

Shortcuts:
●​ CTRL + Space -> Opens Content Drawer
●​ F10 -> Fullscreen Mode (Docks all tabs)
●​ Right Click + Scroll -> Adjust Camera Speed
●​ ALT + RIght Click -> Zoom in/out
●​ ALT + Left Click -> Pivot around Obj
●​ G -> Game Mode
●​ Shift + Drag -> Lock Camera to Obj
●​ End (key) -> Snaps obj to one below
●​ CTRL + E -> Open editor for selected asset
●​ CTRL + B -> Open content drawer to selected asset
●​ ALT + P -> Auto play game

Exposure Notes:

●​ Lit -> Game Settings to turn off auto exposure when building
●​ Post Processing Volume -> Exposure -> Metering Mode -> Manual to turn off in game

auto exposure
●​ Exposure Compensation controls exposure when set to manual
●​ Post processing volume ONLY affects the camera
●​ To create new post processing volume and make it global, scroll down to "Post Process

Volume Settings" and turn on "Infinite Extent"

Materials:

●​ Update materials in real time using a material instance and "Convert to Parameters"
elements you want to be edited in real time

●​ Master Material -> Parent material (one material to rule them all)
●​ You can combine multiple masks into one texture by using RGB channels to hide the

masks within.. then just set the R/G/B channels to the specific mask in the material editor

Static Meshes:
●​ What unreal calls all 3D objects... p much faces and vertices
●​ Static Mesh (3d object) + Material (Multiple Textures)

Lighting:

●​ Lumen vs. Baking
○​ Static Lighting Level Scale * Indirect Lighting Quality = 1
○​ When Baking lighting, increase the quality of the lighting texture by going to each

element's Lighting tab and increasing "Overridden Light Map Res".. Can see light
map by going to View Mode -> Optimization View -> Lightmap Density

○​ If intensity of shadows between objects is too high, turn off ambient occlusion in
the post processing volume

○​ When baking, specify where reflections should be by adding a "Sphere Reflection
Capture"

○​ Sphere Reflection Capture gets 360 degree snapshot of area

●​ To get better reflections, select Build -> Build Reflection Captures

Blueprint Basics:

Blend Shapes:

●​ Used to blend through specific animations (for example, walking in diff directions)
○​ Can set parameters like speed/direction/etc and use them to blend between

animations
○​ Right Click -> Animation -> Blend Space

■​ Naming Convention: BS_NameOfThing

Camera:

●​ Camera Boom -> Connects camera to the player character
○​ Camera Lag Param -> Allows for delayed/smooth camera movement

Input:

●​ Create an “Input Action”
○​ Right Click -> Input -> Input Action
○​ Naming Convention: IA_NameOfThing

●​ Inputs can be added to blueprints as “Events” so that every time the input is clicked, the
logic connected to the event will be triggered

○​ Do this by just searching up the name of the input in the blueprint you wish to add
it to… Right Click -> Search IA_NameOfThing

IMC (Input Mapping Manager):

●​ Stores all the active inputs
and the connected
keyboard/mouse input

○​ Can bind multiple
keyboard inputs for

things like “movement”
●​ Click on the small keyboard and just press button you want to bind the input to

Actor Component:

●​ A BP class that we can add into other actors to execute logic and make things a bit more
organized

○​ Naming Convention: BPC_NameOfThing
●​ Must add to Actor for it to actually work!

AI

●​ Blackboard
●​ Behavior Tree

○​ Nodes
■​ Selector: Executes branches from left-to-right and is typically used to

select between subtrees. Selectors stop moving between subtrees when
they find a subtree they successfully execute. For example, if the AI is
successfully chasing the Player, it will stay in that branch until its
execution is finished, then go up to the selector's parent composite to
continue the decision flow.

■​ Executes branches from left-to-right and is more commonly used to
execute a series of children in order. Unlike Selectors, the Sequence
continues to execute its children until it reaches a node that fails. For
example, if we had a Sequence to move to the Player, check if they are in
range, then rotate and attack. If the check if they are in range portion
failed, the rotate and attack actions would not be performed

■​ Simple Parallel has two "connections". The first one is the Main Task, and
it can only be assigned a Task node (meaning no Composites). The
second connection (the Background Branch) is the activity that's
supposed to be executed while the main Task is still running. Depending
on the properties, the Simple Parallel may finish as soon as the Main Task
finishes, or wait for the Background Branch to finish as well.

