
0. Instructions and Notes
●​ One group per project, call dibs1 by email. Taken projects will be updated with their title

in strikeout in the file, but please be aware of eventual consistency issues - a project
may be taken before it’s marked as such.

●​ Projects on this list are not ordered by difficulty.
●​ Even if you pick from this list, you still have to submit a project description document.

These are ideas, not specifications.
●​ If you are an undergraduate, your team’s project must be from this list. If everyone on

your team is not an undergraduate, please start by browsing this list for inspiration and
then trying to come up with your own project.

●​ Projects can be implemented in the language of your choice.
●​ The language the tool is for should be the one in the examples/project description

unless you have a very good reason and it’s been approved.
●​ If you are using code from an existing tool/research project:

○​ Use it as a module if possible
○​ Always credit it
○​ Be aware of infectious licenses

●​ Some of the paper links may require the Technion network or library VPN to access

1 https://www.merriam-webster.com/words-at-play/word-origin-dibs

https://www.merriam-webster.com/words-at-play/word-origin-dibs

1.​Grammar-based grep (up to 2 students)
Problem: when using grep on code, it’s difficult to find or replace syntactic patterns. For
instance, let us assume test code has many assertions of the old JUnit format:

assertEquals(6,var.length);
The programmer now wishes to switch them over to assert, which has the format

assert(<boolean expression>);
In addition, where the format for assertEquals is

assertEquals(<expected value>,<actual value>);
the testing tools expect assert on equality to have the format

assert(<actual value>==<expected value>);

Using regular grep, in this simple example, the user can capture the two elements expected
value and actual value with the following regular expression:

"assertEquals\(([^,]+),([^)]+)\);"
then use the following substitution

"assert($2==$1);"
to get the desired result,

assert(var.length==6);
However, if either value involves a function call with multiple arguments, this will fail. For
example, for

assertEquals(7,obj.foo());
the capturing regex does not match and will need to be made more complex. All the while,
syntactically speaking it’s quite easy for the programmer to describe:

assertEquals(<expression>,<expression>);
If both expressions are captured, the same substitution expression will produce the correct
result.

PL technology: Language lexing and parsing. Grep operates on text files as a stream of
characters. However, code files are better represented as a stream of tokens, and they (or parts
of them) can be parsed with the language parser.

Interaction suggestion: the user can represent a regular expression as a combination of
tokens and language nonterminals (the specifications of the regex language are up to you), then
use it as grep is normally used (or as regex replace in the IDE is normally used).

2.​Syntactic diff tool (up to 2 students)

Problem: diff is a line-based tool that compares two text files line-by-line. When used for code,
it still maintains this line by line behavior. This means that, for instance, this change:

- index[0] = mat + 5*i;
+ index[n-2] = mat + 5*i;

will mark the full line has changed, when only the dereferencing has changed. Likewise, this diff
is actually empty except for the comments:

- foo(1,2,3,4);
+ foo(1, /*first arg*/
 2, /*second arg*/
 3, /*third arg */
 4 /*done*/);

Finally, a diff may include dependent changes. For instance, in the diff
- for(int c = 1; c <= num; ++c)
+ for(int count = 1; count <= num; ++count)

there are three changes of c to count, but the later ones are a result of the first one. Likewise,
a file can include two diff chunks, earlier in the file an initialization change:

- int c = 0;
+ int count = 0;

and later in the file a change in use:
- for(c = 1; c <= num; ++c)
+ for(count = 1; count <= num; ++count)

where the change in the second diff chunk is a result of the first change.

Other possible causes of changes: renaming a function, changing the number of arguments to a
function. Notice that in a realistic setting multiple files may be on either side of the diff, and the
cause of changes may be cross file boundaries. It’s best to initially ignore such diffs.

PL technology: the two versions of the file being “diffed” can be parsed (and possibly even fully
compiled using the compiler frontend). AST differencing can then be applied (see useful
papers), and finally refactoring identification can find changes that should be tracked throughout
the diff.

