
CSE 344 | 23au | Introduction to Data Management

Project | Database Application and
Transaction Management

Updates made to the assignment after its release are highlighted in red.

Objectives: To gain experience with database application development and, in particular,
transaction management. To learn how to use SQL from within Java via JDBC.

Due dates:

●​ Milestone 0: Tue, November 2nd @ 10pm - NO LATE DAYS
●​ Milestone 1: Thu, November 9th @ 10pm - late days ok (highly recommend not using!)
●​ Milestone 2: Tue, November 20th @ 10pm - late days ok

We do not allow late submissions for milestone 0 to allow the staff enough time to return
feedback for you to use in the subsequent milestone. We permit milestone 1 to be submitted
late; however, in our experience (22au), only 21% of students who took late days for M1
avoided taking late days for M2. In other words: lateness tends to beget more lateness, so
ensure you’ve budgeted appropriately.

Median completion time (23sp):

●​ Milestone 0 + Milestone 1: 12 hours
●​ Milestone 2: 17 hours

Resources
For this assignment, you will need:

●​ SQL Server through SQL Azure
●​ Maven

○​ If using OSX, we recommend using Homebrew and installing with brew
install maven. If you don't have Homebrew: instructions @ https://brew.sh/

○​ If on Windows, try this installation guide (must be logged in using @cs account)
○​ We suggest working on attu rather than Windows for simplicity

●​ Starter code (.zip format) - released :)
○​ Documentation on our test case format

Helpful guides/documents:

●​ Prepared Statements:
○​ Official Java Doc
○​ HW5-specific Example (from older quarters when the course project was still

called HW5) (must be logged in using @cs account)

https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://azure.microsoft.com/en-us/services/sql-database/
https://maven.apache.org/
https://brew.sh/
https://docs.google.com/document/d/1j1xtV0Wmpij7YZ0CbpYGAIDkKWD3vQtmwAFDEYPMcUk/edit?usp=sharing
https://drive.google.com/file/d/1sTez8k8u-cY844wSWJHKYwfQralJ-26l/view?usp=sharing
https://docs.google.com/document/d/1gflmksqGdhlfeSj-vXS3oq9ZlbUwNJd3y80ObZQUTHo/edit#testing
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/PreparedStatement.html
https://drive.google.com/file/d/1eilqD9xCEmX-Q_1d9eo_RHtC1gcqDrSs/view?usp=sharing

CSE 344 | 23au | Introduction to Data Management

●​ Remote development over SSH with VSCode

Resources

Introduction

Setup

Project Requirements
Data Model
Application Logic
Testing
Transaction Management (M2 only)

Milestone 0: Database design
M0 Submission
Proceed Directly After M0

Milestone 1:
Java Customer Application

Step 1: Implement clearTables()
Step 2: Implement create, login, and search
Step 3: Write Test Cases

M1 Submission

Milestone 2:
Step 4: Implement book, pay, and reservations. Add transactions!

Unfortunately, you’ll quickly notice that there are problems when multiple users
try to use your service concurrently:
You will need to add transactions, to ensure commands executing in parallel do
not conflict. Think carefully as to which commands need transaction handling.
Do the create, login and search commands need transaction handling? What
about book, pay, and reservations? Why or why not?

Step 5: Write More (Transaction) Test Cases
Step 6: Reflect on Your Voyage of Learning

M2 Submission

Introduction
Congratulations, you are opening a global airline management service!

In this project, you have two main tasks:

https://code.visualstudio.com/docs/remote/ssh-tutorial
https://docs.google.com/document/d/1lHkFCbHp-3xjHv-KoV6f9Gsm2iy2V8c5I7uVap0jiP4/edit#heading=h.fh2zbl347lfj

CSE 344 | 23au | Introduction to Data Management

●​ Design a database of airline flights, their customers, and their reservations
●​ Prototype the management service; it should connect to a live database (in Azure) and

implement the functionality below
○​ The prototype uses a command-line interface (CLI), but in real life you would

probably develop a web-based interface

We have provided code for the CLI (FlightService.java) and a partial backend (Query.java +
PasswordUtils.java). For this project, your task is to implement the rest of the backend. You can
use any of the classes from the Java 11 standard JDK.

