Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» физический факультет

УТВЕРЖДАЮ

И.о. декана физического факультета МГУ, профессор, д.ф.-м.н.

		/ В.В. Белоку	уров /
«	>>	20	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Современные аспекты теории оптических солитонов

Modern aspects of optical solitons theory

(1.3.3 Теоретическая физика, 1.3.4 Радиофизика, 1.3.5 Физическая электроника, 1.3.6 Оптика, 1.3.19 Лазерная физика, область науки: естественные науки)

Уровень высшего образования:

подготовка кадров высшей квалификации

Рабочая программа дисциплины разработана в соответствии с Приказом по МГУ от 24 ноября 2021 года № 1216 «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемые Московским государственным университетом имени М.В. Ломоносова»

1. Краткая аннотация:

Современные аспекты теории оптических солитонов.

Целью предлагаемого спецкурса является ознакомление аспирантов в наиболее универсальными свойствами оптических солитонов, проявляющихся в различных физических ситуациях.

Курс лекций основан на оригинальном полуклассическом подходе преподавания теории оптических солитонов. Световое поле описывается уравнениями Максвелла, а среда — квантово-механическими материальными уравнениями для резонансных и нерезонансных сред.

Представлен вывод нелинейных уравнений, описывающих взаимодействие лазерных импульсов со средой и обладающих решениями в виде оптических солитонов. Рассмотрены ситуации распространения резонансных, квазирезонансных и нерезонансных квазимонохроматических солитонов огибающей. Акцентируется внимание на солитонах типа предельно коротких импульсов длительностью от нано- до фемтосекунд. Спектральный состав солитонов простирается от ультрафиолетового до терагецового диапазонов, включая области видимых и инфракрасных частот.

Детально проанализированы различные физические приближения, использование которых приводит к волновым уравнениям, порождающим оптические солитоны. Рассмотрено влияние эффектов самофокусировки, проанализированы условия формирования пространственно-временных солитонов (световых пуль) в однородных средах и опто-волокнах. При этом проводится анализ соответствующих различий между квазимонохроматическими и предельно короткими солитонами.

Всесторонне рассмотрены оптические диссипативные солитоны и вывод уравнений, порождающих данные солитоны. Уделено внимание как квазимонохроматическим, так И униполярным диссипативным солитонам В Подчеркиваются отличия неравновесных средах. диссипативных солитонов OT консервативных.

- 2. Уровень высшего образования подготовка научных и научно-педагогических кадров в аспирантуре.
- 3. Научная специальность: 1.3.3 Теоретическая физика, 1.3.4 Радиофизика, 1.3.5 Физическая электроника, 1.3.6 Оптика, 1.3.19 Лазерная физика.
- 4. Место дисциплины (модуля) в структуре Программы аспирантуры: Вариативная часть ООП. Факультатив.
- 5. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины составляет 3 зачетные единицы, всего 108 часов, из которых 34 часа составляет контактная работа аспиранта с преподавателе, 30 часов занятия

лекционного типа, 4 часа мероприятия текущего контроля успеваемости и промежуточной аттестации), 74 часа составляет самостоятельная работа учащегося.

6. Входные требования для освоения дисциплины (модуля), предварительные условия.

Необходимы знания общей физики в объеме курсов, преподаваемых на физических специальностях классических университетов, а также основ классической электродинамики и квантовой механики.

7. Содержание дисциплины (модуля), структурированное по темам

	Всего	В том числе								
	(часы)	часы) Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная работа обучающегося, часы из них		
		Заня тия лекц ионн ого типа	Заня тия семи нарс кого типа	Груп пов ые конс ульт ации	Инд ивид уаль ные конс ульт ации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Всего	Выпо лнени е дома шних задан ий	Под гото вка к колл окви ума м	Всего
Тема 1. Двухуровневый атом и его эволюция в поле электромагнитной волны. Представление на сфере Блоха.	7	2					2	5		5
Тема 2. Уравнения Максвелла. Полная система Максвелла — Блоха. Неоднородное уширение.	8	2					2	6		6
Тема 3. Приближения вращающейся волны и медленно меняющихся огибающих. Система Максвелла — Блоха.	7	2					2	5		5

