
Turboshaft Frontend - Preliminary
Design Elements

Authors: dmercadier@
Date created: 02/11/2023
Last edited: 15/11/2023
Visibility: public

Turbofan Frontend Overview
The following table lists all of the phases that Turbofan’s front-end currently contains, along with
their current status in Maglev and Turboshaft, and some notes about their implementations in
Turboshaft and Maglev.

Main phase Sub-phases TF
SLOC Description / Notes Maglev

Status
Maglev
Notes

TS
Status

Turboshaft
Notes

Graph Builder

Graph building 3543 Walks bytecode and builds the
graph from bytecode

🟧

Written for Maglev, would
need to be extended for
Turboshaft ❌

JSTypeHintLowering 704 Early feedback-based
specialization

Inlining &
ContextSpecialization

NativeContextSpecialization
ContextSpecialization

3600 Lowers Loads/Stores into
specialized operations based on
Context 🟧

Written for Maglev, would
need to be extended for
Turboshaft ❌

JSCallReducer 6950 Inlines builtins fast-paths Turboshaft has good tools
to generate IR

Inlining 1428 Inline JS functions
🟧

Only allows greedy inlining,
would need to be rewritten
for priority-based inlining

❌
Could be useful for
Wasm/JS mixed inlining

Typer &
Typed Lowering

Typer 2102

🟧

Partially written

Does not compute fix-point,
no loop backedge
information

Probably doesn’t need/want
an expensive fix-point
analysis

🟧
Only machine-level typer
and typed-optimizations
currently exist

JSCreateLowering 1701 Lowers CreateXXX nodes

❌

JSTypedLowering 2124 Type-based lowering of generic
operators (eg, JSAdd)

TypedOptimization 947 Type-based eliminations of
Checks (eg, CheckString) and
type-based specializations of

generic operators

SimplifiedOperatorReducer 349 Peephole optimizations on
Simplified operators

🟧

Part of these are
implemented in Machine
Optimization Reducer

CommonOperatorReducer 505 CFG optimizations, mostly
replaces Branches by Gotos

Loop Peeling &
Unrolling

LoopPeeling 990 Peels the 1st iteration of
innermost loops 🟧 Only allows greedy loop

peeling.
✅

Required for Wasm as well

LoopUnrolling 655 Exists in Turboshaft but not
Turbofan ❌ Probably not hard to write

Load Elimination

BranchElimination 357 CFG optimizations, mainly
double-diamond elimination and
if(c){if(c){}} optimization

🟧

Partially written

Does not compute fix-point,
no loop backedge
information

Probably doesn’t need/want
an expensive fix-point
analysis

✅

RedundancyElimination 452 Eliminates impure redundant
operations, like redundant
Checks.

❌
Easy to write

LoadElimination 1551 Eliminates redundant loads

✅

Mostly already written
Needs small modifications
for front-end
Needs to do
Check-elimination as well
—
Required for CSA and
Wasm as well

ValueNumberingReducer 157 Eliminates redundant pure
operations

CommonOperatorReducer See above Mostly already written

TypedOptimization See above ❌

Escape Analysis
EscapeAnalysis 1418 Avoid constructing objects that

don’t escape the current function ❌
Needs tracking of
dematerialized object for the
deopt info

❌
Deopt support already in
place

Simplified Lowering

SimplifiedLowering,
RepresentationChange

6353 Lowers JS operators to Simplified
operators

🟧

Maglev has some
representation analysis (in
particular around Phis), but
this is a fast pass that is
less powerful that what
Turboshaft will need (and
Maglev probably doesn’t
need more)

❌

Legend
✅ implemented (or almost fully implemented)
🟧 partially implemented (would need non-trivial modifications/extensions to work for
Turboshaft)
❌ not implemented