NOTE: Our autograder runs on Java 11, so DO NOT use anything after Java 11. In particular,
StringBuilder’s isEmpty() and StringBuffer’s isEmpty() method are not supported and will cause
your code to fail on Gradescope. Instead, you can use .size() and check that against 0, which
should work.

We support the configuration on attu (which includes Maven + Java)!

✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨
WARNING: This project requires writing a lot of Java code and test cases; our solution is
about 1000 lines (including the starter code). It will take SIGNIFICANTLY more time
than your previous 344 assignments, so START EARLY!!!

●​ Milestone 0’s goal is to design your application’s schema; this gives us a chance
to provide feedback and prevent you from going down the wrong path

●​ Milestone 1 is less than half of the remaining work. We highly recommend
finishing M1 before it is due, and using the extra time to work on M2.

●​ Milestone 2 is the bulk of the work.
✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨🦄✨✨

Setup for M1 + M2
1.​ Download the starter code (see link above)​

2.​ Connect your application to your database​

You will need your Flights database from HW3, or set up a fresh database in Azure.​

3.​ Configure your JDBC Connection​
This allows Query.java to connect to your SQLServer on Azure.​
​
In the top level directory, create a file named dbconn.properties and fill it with:

Database connection settings​
​
flightapp.server_url = SERVER_URL
flightapp.database_name = DATABASE_NAME
flightapp.username = USERNAME
flightapp.password = PASSWORD
flightapp.tablename_suffix = UWNetID

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.google.com/document/d/1tFPsFv6-7nSk49zPl6c_G4dFS6oMBxhnwyUMj9T2nO0/edit#heading=h.d7q0qpz8ussl

CSE 344 | 23au | Introduction to Data Management

You should use the following details from your SQLServer on Azure:

○​ SERVER_URL will be of the form
[sqlserver_name].database.windows.net.

■​ This can be found in the table of Azure resources when you first log in
○​ DATABASE_NAME is the SQLServer name

■​ Same location as SERVER_URL
○​ The USERNAME and PASSWORD are the same credentials you use to login to your

database/server when you open the query editor in the Azure console
■​ If the connection isn't working, use the fully qualified username:

flightapp.username = USER_NAME@DATABASE_NAME
○​ We hope you can figure out UWNetID ;)

When done, your dbconn.properties file should look something like this:

Database connection settings
flightapp.server_url = hctang.database.windows.net
flightapp.database_name = hctang-344-hw
flightapp.username = hctang
flightapp.password = obvsThisIsNotMyRealPassword
flightapp.tablename_suffix = hctang

4.​ Build the application​
Package the application files and its dependencies into a single .jar file, then run the
main method from FlightService.java.
(You must run these commands in the project directory where the pom.xml file is located.
Otherwise, you will run into an error that says “...there is no POM in this directory”)

$ mvn clean compile assembly:single
$ java -jar target/FlightApp-1.0-jar-with-dependencies.jar

If you want to run directly without first creating a jar, you can run:

$ mvn compile exec:java

If either of those two commands starts the UI below, you are good to go!

*** Please enter one of the following commands ***​
> create <username> <password> <initial amount>​
> login <username> <password>​

CSE 344 | 23au | Introduction to Data Management

> search <origin city> <destination city> <direct> <day> <num
itineraries>​
> book <itinerary id>​
> pay <reservation id>​
> reservations
> quit

Project Requirements

Data Model
The airline management system consists of the following logical entities. These entities are not
necessarily database tables; it is up to you to decide what entities to store persistently.