			_			_	_	
Тема 4. Распространение резонансных импульсов. Теорема площадей. 2π- и π-импульсы.	7	2			2	5		5
Тема 5. Резонансные солитоны самоиндуцированной прозрачности.	7	2			2	5		5
Тема 6. Уравнение синус – Гордона и его солитоны.	7	2			2	5		5
Тема 7. Нерезонансные солитоны. Нелинейное уравнение Шредингера. Фундаментальные солитоны.	7	2			2	2	3	5
Текущая аттестация - коллоквиум	2			2	2			
Тема 8. Двухкомпонентные солитоны. Пространственные солитоны при генерации второй гармоники.	7	4			4	3		3
Тема 9. Временные солитоны при генерации второй гармоники.	7	2			2	5		5
Тема 10. Солитонные режимы генерации терагерцового излучения. Оптико-терагерцовые солитоны.	7	2			2	5		5
Тема 11. Пространственно-временные	8	2			2	6		6

солитоны. Одночастотные световые пули.								
Тема 12. Световые пули при генерации второй гармоники.	7	2			2	5		5
Тема 13. Предельно короткие оптические солитоны.	8	2			2	6		6
Тема 14. Диссипативные солитоны. Автосолитоны в усиливающей среде с быстрой фазовой релаксацией.	10	2			2	4	4	8
Промежуточная аттестация – зачёт.	2			2	2			
Итого	108				34			74

8. Образовательные технологии.

Используемые формы и методы обучения: лекции и самостоятельная работа студентов.

При проведении лекционных занятий преподаватель использует при необходимости аудиовизуальные, компьютерные и мультимедийные средства обучения, а также демонстрационные и наглядно-иллюстрационные (в том числе раздаточные) материалы.

Занятия по данной дисциплине проводятся с привлечением необходимых Интернет-ресурсов.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

10. Ресурсное обеспечение:

Перечень основной литературы:

- 1. A.I. Maimistov and A.M. Basharov. Nonlinear optical waves. Springer, London, 2010.
- 2. V. Benci and D. Fortunato. Variational methods in nonlinear field equations. Springer, London, 2014.
- 3. А.И. Маймистов. Солитоны в нелинейной оптике (обзор) // Квантовая электроника. 2010. Т. 40. № 9. С. 756 781.
- 4. С.В. Сазонов. Оптические методы генерации терагерцового излучения и субтерагерцовая акустика твердого тела (обзор) // Письма в журнал экспериментальной и теоретической физики. 2012. Т. 96. № 4. С. 281 294.
- 5. С.В. Сазонов. Оптические солитоны в средах из двухуровневых атомов (обзор) // Научно технический вестник информационных технологий механики и оптики (НИУ ИТМО, Санкт-Петербург). 2013. № 5 (87). С. 1-22.
- 6. H. Leblond and D. Mihalache. Models of few optical cycle solitons beyond the slowly varying envelope approximation (review) // Phys. Reports. 2013. V. 523. P. 61–126.
- 7. С.К. Турицын, Н.Н. Розанов, И.Я. Яруткина, А.Е. Беднякова, С.В. Федоров, О.В. Штырина, М.П. Федорук. Диссипативные солитоны в волоконных лазерах (обзор) // Успехи физических наук. 2016. Т. 186. № 7. С. 713 742.
- 8. S.V. Sazonov, M.S. Mamaikin, M.V. Komissarova, and I.V. Zakharova. Planar light bullets under conditions of second-harmonic generation // Phys. Rev. A. 2017. V. 96. No 2. 022208.
- 9. S.V. Sazonov. Optical solitons in systems of two-level atoms // Romanian Reports in Physics. 2018. V. 70. No 4. P. 401.
- 10. S.V. Sazonov. Analytical theory of the propagation of a dissipative soliton in a non-equilibrium resonant medium // Phys. Rev. A. 2021. V. 103. No 5. 053512.
- 11.С.В. Сазонов. Униполярные солитоноподобные структуры в неравновесных средах с диссипацией // Письма в ЖЭТФ. 2021. Т. 114. № 3. С. 160 166.
- 12. S.V. Sazonov and N.V. Ustinov. Soliton mode of terahertz radiation generation using picosecond laser pulses with tilted wave fronts // Laser Physics Letters. 2022. V. 19. No 2. 025401.

Перечень дополнительной учебной литературы:

1. Л. Ален, Дж. Эберли. Оптический резонанс и двухуровневые атомы. М.: Мир, 1978.