○​ Number in top corner of nodes indicates the order of operations
○​ Purple nodes are task nodes -> Actions you want the AI to complete

■​ Rotate to Face BB entry: node that designates an object you want to
rotate and face

●​ Always select the AI version of Event Receive Execute, Event Receive Abort, and Event
Receive Tick if the Agent is an AI Controller. If both generic and AI event versions are
implemented, only the more suitable one will be called, meaning the AI version is called
for AI, and the generic one otherwise.

Standalone Game -> Can run game as Standalone, which closely represents how it would run
on its own
Simulate -> Does not spawn player characters but allows you to see how things will
move/function (physics and etc..)

Interesting way to manage managers -> have managers in the level that are accessed through
singleton, if the manager does not exist already, spawn in level, destroy everything when you
load a new level (easy cleanup and lazy loading)

Unreal Engine Fellowship Course

UE5 Basics

Projects and Templates

Concepts
Blueprints: visual scripting language that allows you to create game
logic without code.

●​ Connect nodes to perform tasks, handle events, or manipulate
data.

●​ Used commonly to compliment code.
●​ In some cases, it does not run as fast as C++ code due to

checks/balances, minimal optimization, overhead, etc…
​ Classes vs. Instances

●​ A class serves as a template for something you want to create
and can be seen in the content browser.

●​ An instance is what you get when you drag that class into the
world.

○​ Each instance can have its own separate settings, even
though it originates from the same class.

​ Inheritance
●​ Inheritance is when a new “child” class takes on properties and

behaviors from an existing “parent” class.
○​ Allows you to reuse code from the parent class, making it

easier to manage and extend functionality.
○​ Child classes can have additional features or override the

inherited ones.
●​ Object -> Actor -> Pawn -> Character

○​ The Object class in Unreal Engine is the root class that
provides core functions like garbage collection.

○​ The Actor class has the ability to be spawned in the
world, complete with a transform for positioning.

○​ The Pawn class can be “possessed” and receive input
from a Controller, making it ideal for player or
AI-controlled characters.

○​ The Character class includes a skeletal mesh and a
movement component, allowing for easy setup of
animated and controllable characters.

​ File Saving and Copying
●​ UE5 File System

○​ All imported assets (models, textures, audio, animations,
etc) are stored in the Content folder as .uasset files

○​ Levels are saved as .umap
○​ Projects are saved as .uproject

​ Project Structure

​
​ Viewport

●​ CTRL + 1 — Creates a bookmark for specific camera position
so camera jumps to when you hit (1).. works for all numbers

●​ End key — Drops object to the ground
●​ Change grid snap to have more/less control over location of

objects (blue nod will turn off grid)
​ Content Browser

●​ Collections – Used to keep classes organized
○​ Can create custom collections and drag in items to group

together so they can all be found in same spot (without
changing folder organization)

●​ Favorites – Can favorite specific folders for easier access
●​ Filters – Only shows content that has the tags specified

●​ Right Click Asset -> Migrate if you want a specific asset and all
its dependencies

○​ Better than manually dragging files from your computer
because it takes care of references and imports
everything its dependent on (including folder structure)

■​ Stuff needs the SAME reference path to not break
it… (under the same folders in the project)

Introduction to Blueprints
​ Concepts

●​ Blueprints are a visual scripting language that allows you to
create game logic without writing code using nodes.

​ Event Graph
●​ Branch Node (B + Left Click) – Similar to an if statement
●​ Sequence Node (S + Left Click)
●​ Do Once Node (O + Left Click)
●​ Delay Node (D + Left Click)

​ Construction Script
●​ Runs on the point of construction

○​ Every time an object is placed or moved around
○​ Good when you need to do something when setting up

object
​ Tips

●​ If you add a
component and
want an event
based on that
component (ex,
box collision),
right click the
component and
go to “Add
Event” for a list
of relevant
events.

The Unreal Gameplay Framework
​ Classes Breakdown

●​ Pawn – the base class for any actor that can be controlled by a
player of AI.

○​ Provides the capabilities, the controller chooses which of
those to use and when.

●​ Character – a special type of Pawn designed for a
vertically-oriented player representation that can walk, run,
jump, fly, and swim through the world.

○​ Essentially a specialised pawn that can be used as a
shortcut to handle a lot of common requirements for
pawns.

●​ Controller – non-physical actors that can possess a Pawn to
control its actions. A player Controller is used by human players
to control Pawns, while an AI controller implements AI to dictate
a Pawn’s actions.