●​ Flights / Carriers / Months / Weekdays: modeled the same way as HW3. For this
project you should consider them to be “read-only”.​

●​ Users: A user has a username (varchar), password (varbinary), and balance (int) in their
account. All usernames should be unique in the system. Each user can have any
number of reservations.​
​
Usernames are case insensitive; this is the default for SQLServer. However, since we
are salting and hashing our passwords through the Java application, passwords ARE
case sensitive. You can assume that all usernames and passwords have at most 20
characters.​

●​ Itineraries: An itinerary is either direct or indirect.​
​
A direct itinerary or direct flight consists of a single flight, from the origin to the
destination. In contrast, an indirect itinerary (alternatively known as a two-hop
itinerary) consists of two flights, from the origin to a stopover city and then from the
stopover city to the destination. This system does not support itineraries with more than
one stopover city.​

●​ Reservations: A booking for an itinerary, which may consist of one or two flights (ie,
direct or indirect). Each reservation can either be paid or unpaid and has a unique ID.

Once you decide which logical entities to persist in a table, you will create them using
createTables.sql which is discussed in more detail in the M0 section below.

Application Logic
The bulk of your application’s logic is implemented in Query.java and PasswordUtils.java. Each
command in the application menu has a corresponding method that you will implement.

CSE 344 | 23au | Introduction to Data Management

●​ create takes in a new username, password, and initial account balance as input and
creates a new user account with that initial balance. create should return an error
someone attempts to create an account with a negative balance or if the username is
already taken.​
​
Usernames are not case-sensitive; in other words, "User1", "USER1", and "user1" are all
equivalent. You can assume usernames and passwords have at most 20 characters.​
​
We will store the salted password hash, as well as the salt itself, to avoid storing
passwords in plain text. See PasswordUtils.java for more information. Note that we
will store both the salted password hash and the salt itself in the same field in our table. ​

●​ login accepts a username and password; it checks that the user exists in the database
and that the provided password matches the stored one. You can use
PasswordUtils.java to help with this.​
​
Within a single session (that is, a single instance of your program), only one user should
be logged in. To keep things simple, track the login status of a User using a local variable
in your program; you should not track a user's login status inside the database.​

●​ search takes as input an origin city (string), a destination city (string), a flag indicating
whether the results should only consist of direct flights (0 or 1), the date (int), and the
maximum number of itineraries to be returned (int). For the date, we only need the day of
the month, since our dataset comes from July 2015.​
​
Return only flights that are not canceled, ignoring the capacity and number of seats
available. For indirect itineraries, different carriers can be used for each leg; the first and
second flight only must be on the same date (eg, if flight1 runs on July 3 and flight2 runs
on July 4th, then you can't put these two flights in the same itinerary).

Sort your results on total actual_time (ascending). If a tie occurs, break that tie by
choosing the smaller fid value; for indirect itineraries, use the first then second fid for
tie-breaking.​
​
Below is an example of a single direct itinerary from Seattle to Boston:

Itinerary 0: 1 flight(s), 297 minutes​
ID: 60454 Day: 1 Carrier: AS Number: 24 Origin: Seattle WA Dest:
Boston MA Duration: 297 Capacity: 14 Price: 140

​

Below is an example of an indirect itinerary from Seattle to Boston.

Itinerary 0: 2 flight(s), 317 minutes​
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA
Dest: Orlando FL Duration: 159 Capacity: 10 Price: 494​
ID: 726309 Day: 10 Carrier: B6 Number: 152 Origin: Orlando FL
Dest: Boston MA Duration: 158 Capacity: 0 Price: 104​
Itinerary 1: 2 flight(s), 317 minutes​

CSE 344 | 23au | Introduction to Data Management

ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA
Dest: Orlando FL Duration: 159 Capacity: 10 Price: 494​
ID: 726464 Day: 10 Carrier: B6 Number: 452 Origin: Orlando FL
Dest: Boston MA Duration: 158 Capacity: 7 Price: 760

​
The returned itinerary IDs should start from 0 and increase by exactly 1, as shown
above. All flights in an indirect itinerary should be under the same itinerary ID; in other
words, the user should only need to book using a single itinerary ID, regardless of
whether they are flying a direct or indirect itinerary. If no itineraries match the search
query, the system should return an informative error message; see Query.java for the
actual text. ​
​
The user need not be logged in to search for flights, but these search results cannot be
booked (see book for more details).