Interaction suggestion: the user runs a diff command line tool on two files. It should comply
with the difftool requirements for git. The command opens a UI (html page is sufficient) that
displays the two files side by side, highlighting only the changes. Additions, deletions, and
renames should have visual signifiers, and if there is a cause for a change, it should be clearly
marked with what the cause is, and should be able to take the user to the source of the change.

Useful papers:

●​ Fine-grained and Accurate Source Code Differencing:
https://hal.archives-ouvertes.fr/hal-01054552/document

https://hal.archives-ouvertes.fr/hal-01054552/document

3.​Unit test shrinking (up to 3 students)
Problem: Programmers often enter real-world bugs into unit tests to help them debug. However,
these might not be the most minimal cases for the bug because they stem from real-world
values, which makes them harder to debug - they may include longer loops or more complex
computations.

For example, let us assume the programmer is exploring a crash in the logs, and locates the
crash as happening after calling myWorkObject.process() with a message string "Hello,
my name is Elder White\n\tAnd I would like to share with you the most
amazing book". The programmer then creates a JUnit unit test:

@Test public void testCrash() {
​ Settings settings = ...//initialize settings object
​ WorkObj myWorkObject = new WorkObj(settings);
​ int result = myWorkObj.process("Hello, my name is Elder
White\n\tAnd I would like to share with you the most amazing
book");
​ assertEquals(Codes.OK,result);
}

and runs it to see that it crashes in the same way as the main process: by throwing an
ArrayIndexOutOfBoundsException - so they are ready to start debugging. Since the
function process performs many passes on the string before failing, it would take the user a
lot of work to find out that it, eventually, fails by not properly handling the tab in the middle of the
string in one of the later passes.

In fact, it would have been sufficient for the third line of the test to be

int result = myWorkObj.process("\t");
in order to reproduce the exact same crash. It would be very helpful to the user to get a unit test
minimized to the smallest possible examples reproducing a behavior.

It is interesting to note that:

1.​ Some constants in the unit test are “true constant”, or should not be minimized. For
instance, the settings object is likely initialized with some constants and those need to
remain the same.

2.​ Some lines in the unit test may not be necessary. Minimizing the unit test can include
removing them as well.

PL technology: Property-based testing (PBT) such as QuickCheck, ScalaCheck, or FsCheck
includes a feature called “shrinking”, which in the case of failure tries to simplify constant values
and re-run the property under test until the property no longer fails.

Mutation-based program repair uses mutation operators (i.e., program rewrites that are not
equivalence-preserving) to modify a program P into a program P’. These can be used in a
genetic algorithm or in a brute-force search with backtracking.

A note about programming language: while you can implement the project in any language, it
may be useful to look at the list of languages for which PBT has been implemented, and code
for generating a stream of values for shrinking starting for a specific value already exists. A list
can be found in: https://en.wikipedia.org/wiki/QuickCheck

Interaction suggestion: Once a failing unit test is created by the user, the user can run the tool
(optimally with IDE integration, command line that takes the project and test name is fine to
start), which will try to simplify the constants in the test using shrinking, as long as the test
failure stays the same. If the test fails on an exception, the exception should also be the same.
The tool will then suggest the new unit test with new constants.

Assumptions: You can assume that none of the code under test performs functionality that has
side-effects on the environment (i.e., write to files, send/recieve packets, etc). This assumption
can be partially overcome by sandboxing, but is irrelevant initially.

Useful papers:

●​ Shrinking and Showing Functions: https://dl.acm.org/doi/abs/10.1145/2364506.2364516
●​ Using Mutation to Automatically Suggest Fixes for Faulty Programs:

https://ieeexplore.ieee.org/document/5477098

https://en.wikipedia.org/wiki/QuickCheck
https://dl.acm.org/doi/abs/10.1145/2364506.2364516
https://ieeexplore.ieee.org/document/5477098

4.​Alternative code schemas (up to 3 students)
Problem: programmers new to a language are often unfamiliar with the idiomatic ways to do
things in that language. For example, a programmer coming from C might find themselves
writing this Java code:

for(int i = 0; i < arr.length; ++i) {
String s = arr[i];
// more code

}
or this python code:

for i in range(len(arr)):
​ s = arr[i]
​ # more code

instead of the more idiomatic
for (String s: arr)

or
for s in arr:

Suggesting an equivalent but more idiomatic way to perform such operations would help
improve novice code quality and expose programmers to “the right way” to do things earlier on.