○​ Actors spawn at runtime
○​ Represent “the thing controlling the Pawn”
○​ Rotation of the actor is relevant
○​ Pawns don’t need controllers

●​ Player Controller – the interface between the Pawn and the
human player controlling it. The PlayerController essentially
represents the human player’s will.

○​ Not a specifically highlighted part of the gameplay
framework

○​ Specialised controller
○​ Central place to handle input and player view.

●​ Game Mode – the primary class that specifies which other
classes to use in the gameplay framework and is commonly
used to specify game rules for modes, such as capture the flag.

○​ Are actors (exist in your level)
○​ One per level
○​ Controlled via WorldSettings

●​ Game Instance – persists through the lifetime of the game.
Traveling between maps and menus maintain the same
instance of this class. Used to manage information and systems
that need to exist throughout the lifetime of the game between
levels and maps. You can also use the GameInstance class to
organize different game instance subsystems.

○​ Lives for the duration of the program.
○​ Class used for GameInstance is set in project settings.
○​ Cannot be deleted/replaced at runtime.

●​ Game State – contains data and logic relevant to all players in a
game, such as team scores, objectives, and a list of all players
and their associated player states.

○​ Shares data about game state between players in
multiple (Game Mode but FOR multiplayer)

○​ Mainly relevant for networked multiplayer
○​ Acts like a replicated version of GameMode
○​ GameMode only present on the server in a networked

multiplayer context
●​ Player State – handles data and logic relevant to its associated

player, such as health, ammo count, and inventory.
○​ Controller but FOR multiplayer.
○​ Primarily exists to be leveraged in networked multiplayer
○​ Provides replicated data about the player (distinct from

their pawn)
○​ Could normally be information on player controller but

PlayerControllers only exist locally and on the server.
●​ HUD – the base object for displaying elements overlaid on the

screen. Every human-controlled player in the game has their
own instance which draws to their individual viewport.

○​ Easy way to make a simple UI
○​ Difficult to leverage the tools for anything more

complicated or modular
○​ Often replaced with UMG widgets

●​ Camera – represents the player’s point of view or how the
player sees the world. For this reason, cameras only have
relevance to human-controlled players.

○​ Can be either an actor or a component
○​ Two types, regular and cinematic
○​ They don’t have to be used
○​ Actors can have multiple camera components
○​ Player view isn’t constrained to the pawn they currently

have possessed.
Classes but Not Part of Gameplay Framework

●​ World Settings — where you set and override Level-specific
settings. Each level can have unique settings applied to it from
the World Settings panel. You can use this panel to do
everything from making sure the right Game Mode is activated
when you play the level to adjusting global illumination works
for that level.

○​ Is an actor (although secretly)
○​ Base class used for world settings can be set through

project settings. But will apply globally across the game.
○​ Used to define the game mode used for a level, but only

relevant for the persistent level.
●​ Level Blueprint — specialized type of Blueprint that acts as a

level-wide global event graph. Each level in your project has its
own Level Blueprint created by default that can be edited within
the Unreal Editor, however new Level Blueprints cannot be
created through the editor interface.

○​ Is an actor (although secretly)
○​ Baked into the level
○​ Default base class is defined in project settings
○​ Often used to implement level-specific logic relating to

in-level events such as hitting triggers
○​ Can reference any actor in the level
○​ “With great power comes great responsibility”

■​ Stuff only happening in this specific level is best for
level blueprint

Input Mapping Classes (IMC) and Input Actions (IA)

●​ Input Action – A class you can create in Unreal that is based on
taking in player input.

○​ Can specify how it is triggered and more
●​ Input Mapping Class – Contains a collection of specific Input

Actions and what keys trigger them
○​ Can be added/removed during the game to allow for

specific controls at any point
■​ For Ex: adding vehicle input mapping to allow player

to drive when they enter car and removing it when
they leave

●​ Helps minimize the need to manage controls
that are not needed for the entire game

●​ You don’t need to worry about what happens
when the player hits the “brake” because that
control is removed when the player exits car

Introduction to Materials
​ Real-Time Material Concepts

●​ What is a Material?

○​ An asset applied to a mesh to control its visual look
○​ In its simplest form, think of as “Paint” with various

properties such as Color and Finish
○​ A Material defines how light interacts with the surface it is

applied to.
●​ What is PBR?