Lastly, your code should always prefer returning direct itineraries, even if the direct
itinerary is slower than an indirect one.

What this means is we first choose direct itineraries, but we sort on flight time (whether
or not the itinerary is direct). So if we want k itineraries, and we have d direct flights, we
want i = k - d indirect flights (assuming k > d otherwise i = 0). You break ties for flight
time with the fid.

For example, say we have the following itineraries (D for direct and I for indirect):

●​ D1: 50 min
●​ D2: 30 min​

●​ I1: 40 min
●​ I2: 10 min
●​ I3: 100 min
●​ I4: 80 min

We would return the following itineraries in the order shown for these search requests:

​
User has requested only direct flights:

○​ 1 itinerary: D2
○​ 2 itineraries: D2 D1

User has requested indirect and direct flights:

●​ 1 itinerary: D2
●​ 2 itineraries: D2 D1
●​ 3 itineraries: I2 D2 D1
●​ 4 itineraries: I2 D2 I1 D1
●​ 5 itineraries: I2 D2 I1 D1 I4
●​ 6 itineraries: I2 D2 I1 D1 I4 I3

CSE 344 | 23au | Introduction to Data Management

In other words, get the maximum number of direct flights, then fill any missing itineraries
with indirect itineraries, combine the two lists, and finally sort on time.

Note that D doesn’t have an fid2; you may have to use some ✨programming magic✨
to achieve these mixed results :)

●​ book lets a user reserve an itinerary using its itinerary number, as returned by the
previous search. The user must be logged in to book an itinerary, and they must enter a
valid itinerary id returned from the most recent search performed within the same login
session. Once the user logs out (by quitting the application), logs in (if they previously
were not logged in), or performs another search within the same login session, then all
previously returned itineraries are invalidated and cannot be booked.​
​
A user cannot book a flight if the flight's maximum capacity would be exceeded; each
flight’s capacity is stored in the FLIGHTS table, and you should have records as to how
many seats have already been reserved. If the booking is successful, assign a new
reservation ID to the booked itinerary.​

●​ pay allows a user to pay for an existing-but-unpaid reservation. It should first verify the
user has enough money to pay for all the flights in the given reservation; if so, it updates
the reservation status.​

●​ reservations lists the currently logged-in user’s reservations. The reservations should
be displayed using a format similar to the search results, and they should be shown in
increasing order of reservation ID.​
​
As noted above, each reservation must have a numeric identifier which is different for
each reservation in the entire system. There are several ways to implement this:

○​ Define a "ID" table that stores the next value to use, and update it each time a
new reservation is made.

○​ Calculate the next reservation ID by counting the number of existing reservations
or calculating the current maximum ID.​

●​ quit leaves the interactive system.

❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗

CAUTION: Ensure your code produces its output in the exact same format as described!
The autograder expects its output in our format.

❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗

Testing
The test format is described in more detail in this companion document. You will be required to
submit your own test cases for both M1 and M2.

https://docs.google.com/document/d/1gflmksqGdhlfeSj-vXS3oq9ZlbUwNJd3y80ObZQUTHo/edit#testing

CSE 344 | 23au | Introduction to Data Management

Although we've provided some test cases, the testing we provide is incomplete. It is up to you
to implement your solutions so that they completely adhere to the specification; “but it passed all
the provided tests!” is no guarantee that your code will get full points. It’s a good practice to
develop test cases for all erroneous conditions (e.g., booking on a full flight, logging in with a
non-existent username) that your code is built to handle, but you’ll also want test cases for
successful conditions as well. Be creative!