Other such suggestions can be for variable declarations, emptiness-checking with size/length of
a collection instead of truthy/falsy values in python or Collection.isEmpty in Java,
appending to a list instead of using a comprehension, etc. Your project should be able to
suggest at least three kinds of schema changes.

PL technology: refactoring (equivalence preserving) transformations on the AST. If a
refactoring transformation from a less idiomatic to a more idiomatic schema/template is
possible, it can be suggested to the user.

An experimental feature (i.e., it may not be useful! If you choose to take this on, you may want
to evaluate it separately!) can be to still suggest transformations that are not entirely
equivalence preserving but are still likely.

Interaction suggestion: in the IDE (Eclipse and VSCode are easiest to develop for),
periodically scan the code and suggest likely transformations as a recommendation. If you are
also suggesting non-equivalent transformations, this must be identified!

5.​Additional test generation (up to 2 students)
Problem: unit test coverage might be poor simply because the programmers have not tried
more values. For example if the code:

public static void foo(int a, String b) {
​ if (a > 0)
​ ​ return b.substring(a);
​ else
​ ​ return b.substring(b.length + a);
}

is tested with the JUnit test:
@Test public void testFoo() {
​ foo(12,"test me");
​ //assert something
}

it only tests 50% of the paths in foo. Moreover, if we also consider the code inside
String.substring, the coverage is even lower.

It may be possible to transform testFoo into additional tests that increase coverage, then bring
them to the attention of the user.

PL technology: concolic testing and white-box fuzzing are both concerned with generating
additional inputs to increase coverage. Both use a concrete input and SMT solving in order to
find a different input that will take a different path in the program.

A note about programming language: while this suggests doing this project in Java, it is also
possible to implement this in python using the techniques shown in The Fuzzing Book, given
strong type assumptions.

Interaction suggestion: as an initial interaction model, the tool should accept a function, a line
number in that function (i.e., a statement), and an existing test for that function, and return a
new unit test that reaches the desired line. Given this, the next milestone will be, given a
function, its tests and a threshold, to create additional tests until coverage passes that
threshold. An open question is what to do with the assertions in the test - both because of how
they impact the coverage metrics, and because a decision about their result needs to be made.

Useful papers:

●​ CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-Checking Tools:
https://link.springer.com/content/pdf/10.1007/11817963_38.pdf

●​ Automated Whitebox Fuzz Testing:
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

https://link.springer.com/content/pdf/10.1007/11817963_38.pdf
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf

6.​Stitching in new parameters (up to 2 students)
Problem: a programmer needs to access a resource in a function, for instance this one:

private int foo(String msg, Settings settings) {
 ​ //…
}

They then add the resource to the function prototype and use it, like so:
private int foo(String msg, Settings settings, Logger logger) {
 ​ //…
 ​ logger.log(//…
}

and then begin stitching the codebase around the function call. The programmer might find
they’ve gone through dozens of files upward before they find the availability of a Logger and
maybe even have to change an interface method, which means modifying its instances larger
still.
However, once the programmer submits their commit for review, an expert on the codebase
points out that the entire change could have been avoided since it’s possible to access the
logger through the existing parameters:

settings.getIOFactory().getLogger()
and reject what must have been hours of unpleasant work.

PL Technology: the synthesizer SyPet is a type-based synthesizer. It creates a network of
types available in a system, and searches for a path from the existing input types to output
types. Specifically in this case, it accepts the specification: input: Settings, output: Logger
and finds as a result program the line above.