Total TF SLOC (excluding Simplified Lowering): 28878

New Frontend Phases and High-level
Considerations

Which phases should be grouped together, and which shouldn’t
be?
Graph Building should be done before inlining, because we want to have access to the whole
graph before choosing what to inline. But it’s nice to do some NativeContextSpecialization while
building the graph, so that it doesn’t need to be done before starting Inlining.
Inlining and NativeContextSpecialization need to be done together so that after inlining a
function, its users can be optimized with NativeContextSpecialization, which would in turn open
inlining opportunities.
Typing (+ typed lowering, typed optimizations), Load Elimination and Escape Analysis have
to run an analysis over the whole graph. This should be done after inlining is finished. Still,
doing a bit of load elimination and typing during graph building could be useful in order to guide
the inlining decisions (but “a bit” = not the full analysis).
Loop peeling and unrolling are probably somewhat flexible: we might be able to do them
during graph building or later (doing them later is probably a little bit easier because they can
then operate on a graph rather than having to look at bytecode). It’s somewhat important to do
Loop peeling before Load Elimination, since this might allow some loads to be hoisted out of
loops.

We would end up with 3 main distinct phases:

●​ Graph Building. It would be nice if it contained NativeContextSpecialization.
●​ Inlining. This has to include NativeContextSpecialization.
●​ Optimizations (Type-based, LoadElimination, Escape Analysis, Loop Peeling/Unrolling).

This phase could easily be split into multiple sub-phases.
(+ a final SimplifiedLowering-like phase)

What about Maglev’s Typing, Load Elimination and Escape
Analysis?
These 3 phases will require some kind of fairly expensive analysis to be optimal (iterating at
least twice over loops, or maybe until a fixpoint), which could be too expensive for Maglev.

Additionally, Maglev's current approach to Typing and Load Elimination is to do them online
while building the graph. This is not suitable for Turboshaft, where loops would need to be
revisited (and their content changed based on what we learned on the backedge).
That being said, if we wanted to reuse Maglev’s graph builder, we could keep these Maglev
optimizations, given that they still improve the graph. However, I’m not sure this is the best
solution w.r.t. code complexity; see Mixing Phases or Splitting Phases.

Lowering Early or Late
Benefits of lowering early: lowering early can enable subsequent optimizations to do more.
For instance, lowering an Array.map before inlining is probably a good idea, because it could
allow inlining the callback function.
Similarly, lowering early can reduce the effects of an operation, which in turn can make
subsequent optimizations/analysis (such as Load Elimination) more effective. For instance,
lowering a JSAdd into a Word32Add during graph building based on feedback is probably
beneficial, because it reduces the effect of the operation (JSAdd can probably lead to arbitrary
JS code execution, while Word32Add is pure).

Benefits of lowering late: lowering late can also lead to more optimization opportunities in the
Frontend, in particular dead-code elimination (it’s easier to remove an unused StringConcat than
a subgraph allocating a string and copying 2 strings in it), GVN (it’s easier to GVN 2 consecutive
identical StringConcat than 2 subgraphs performing the same StringConcat) and
BranchElimination (branches whose conditions are high-level nodes are easier to eliminate than
branches whose conditions are the result of some large subgraph computation).

Disadvantages of lowering early: lowering early tends to obfuscate the graph, which can
make optimizations harder to do / spot. For instance, it’s quite obvious that
TagSmi(UntagSmi(x)) should be optimized to x. However, once lowered, this becomes
OverflowCheckedAdd(ShiftRightArithmeticShiftOutZeros(x, 1)), which wasn’t
optimized until recently.
Additionally, information can be “lost” through lowerings. For instance, something that was
known to be a Smi can look like any Tagged value after a lowering, which means that
subsequent optimizations won’t be able to take advantage of this fact.

Mixing Phases or Splitting Phases
Here is a Maglev loop for the lowering of ArrayForEach:
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/maglev/maglev-graph-builde
r.cc;l=5605-5797;drc=7b59899e869fd1520ca45c6eb9f418402ec9ce59
And here is the equivalent Turbofan loop:
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/js-call-reducer.cc;l=
1517-1558;drc=6ee16b764a2e267e20a3b25163b5077656eda9a3

https://source.chromium.org/chromium/chromium/src/+/main:v8/src/maglev/maglev-graph-builder.cc;l=5605-5797;drc=7b59899e869fd1520ca45c6eb9f418402ec9ce59
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/maglev/maglev-graph-builder.cc;l=5605-5797;drc=7b59899e869fd1520ca45c6eb9f418402ec9ce59
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/js-call-reducer.cc;l=1517-1558;drc=6ee16b764a2e267e20a3b25163b5077656eda9a3
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/js-call-reducer.cc;l=1517-1558;drc=6ee16b764a2e267e20a3b25163b5077656eda9a3

The Maglev one does more (tracking maps and types), and produces better code. The Turbofan
one is much simpler and relies on subsequent passes (CheckElimination, LoadElimination,
SimplifiedLowering) to optimize the not-so-optimal code it generates.