- 2. Дж. Макомбер. Динамика спектроскопических переходов. М.: Мир, 1979.
- 3. Ю.С. Кившарь, Г.П. Агравал. Оптические солитоны / От волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005.
- 4. Н.Н. Розанов. Диссипативные солитоны. М.: Физматлит, 2005.
- 5. Н.Н. Розанов. Диссипативные оптические о родственные солитоны. М.: Физматлит, 2021.

Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости):

- 1. http://photonics.phys.msu.ru/Materials/SazonovSolitons.pdf
- 2. http://www.rrp.infim.ro/IP/2018/AN401.pdf

3

https://docplayer.ru/47938975-Udk-opticheskie-solitony-v-sredah-iz-dvuhurovnevyh-atomov-s-v-sazo nov.html

- Описание материально-технической базы. Занятия проводятся в учебной аудитории, оснащенной необходимым учебным оборудованием для проведения лекционных и семинарских занятий.
- 11. Язык преподавания русский
- 12. Преподаватель: д.ф.-м.н., профессор Сазонов Сергей Владимирович, e-mail: sazonov.sergey@gmail.com, тел.: +7-926-877-76-00

Фонды оценочных средств, необходимые для оценки результатов обучения

Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости:

- 1. Ознакомиться с различными классификациями оптических солитонов.
- 2. Подготовить обзоры по пространственным и временным солитонам.
- 3. Ознакомиться с различиями между резонансными и нерезонансными солитонами.

Типовые контрольные задания или иные материалы для проведения промежуточной аттестации:

- 1. Дать определения и привести примеры нелинейных взаимодействий в оптике.
- 2. Доказать теорему площадей Мак-Колла Хана.
- 3. Решить задачу: Оценить, во сколько раз увеличится пиковая интенсивность резонансного импульса в среде, если на входе его площадь равна 3π . Как при этом изменится его длительность?
- 4. Сформулировать определение инверсной населенности в активной среде.
- 5. Найти односолитонное решение уравнения синус Гордона.
- 6. Решить задачу: На вход в инвертированную резонансную среду подается оптический импульс. С помощью теоремы площадей

определить закон зависимости от пройденной дистанции амплитуды сигнала.

- 7. Записать нелинейное уравнение Шредингера.
- 8. Получить решение нелинейного уравнения Шредингера в виде фундаментального солитона.
- 9.Получить соотношения фазового и группового синхронизмов для солитонного режима генерации второй гармоники.
- 10. Получить условие синхронизма для солитонного режима генерации терагерцового излучения.
- 10.Решить задачу: Чему должен быть равен показатель дисперсии dn/dw на несущей частоте w оптического импульса $w=10^{15}~{\rm c}^{-1}~$ для наиболее эффективной генерации терагерцового солитона, если оптический n_0 и терагерцовый $n_{\rm T}$ показатели преломления равны соотвественно 1,4 и 2,2 ?

Методические материалы для проведения процедур оценивания результатов обучения

Зачет проходит по билетам, каждый из которых включает три вопроса. Уровень знаний аспиранта по каждому вопросу оценивается на «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». В случае если на все вопросы был дан ответ, оцененный не ниже чем «удовлетворительно», аспирант получает общую оценку «зачтено».

Шкала оценивания знаний, умений и навыков

Результат освоения	Критерии оценивания знаний, умений и навыков								
дисциплины	2/	3/	4/	5/					
	не зачтено	зачтено	зачтено	зачтено					
Знания	Отсутствие знаний основных свойств оптических солитонов.	Фрагментарные знания основных свойств оптических солитонов.	Общие, но не структурирован-н ые знания основных свойств оптических солитонов.	Сформированные систематические знания свойств оптических солитонов.					
Умения	Отсутствие умений применять знания об основных свойствах оптических солитонов.	В целом успешное, но не систематическое умение применять знания об основных свойствах оптических солитонов.	В целом успешное, но содержащее отдельные пробелы умение применять знания об основных свойствах оптических солитонов (допускает неточности непринципиально го характера)	Успешное и систематическое умение применять знания о свойствах оптических солитонов.					

Навыки	Отсутствие	Наличие	В целом,	Сформированные
	навыков (владений,	отдельных	сформированные	навыки
	опыта)	навыков (наличие	навыки	(владения),
	решения	фрагментарного	(владения), но	применяемые при
	научных задач в	опыта) решения	используемые не в	решении задач
	области теории	научных задач в	активной форме	в области теории
	оптических	области теории	для решения	оптических
	солитонов.	оптических	научных задач в	солитонов.
		солитонов.	области теории	
			оптических	
			солитонов.	