Interaction suggestion: there are two possible interactions for this tool. First, there is the
option of creating a lint-time tool where a commit such as the one described above is analyzed
and the problem is discovered before the codebase expert must waste their time looking
through a huge commit. However, this does not solve the problem of a programmer wasting a
large amount of work, so a second option is an IDE plugin that runs this (does not have to be
automatically) for a prototype change before any additional work is done. In order to work on
code that still compiles, one can ask “should I add” with a new argument for the function rather
than simply adding it.

Useful papers:

●​ Component-Based Synthesis for Complex APIs:
https://www.cs.utexas.edu/~isil/sypet-popl17.pdf

●​ Jungloid mining: helping to navigate the API jungle:
https://dl.acm.org/doi/10.1145/1064978.1065018

https://www.cs.utexas.edu/~isil/sypet-popl17.pdf
https://dl.acm.org/doi/10.1145/1064978.1065018

7.​Local synthesis specifications in code (up to 3
students)

Problem: Currently using program synthesis means either copying the specifications to other
files to launch a standalone synthesizer, or using IDE-based synthesizers where specifications
are entered into a new window and disappear when the synthesis task returns (with or without
code as a result). This means there is no documentation for any examples entered for
synthesis, of the line of code being the result of synthesis, and also means that if the code is
then manually modified to contradict one of the examples, no one will know.

PL technology: PBE synthesizer. Any program synthesis with example specifications will be
useful here. Some examples are suggested below.

Interaction suggestion: Instead of entering specifications into a new window, specifications will
be written in a specially formatted comment in the code file, for example (though not necessarily
like so):

/*@@
input: {x=2,z="abc"}
output: {y="abcabc"}
@@*/

or:
#@@
#input: {x=2,z="abc"}
#output: {y="abcabc"}
#@@

depending the language this is implemented for (you can target any language you choose). An
IDE like IntelliJ or Eclipse can recognize special comments, at which point it will suggest running
a synthesizer. If the synthesizer returns a program, it will insert it into the code immediately after
the comment, with a delimiter:

y = z*x
#@@ END @@

This also allows checking the code between the synthesis specification and the
end-of-synthesized-code indicator as a very local form of unit testing: if the code in the block
does not meet the requirements of the output, a warning can be indicated in the IDE.

Useful papers:

●​ transit: Specifying Protocols with Concolic Snippets:
https://viterbi-web.usc.edu/~jdeshmuk/Papers/pldi13.pdf

●​ Accelerating Search-Based Program Synthesis using Learned Probabilistic Models:
https://www.cis.upenn.edu/~alur/PLDI18.pdf

●​ Recursive Program Synthesis:
https://www.microsoft.com/en-us/research/publication/recursive-program-synthesis/

https://viterbi-web.usc.edu/~jdeshmuk/Papers/pldi13.pdf
https://www.cis.upenn.edu/~alur/PLDI18.pdf
https://www.microsoft.com/en-us/research/publication/recursive-program-synthesis/

●​ Perfect is the Enemy of Good: Best-Effort Program Synthesis:
https://hilap.cswp.cs.technion.ac.il/wp-content/uploads/sites/11/2021/06/ecoop2020.pdf

●​ FrAngel: component-based synthesis with control structures:
https://dl.acm.org/doi/10.1145/3290386

●​ LooPy: Interactive Program Synthesis with Control Structures:
https://weirdmachine.me/papers/2021_loopy.pdf

https://hilap.cswp.cs.technion.ac.il/wp-content/uploads/sites/11/2021/06/ecoop2020.pdf
https://dl.acm.org/doi/10.1145/3290386
https://weirdmachine.me/papers/2021_loopy.pdf

	0. Instructions and Notes
	1.​Grammar-based grep (up to 2 students)
	2.​Syntactic diff tool (up to 2 students)
	3.​Unit test shrinking (up to 3 students)
	4.​Alternative code schemas (up to 3 students)
	5.​Additional test generation (up to 2 students)
	6.​Stitching in new parameters (up to 2 students)
	7.​Local synthesis specifications in code (up to 3 students)