Maglev doesn’t have the luxury of relying on subsequent passes to optimize poor code, but for
Turboshaft, we could consider taking a similar approach as Turbofan, in order to simplify the
code (since, anyways, we should have a powerful load elimination and representation selection
coming later, which should be able to optimize away everything that Maglev optimized away).

Inlining with Maglev/Turboshaft IR
The way inlining should work is how it currently works in Turbofan: pick the hottest function call,
inline the function, and optimize (recursively) the uses based on what the inlined function body
contains; repeat this process until the inlining budget is exhausted.
This does not work naturally well with Maglev and Turboshaft IR, since they don’t support many
in-place mutations (in Maglev, nodes can be inserted in some places and sometimes mutated,
but changing control flow is hard, and in Turboshaft we can just overwrite a node with a node of
the same size or smaller).
Still, it’s possible to adapt Turboshaft (and Maglev) to support in-place mutation. Turboshaft JS
Inlining and In-place mutation explains how to achieve this, and a prototype CL demonstrates
feasibility of in-place mutations of the IR. The proposed solution has the downside of increasing
the complexity of the Assembler (which was already fairly complex), which makes it not so ideal
for long-term maintenance.

Another thing to keep in mind: if we plan on inlining JS in Wasm and vise-versa, then doing the
inlining in Turboshaft would be convenient. However, such general-purpose JS-Wasm inlining is
not in our short-to-medium term plans (Jakob Kummerow said that pattern-based inlining for
specific JS/Wasm functions might be useful, but it’s not clear whether the general thing is
useful).

Useful Turboshaft Features
Some phases of the front-end do generate quite a lot of code (in particular JSCallReducer but
also NativeContextSpecialization). Turboshaft has some features that make it easier/safer to
write code; whichever IR we choose for the beginning of the frontend, similar features would be
nice.

Static C++ node types
Instead of using OpIndex (the regular “node” type), one can also use V<type> (defined in
turboshaft/index.h), where type is any JS type + some machine-level types like Word32,
Float64, etc. If type1 is implicitly convertible to type2, then V<type1> is implicitly convertible to
V<type2>. This is quite useful to 1) document the code and the types of the variables, and 2)

https://docs.google.com/document/u/1/d/1_L3TWgREnlm6QUTca27jN-TLyxo_Jy-AbicVhzmEHwM/edit
https://docs.google.com/document/u/1/d/1_L3TWgREnlm6QUTca27jN-TLyxo_Jy-AbicVhzmEHwM/edit
https://crrev.com/c/4994353
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/js-call-reducer.cc
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/js-native-context-specialization.cc
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/index.h;l=189-424;drc=fa7521ef3eb6c69fa398809e7ce4a869c94661fa

detect bugs early (if a V<Tagged> is used as input for a function that expects a V<Float64>,
something is obviously wrong, and we’ll get a Clang compile-time error). (For those familiar with
them: this is all very similar to TNode<type> in CSA.)

AssemblerOpInterface helpers
The AssemblerOpInterface (in turboshaft/assembler.h) defines a lot of helpers to emit
operations. Some are just syntactic sugar (like Word32Add(a, b) which expands to
WordBinop(a, b, Kind::kAdd, RegisterRepresentation::kWord32)), and others have
more complex lowering (like CallBuiltin, which generates a Call based on a CallDescriptor,
doing some checking on the arguments along the way). This allows to have fairly generic
Opcodes (like kWordBinop rather than kWord32Add, kWord64Add, kWord32Sub, …), which in
turns allows to generically handle multiple low-level cases, while at the same time being able to
easily emit seemingly low-level code.
Additionally, thanks to the ConstOrV extension of V<type>, constants can often be passed are
C++ constants and are automatically wrapped in Turboshaft nodes (eg, one can write __
Word32And(x, 1) rather than __ Word32And(x, __ Word32Constant(1))).

