a	The error here is that (x^2+9) is not a binomial that's factorable; it's not the difference of two squares:
	$3x^3+27x = 3x(x^2+9)$

- because in (x^2+9) x^2 is being added to 9, you can't factor by difference of perfect squares
- The 9 is supposed to be negative because a negative C.
- d.
- e.

Answer for 27. Factor $x^3-8x^2-4x+32$. Which is the BEST answer? The worst?					
a. x^2(x-8)-4(x-8)	b. (x-8)	c.			
d.	e.	f.			

IV: Completing the Square – Solve 1, 2, 3, and 6 as simply as possible x-intercepts start x - int

ivi dompioning me square	50110 1, 2, 5, and 6 as	ompij as pe	OUL	no n mitor cop to otar t m	
				Name	
1 2 2 22		(<u> </u>	10	

1.
$$x^2 - 2 = 23$$

6.
$$(x+2)^2 - 3 = 13$$

2.
$$2(x+2)^2 - 3 = 5$$

7.
$$x^2 + 2x - 15 = 0$$

$$x^2 + 2x = 24$$

8.
$$x^2 + 2x = -8$$

4. $2x^2 + 8x = 10$	9. $x^2 + 2x = 5$ NO	
5. $2x^2 + 3x = 5$ – use a calculator!!! intersection zero	$10.2x^2 + 4x = 2$ IR	t