Note: There is a known-but-transient bug in SQLServer that causes "DROP TABLE … "
statements to hang indefinitely. Since our unittest harness drops tables every time it's run, you
may need to disable table-dropping for a few hours if you run into this issue. To do this, add
--Dflightapp.droptables="false" to your mvn command. Eg:

$ mvn test --Dtest.cases="folder_names_or_file_names_here"
--Dflightapp.droptables="false"

We recommend using this flag only for a few hours; please retry your unit tests with table
dropping before you submit your code to Gradescope.

Transaction Management (M2 only)
For the second milestone, you must use SQL transactions to guarantee ACID properties;
specifically, you will need to define begin-transaction and end-transaction statements and to
insert them in appropriate places in Query.java. You must use transactions correctly such
that race conditions introduced by concurrent execution cannot lead to an inconsistent state of
the database. Hint: do not include user interaction inside a SQL transaction; that is, don't begin
a transaction then wait for the user to decide what she wants to do (why?).

Recall that, by default, each SQL statement executes in its own transaction. As discussed in
lecture, to group multiple statements into a transaction we use the following SQL statements:

BEGIN TRANSACTION​
....
-- eg, UPDATE or DELETE FROM statements
....​
COMMIT or ROLLBACK

Executing transactions from Java has the same semantics: by default, each SQL statement will
be executed as its own transaction. This is configured using the auto-commit value: when
auto-commit is set to true, each SQL statement executes in its own transaction; when
auto-commit is set to false, you can execute multiple SQL statements within a single
transaction. By default, any new connection to a DB auto-commit is set to true.

To group multiple statements into a single transaction in Java, you need to disable
setAutoCommit() (which implicitly starts a transaction), execute your statements, and finish
the transaction by either calling commit() or rollback():

CSE 344 | 23au | Introduction to Data Management

// –--
// Surrounding each collection of SQL statements which
// constitute a single logical transaction:

// Disable the one-statement-per-transaction behavior:​
conn.setAutoCommit(false);
​
//
// ... execute your updates and queries ...
//​

// Decide what to do with your statements:​
conn.commit();​
// ~OR~​
conn.rollback();​

// Undo the changes to your transaction settings; future SQL
// statements will execute as individual transactions​
conn.setAutoCommit(true);

executeQuery() and executeUpdate() throw SQLExceptions if an error occurs;
determine if the error is transient (eg, deadlock) or permanent (eg, bad SQL syntax) and retry if
appropriate.

The total amount of code to add transaction handling is quite small, but getting everything to
work harmoniously may take some time.

Milestone 0: Database design
First, you will translate the project requirements into a conceptual model (an E/R diagram) and
then to a schema (physical tables).

Your E/R diagram should include flights, carriers, months, weekdays, users, reservations, and
itineraries. You may elide some of flights’ attributes to keep your diagram small, if you wish.

Next, fill in the provided createTables.sql file with the necessary CREATE TABLE (and
optionally any CREATE INDEX) statements to implement your E/R diagram. Recall that E/R
diagrams may contain entities or relationships which become columns rather than a table. Do
not include statements for the tables already in your database (ie, Flights, Carriers,
Weekdays, or Months). We will test your createTables.sql by running it in parallel with
other student submissions on our Azure SQLServer. To prevent interference, we require that
your table names be suffixed with your UWNetID (eg, MyTable_hctang).

M0 Submission

CSE 344 | 23au | Introduction to Data Management

For this milestone, you should submit these 2 files to Gradescope:

●​ A .pdf file containing an E/R diagram
●​ createTables.sql

This milestone’s goal is to provide feedback, so its point value is a small fraction of FlightApp’s
total points. Once you receive our comments, you will not need to resubmit a “fixed” E/R
diagram.

Milestone 1:

Java Customer Application
Your second task is to start writing the Java application that your customers will use. To make
your life easier, we've broken down this process into several steps spread across two
milestones. You will only need to modify Query.java and PasswordUtils.java; do not modify
FlightService.java.

