Verify that the "finch-exp" file exists.
0. Wait a few seconds for WebView to create the seed file.
1. Verify the file was created:
$ adb shell 1ls /data/data/com.google.android.googlequicksearchbox/app webview/
There should be a "variations_seed_new" file there. (Further usage may cause the file to be
renamed to "variations_seed".)
12.In NowDevUtils change the value of the finch flag to 2 (remove file)
13. Restart AGSA.
14. Verify that "finch-exp" no longer exists.

AW

o

=

https://crbug.com/761684

Follow-up work

There is code to enable Variations based on a command-line flag or the AGSA experiment which will be
removed if the current implementation proves acceptable.

Once we've gotten experience running an actual experiment for WebView, we'll add documentation
about the process and any differences from Chrome.

There are additional features and optimizations we hope to add in the future:
- Support persistent filtering of experiments by country: https://crbug.com/823410
- Delta-compress Variations seed downloads: https://crbug.com/817506
- Support falling back to an old seed if a new seed causes problems: https://crbug.com/801771
- Include experiment info in WebView crash data: https://crbug.com/758450

Notes

[1] Memory usage by WebView's variations_service process was measured like so. To start the Service:

$ adb shell am startservice
com.google.android.webview/org.chromium.android webview.variations.AwVariationsConfigurationService

To measure memory:
$ adb shell dumpsys meminfo com.google.android.webview:variations service
Quoted numbers are PSS, while no other processes are using WebView (which is the worst-case scenario).

[2] Stats on how many apps use WebView, and how many declare which permissions, were found via Play
Store data.

https://crbug.com/823410
https://crbug.com/817506
https://crbug.com/801771
https://crbug.com/758450

	Variations in WebView (Public Version)
	Summary
	Platforms
	Team
	Launch bug
	Code affected
	Motivation

	Design
	Experiment setup
	Getting the seed
	Loading the seed in the app
	Requesting a seed from the service
	Downloading a seed from Google
	Rejected Designs ideas for disseminating the seed to apps
	Rejected alternative: Phenotype

	Metrics
	Success metrics
	Regression metrics
	Experiments

	Rollout plan
	Core principle considerations
	Speed
	Security
	(Bonus 5th S) Space

	Privacy considerations
	Testing plan
	Follow-up work
	Notes

