
Draft of blog post to be published on Apache site.
GitHub issue: https://github.com/apache/arrow-datafusion/issues/5201

PR against arrow-site: https://github.com/apache/arrow-site/pull/322

DataFusion Adds Support for Substrait
The Apache Arrow PMC is pleased to announce that the DataFusion project has accepted the
donation of the datafusion-substrait crate, which was developed by the DataFusion community
under the datafusion-contrib GitHub organization.

Substrait provides a standardized representation of query plans and expressions. In many
ways, the project's goal is similar to that of the Arrow project. Arrow standardizes the memory
representation of columnar data. Substrait standardizes the representation of operations on
data, such as filter and query plans.

Now that DataFusion can directly run Substrait query plans, there are several exciting new
integration possibilities:

●​ Pass serialized query plan across language boundaries, such as passing from Python to
Rust or Rust to C++. For example a python based SQL frontend could pass a Substrait
plan to DataFusion which is written in Rust.

●​ Mixing and matching query engine front-ends and back-ends based on their specific
strengths. For example, using DataFusion for query planning, and Velox for execution, or
Calcite for query planning and DataFusion for execution

●​ Easier integration for other DataFusion based projects. For example, the related Ballista
project, which already provides “distributed DataFusion” execution plans, serializes
query plans using a protobuf format that predates the Substrait project. By adopting
Substrait, Ballista can provide distributed scheduling for query engines other than
DataFusion.

Logical Plan Support

DataFusion currently supports serialization and deserialization of the following logical operators
and expressions with Substrait.

DataFusion Substrait Type SQL DataFusion Supported Subtypes

Projection Relation SELECT

TableScan Relation FROM

Filter Relation WHERE

Aggregate Relation GROUP BY

Sort Relation ORDER BY

https://github.com/apache/arrow-datafusion/issues/5201
https://github.com/apache/arrow-site/pull/322
https://substrait.io/

Join Relation JOIN
LEFT, RIGHT, FULL, LEFT ANTI,
LEFT SEMI

Limit Relation LIMIT

Distinct Relation DISTINCT

SubqueryAlias Relation <subquery> AS <alias>

AggregateFunction Expression

Alias Expression <column> AS <alias>

Column Expression

BinaryExpr Expression

Between Expression BETWEEN

Case Expression
CASE ... WHEN ...
END

Literal Expression

Int8, Int16, Int32, Int64, Boolean,
Float32, Float64, Decimal128, Utf8,
LargeUtf8, Binary, LargeBinary,
Date32, NULL(Int8 | Int16 | Int32 |
Int64 | Decimal128)

Physical Plan Support

There is also preliminary work on supporting serialization of physical plans. The tracking issue
for this is TBD.

Python Bindings

Substrait support is also available from DataFusion’s Python bindings. Here is an example.

from datafusion import SessionContext
from datafusion import substrait as ss

Create a DataFusion context
ctx = SessionContext()

Register table with context
ctx.register_parquet('aggregate_test_data', './testing/data/csv/aggregate_test_100.csv')

substrait_plan = ss.substrait.serde.serialize_to_plan("SELECT * FROM aggregate_test_data", ctx)
type(substrait_plan) -> <class 'datafusion.substrait.plan'>

https://pypi.org/project/datafusion/

Alternative serialization approaches
type(substrait_bytes) -> <class 'list'>, at this point the bytes can be distributed to file, network, etc
safely
where they could subsequently be deserialized on the receiving end.
substrait_bytes = ss.substrait.serde.serialize_bytes("SELECT * FROM aggregate_test_data", ctx)

Imagine here bytes would be read from network, file, etc ... for example brevity this is omitted and variable
is simply reused
type(substrait_plan) -> <class 'datafusion.substrait.plan'>
substrait_plan = ss.substrait.serde.deserialize_bytes(substrait_bytes)

type(df_logical_plan) -> <class 'substrait.LogicalPlan'>
df_logical_plan = ss.substrait.consumer.from_substrait_plan(ctx, substrait_plan)

Back to Substrait Plan just for demonstration purposes
type(substrait_plan) -> <class 'datafusion.substrait.plan'>
substrait_plan = ss.substrait.producer.to_substrait_plan(df_logical_plan)

Availability

Substrait support is available in DataFusion 18.0.0 and version 0.8.0 of the Python bindings.

Get Involved

The Substrait support is at an early stage of development, and we would welcome more
contributors to expand the functionality and to help with compatibility testing with other data
infrastructure that supports Substrait.

If you are interested in getting involved, an excellent place to start is to read our communication
and contributor guides.

https://arrow.apache.org/datafusion/contributor-guide/communication.html
https://arrow.apache.org/datafusion/contributor-guide/index.html

	DataFusion Adds Support for Substrait