We require that your application:

●​ Use unqualified table names in all of your SQL queries (e.g. SELECT * FROM
Flights instead of SELECT * FROM [dbo].[Flights]).

●​ Use PreparedStatements appropriately (refer to section and lecture if you are confused)
when you execute queries that include user input.

○​ Dynamically-generated SQL statements permit SQL injection attacks; don’t do
this

●​ Write code that we can understand.
○​ For example, use descriptive variable names, well-factored methods, and follow

a consistent style

Step 1: Implement clearTables()

Implement the clearTables() method in Query.java to clear the contents of any tables you
have created for this assignment (e.g., Reservations). Notably: do not drop any of your
tables, and do not modify the contents or drop the Flights table.

clearTables() should not require more than a minute to run. This method is used for
running the test harness, where each test case assumes it has a clean database (ie, with the
FLIGHTS table populated and createTables.sql called). An incorrect implementation will
cause difficult-to-debug test failures.

Step 2: Implement create, login, and search

Implement the create, login and search commands in Query.java. mvn test should now
pass the (non-transactional) test cases which only involve these three commands:

https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/PreparedStatement.html
https://en.wikipedia.org/wiki/SQL_injection

CSE 344 | 23au | Introduction to Data Management

mvn test -Dtest.cases="cases/no_transaction/search"​
mvn test -Dtest.cases="cases/no_transaction/login"​
mvn test -Dtest.cases="cases/no_transaction/create"

Or you can run all three cases using this single command:
mvn test
-Dtest.cases="cases/no_transaction/search:cases/no_transaction/lo
gin:cases/no_transaction/create"

If on Windows, you will need to quote the entire argument
to `mvn test` as follows:
$ mvn test "-Dtest.cases=folder_name_or_file_name_here"

You’ll need to change the quoting for all the `mvn test`
commands above, too.

Step 3: Write Test Cases

Write at least 1 new test case for each of the three commands you just implemented. Follow the
same format as our provided test cases; you should copy our naming convention (ie,
<cmdname>_<description>.test.txt) as well as the test case format. Failure to match
our naming convention will cause your tests to be miscategorized.

You may find the documentation on our test case format helpful.

M1 Submission
For this milestone, you should submit these 5 7 (or more) files to Gradescope:

●​ Partially-complete Query.java with create, login and search commands
○​ Recall that we will not implement transaction handling until M2!

●​ A fully complete PasswordUtils.java
●​ At least 3 new test cases (one for each command)
●​ createTables.sql
●​ m1-writeup.txt containing:

○​ The answers to our 3 standard writeup questions (“What is one thing that you
learned; one thing that surprised you; a question you still have after doing this
assignment”)

■​ These answers will be a required reference in your M2 writeup, so ensure
these are non-empty!

○​ Recall the debugging technique you described in the HW3 writeup. Did you use
it or something similar when debugging M1?

■​ (this is a simple yes/no question)

CSE 344 | 23au | Introduction to Data Management

○​ In 1-2 sentences, describe a bug in one of your M1 queries. Then, describe how
you noticed the bug and, in 3-4 sentences, how you fixed it. If you answered
“yes” above, please describe a different bug.

○​ This project demonstrated how application logic can perform transformations on
query results (eg, merging direct and indirect itineraries) or on user input (eg,
salting and hashing passwords). What other logic would you like to see and/or
implement in FlightApp's Java; ie, logic that cannot be done in SQL or by the
user?

○​ [optional] how many hours you spent on M0+M1, and how many students (if
any!) you collaborated with

This milestone’s goal is to ensure you are making progress, so its point value is a fraction of
FlightApp’s total points. We merely verify compilation and execute a handful of tests. If you
want a full check of your application, including our hidden tests, proceed to milestone 2.

Milestone 2:

Step 4: Implement book, pay, and reservations. Add transactions!