GraphGen Macros
Turboshaft has a number of macros to help generate Turboshaft graphs (defined in
turboshaft/define-assembler-macros.inc, although the most of the implementation is in
turboshaft/assembler.h). The best examples of what can be done with these macros are in
turboshaft/machine-lowering-reducer-inl.h. The main features are:

●​ LABEL to automatically generate phis and ensure that all predecessors of a label are
feeding correctly-typed inputs for all of the phis.

●​ IF/ELSE to write structured code without using GotoIf and Branch all over the place.
●​ LOOP to define loops without having to manually handle loop phis or to manually maintain

the only-1-backedge invariant.
●​ LIKELY/UNLIKELY to annotate branches are likely or unlikely.

VariableReducer (SSA generation)
The VariableReducer provides 3 functions: NewVariable, SetVariable and GetVariable (see
turboshaft/variable-reducer.h). Tracking changes of a global(ish) value can be done by using
these functions: the VariableReducer will automatically insert Phis on merges when
predecessors of a block have different values for a Variable.
A good example of this is the MemoryOptimizationReducer
(turboshaft/memory-optimization-reducer.h). For allocation folding, it uses a Variable to store the
allocation top, and thus Phis are automatically inserted after calling Allocate to update the
allocation top.
Variables can also be used for small lowerings to avoid having to deal with Phis manually (see
for instance turboshaft/select-lowering-reducer.h).

https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/assembler.h;l=849-3313;drc=f5a7962861b208e9cf82e61c1fa9f8dc0d216a87
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/index.h;l=426-476;drc=fa7521ef3eb6c69fa398809e7ce4a869c94661fa
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/define-assembler-macros.inc
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/assembler.h
http://turboshaft/machine-lowering-reducer-inl.h
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/variable-reducer.h
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/memory-optimization-reducer.h
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/select-lowering-reducer.h;l=49-58

Here is a CL showing how having the GraphGen Macros and the VariableReducer can simplify
lowerings: https://crrev.com/c/4675295.

Safe unreachable code emission
Most of the time, lowerings don’t have to check whether they are emitting unreachable code or
not. In particular, if a lowering L contains something like
IF (c) { … } ELSE { … } and a reducer replaces the conditional branch by a Goto
because c is actually a Constant, L doesn’t need to check anything at the beginning of the IF or
ELSE block: the Assembler will allow the reducer to keep trying to emit code and will just not
emit anything.
As a bonus, in some cases, code looks unreachable because a BIND was forgotten; in such
cases, the Assembler will most of the time crash rather than silently not emit anything.
Without this feature, every Branch would have to be followed by a Check checking whether the
destinations are reachable.
(see this useful comment in turboshaft/assembler.h)

Automatic Edge Splitting
Turboshaft requires the graph to be in split-edge form (amongst other things, to allow
memory-efficient storage of predecessors). Whenever emitting a Branch would break the
split-edge form, the Assembler automatically splits the edge by inserting an intermediate block
(see turboshaft/assembler.h). Note that to avoid creating unnecessary blocks, edges are split
lazily when emitting a Branch would break the split-edge form rather than for all Branches.
(only relevant if the IR requires split-edge form of course)

https://crrev.com/c/4675295
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/assembler.h;l=3575-3625
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/assembler.h;l=3422-3482

	Turboshaft Frontend - Preliminary Design Elements
	Turbofan Frontend Overview
	New Frontend Phases and High-level Considerations
	Which phases should be grouped together, and which shouldn’t be?
	What about Maglev’s Typing, Load Elimination and Escape Analysis?
	Lowering Early or Late
	Mixing Phases or Splitting Phases

	Inlining with Maglev/Turboshaft IR
	Useful Turboshaft Features
	Static C++ node types
	AssemblerOpInterface helpers
	GraphGen Macros
	VariableReducer (SSA generation)
	Safe unreachable code emission
	Automatic Edge Splitting

