Advanced Placement Chemistry Integrated Rate Laws – Lecture Problems

Name		_
Period	Date	

- 1. A first order reaction has a rate constant of $1.00 \times 10^{-3} \text{ s}^{-1}$ and the initial concentration of the reactant is 1.50 M?
 - a. What is the concentration of the reactant at 1000. seconds?
 - b. Calculate the time that it would take for half of the initial concentration to be used.
- 2. A second order reaction has a rate constant of 2.00 x 10⁻² M⁻¹ s⁻¹ and the initial concentration of the reactant is 0.400 M.
 - a. What is the concentration of the reactant at 500, seconds?
 - b. How long would it take for the reactant to reach a concentration of 0.155 M?
- 3. A zero order has a rate constant of 5.00×10^{-4} M/s. If the initial concentration of the reactant is 0.0800 M, at what time does the concentration reach 0.0300 M?
- 4. Hydrogen peroxide, H₂O₂, decomposes into water and oxygen gas.
 - a. Given the following data, write the rate law for the decomposition of hydrogen peroxide.

- b. What is the rate constant for the decomposition of hydrogen peroxide in this experiment?
- c. What is the half-life of hydrogen peroxide in this experiment?

5. Using the information in the following table for the reaction $B \Rightarrow products$:

9	
Time (seconds)	[B] (mol/L)
0.00	0.0100
1000	0.00625
1800	0.00476
2800	0.00370
3600	0.00313
4400	0.00270

- a. Determine the order of reaction and write the general rate law.
- b. Calculate the rate constant and provide correct units.
- c. What is the concentration after 6500 seconds?
- 6. The following question refers to the gas-phase decomposition of ethylene chloride.

$$C_2H_5CI \Rightarrow C_2H_4 + HCI$$

The experiment shows that the decomposition is first order. The following data shows kinetics information for this reaction:

Time (sec)	$\underline{In\;[C_2H_5CI]\;(M)}$
1.0	-1.625
2.0	-1.735

- a. What is the rate constant for this decomposition?
- b. What was the initial concentration of the ethylene chloride?
- c. What would the concentration be after 5.0 seconds?
- d. What is its half-life?
- 7. The reaction A \rightarrow B + C is known to be zero order in A with a rate constant of 2.12 x 10⁻³ mol/Ls at 25°C.
 - a. Write the integrated rate law.
 - b. What time does it take for the concentration to reach 35% of an initial 0.20 M concentration?
 - c. If the original concentration was 0.0650 M, calculate the time it would take for 85% of this concentration to be consumed.