Implement the book, pay, and reservations commands in Query.java. At this point you
have a fully-functional app! To verify, you can run an entire directory’s worth of tests:

mvn test -Dtest.cases="cases/no_transaction/"

Unfortunately, you quickly notice problems when multiple users use your service concurrently:

mvn test -Dtest.cases="cases/transaction/"

You will need to add transactions, to ensure commands executing in parallel do not conflict.
Think carefully as to which commands need transaction handling. Do the create, login and
search commands need transaction handling? What about book, pay, and reservations? Why
or why not?

Step 5: Write More (Transaction) Test Cases

Write at least 1 test case for each of the 3 new commands you just implemented. Follow the
same format as our provided test cases.

Next, write at least 1 parallel test case for each command except search and create (ie, you will
submit a total of 4 parallel tests). By "parallel", we mean (1) concurrent users interfacing with
your database, each in a separate application instance, and (2) multiple possible
outcomes/scenarios. As before, you may find the documentation on our test case format
helpful.

Step 6: Reflect on Your Voyage of Learning

CSE 344 | 23au | Introduction to Data Management

Lastly, please reflect on your personal experience with this portion of the project. Specifically:

1.​ The 3 standard reflection questions, but specific to your experience with M2:
○​ What is one thing that you learned while doing M2?
○​ What is one thing that surprised you while doing M2?
○​ What is one question that you still have after doing M2?

2.​ Were you able to make any progress on your “one question I still have” from M1? If so,
please describe how it happened (eg, did you stumble upon the answer, did it come up
in lecture, did you read about it yourself, etc). If you did not, describe how you might find
an answer to it.

3.​ Recall the programmer/manager/employee problem from Quiz 2: we stated that all
employees had a manager but ignored the company’s CEO, who is the only employee
who doesn’t have a manager.
Consider the following conceptual schema and table schema for a company's
organizational chart:​
​

​
​
Now that you’ve seen how to use Java code to add additional verifications on data that’s
saved into a database, how would you represent the CEO in that schema? Specifically,
would you make the manager field NULLable or would you create a special “THIS IS
NOT A REAL MANAGER” manager for the CEO? In other words, which logic would you
put in the schema and which logic would you put in Java? Why did you choose this
design?

4.​ [optional] how many hours you spent on M2 (do not include M0+M1), how many hours
you perceived to be valuable, and how many students (if any!) you collaborated with

Save your answer to these reflection questions in a file called m2-writeup.txt in the
submission directory.

M2 Submission
For this milestone, you should submit these files to Gradescope:

●​ createTables.sql
●​ Your fully-complete Query.java and PasswordUtils.java
●​ At least 10 test cases, <command>_<description>.test.txt

○​ 6 must be serial tests, one for each command. You can resubmit tests previously
submitted for M1.

CSE 344 | 23au | Introduction to Data Management

○​ 4 must be parallel tests, one for each command
●​ m2-writeup.txt

The bulk of FlightApp’s total points will be allocated to this final milestone.

✨🥂✨ Congratulations! ✨🥂✨ You have completed the entire flight booking application
and are ready to launch your new business :)

	Project | Database Application and Transaction Management
	Resources
	Introduction
	Setup for M1 + M2
	

	Project Requirements
	Data Model
	Application Logic
	Testing
	Transaction Management (M2 only)

	Milestone 0: Database design
	M0 Submission

	Milestone 1:
	Java Customer Application
	Step 1: Implement clearTables()
	Step 2: Implement create, login, and search
	
	Step 3: Write Test Cases

	M1 Submission

	Milestone 2:
	Step 4: Implement book, pay, and reservations. Add transactions!
	Unfortunately, you quickly notice problems when multiple users use your service concurrently:
	You will need to add transactions, to ensure commands executing in parallel do not conflict. Think carefully as to which commands need transaction handling. Do the create, login and search commands need transaction handling? What about book, pay, and reservations? Why or why not?

	Step 5: Write More (Transaction) Test Cases
	Step 6: Reflect on Your Voyage of Learning
	M2 Submission

