Section 10 Concepts

Real-world data is often semistructured. Querying semi-structured data presents additional
challenges, compared to (structured) relational data. For example, semistructured data may
have missing or additional attributes, heterogeneous types, and nested structure.

Nevertheless, it can be convenient to write queries on semistructured data in its original form,
i.e., without transforming or otherwise preprocessing the data into a "cleaner" form. AsterixDB
is one DBMS that facilitates the analysis of semi-structured data.

An alternative is to transform semistructured data into a relational form, and then run relational
queries on the data in its new form. The initial transformation can require effort, but the ease
gained in writing queries may be worth it in the long term. Semistructured data and relational
data are less different than you might imagine. We encourage you to practice transforming
semistructured data and queries into a relational form on your own.

AsterixDB Terms

A dataverse—short for “data universe”—is a place (similar to a database in a relational DBMS)
in which to create and manage the types, datasets, functions, and other artifacts for a given
AsterixDB application. A special dataverse called Metadata contains AsterixDB's metadata.

A type is like a relational schema, but much looser (allows additional attributes if open, flexible
type, allows missing values, nested data, etc.).

A dataset is like a relational table. It contains the data itself as a collection, as well as indexes
for accessing the data. There is always at least one index called the primary index, specified at
creation time.

A collection is either an array (ordered) or multiset (unordered). Both allow duplicates.
An object is like a relational tuple. It contains attributes known as name-value pairs (in the

JSON lingo) or key-value pairs (in the ADM lingo). The ADM lingo is more accurate because it
emphasizes the fact that keys (attributes names) are unique within an object.

Worksheet
PART 1

Use the Mondial dataset in homework 7 to solve the following problems.

1. Return the set of all mountains, i.e., as a single tuples with an attribute containing the
collection of all mountains.’

2. Return each mountain one by one, i.e., as a collection of tuples that each contain a single
mountain. Compare it to Problem 1.

3. Return name, type, and height for each mountain, in descending order of the height.

4. Find mountains located in more than 1 country. Return the mountain names and counts.

5. For each country, return the country name and a list of all the mountain names in that country.

PART 2

Suppose that we store all the data for our social network in a single dataset of Users:
[{*handle”: “biebs”,

“name”: “Justin Bieber”,

“home_city”: “Somewhere, Canada”,

“bio”: “...”,

“friends”: [‘kimkardashian”, “shaq’, ...],

*

“messages”: [{“text™: “:-* :-* ;=¥ :-*”, “from_city”: “Los Angeles, CA},

{“text”: “New. Music. Friday.”, “from_city”: “Los Angeles, CA"}, ...]

1. For each home city, compute a list of users from that home city. Your query should return a
list where each element consists of a home city name and a list of user handles.

2. Return pairs of users that have at least one common friend.