○​ Unified lighting and shading system
○​ Better approximation of light and materials physical

interaction
■​ Intuitive and consistent
■​ Physically accurate
■​ Uses real-world physical measurements

○​ PBR is a combination of:
■​ Materials
■​ Lighting
■​ Exposure

Primary PBR Inputs
●​ Base Color
●​ Metallic
●​ Specular
●​ Roughness

Primary Nodes and Textures​
●​ Base Color (Albedo)

○​ Flat color without specularity or shading
○​ Linear RGB (Vector 3) values between 0~1
○​ Avoid pure black (0) and pure white (1) as they don’t

really exist in nature
●​ Metallic

○​ Grayscale value that ranges from 0~1
○​ Most common usage is on or off (1 or 0)
○​ When on (1), it yields a 100% specular reflection

●​ Roughness
○​ Grayscale value that ranges from 0~1
○​ Ranges from smooth, mirror-like surface (0) to rougher

matte surface (1)

○​ Unlike with Metallic, you are encouraged to fine-tune the
Roughness value between 0 and 1 or use a Texture to
that effect.

○​ Roughness is expensive to compute.
●​ Specular

○​ Grayscale value that ranges from 0~1
○​ A good rule of thumb is to set the Specular value to 0.5

and fine-tune the Roughness value instead - On by
default set to 0.5 so no node connection needed for it

○​ In some cases, you may decide to edit the roughness
value or use a bitmap for that effect.

■​ NOTE: used to push stylized looks over the top
glossiness BUT not always needed with roughness
value

●​ Guidelines
○​ Textures should always be to a power of 2

■​ 16x16 all the way to 8192x8192 in size
○​ Textures do not have to be square, as long as they are a

power of 2
■​ 16x128 or 2048x1024 or 2x4096 are all acceptable

examples
○​ Textures can affect streaming and memory management
○​ High-frequency textures can cause anti-aliasing artifacts

●​ Texture Pyramids (MipMaps) and Custom Settings
○​ MipMaps are on by default and help with optimization.
○​ Like an LOD for textures.

●​ Importing Textures
○​ Use the Import button or simply drag & drop from

Windows Explorer
○​ Textures are converted to .uassets
○​ You can open a texture in the Texture Editor with a simple

double-click
○​ Here, you can change the Compression Settings if you

need to

○​ You can also enable or disable the linear color space
(sRGB)

​ Material Editor and Parent Materials
●​ Hot Keys for Material Editor

○​ Num Key 1, 2, 3, 4 - Variable Constant
○​ E Key - Power node
○​ R Key - Reflection Vector
○​ T Key - Texture Sample
○​ U Key - TexCoord
○​ B Key - BumpOffset Node
○​ N Key - Normalize Node
○​ M Key - Multiply Node
○​ D Key - Duplicate

​ Material Notes
●​ Master Materials

○​ The main material that is created
●​ Material Instance

○​ A material that inherits the properties and parameters
from master material and can be edited without affecting
original main material

Introduction to Lighting
​ Lighting Definitions and Types

●​ Direct Lighting – light that falls onto a surface without any
interference. The light travels directly to the surface and that
surface receives the full color spectrum of the light.

●​ Indirect (or bounced) Lighting – lighting that has been reflected
by other surfaces nearby. As light bounces off these surfaces,
light waves are absorbed or reflected based on surfaces
properties and passed on to the surface you are looking at.
Thus, indirect lighting contributes to the mood and overall light
intensity.

●​ Shadows – when Unreal Engine takes a snapshot of a mesh
actor from a light’s POV and projects that information onto
another mesh actor on the opposite side. In the case of Virtual

shadow Maps, the shadows update in real-time using mesh
distance fields for accurate calculations and updates with
moveable lights.

​ Static vs Dynamic Lighting
●​ Lumen – Unreal Engine 5's fully dynamic global illumination and

reflections system that is designed for next-generation
consoles, and it is the default global illumination and reflections
system. Lumen renders diffuse interreflection with infinite
bounces and indirect specular reflections in large, detailed
environments at scales ranging from millimeters to kilometers.

○​ Note: Lights in scene MUST BE SET TO MOVABLE for
Lumen to work on them!!!!!

●​ Baked (Static) Lighting – pre-computed/rendered lighting.
Baked lighting is created using Unreal Lightmass radiosity
baker. Similar to rendering lighting with VRay, Corona etc. It is
used to create high quality indirect lighting using light and
shadow maps. Baked lighting cannot be altered at run-time, but
has little impact on real-time performance.

●​ Real-Time (Dynamic) Lighting – lighting that is updated each
frame. It is fully dynamic and can be moved around and
modified at run-time. It has no global illumination component
(only direct light). It is also expensive to use (affects real-time
performance).

○​ Unreal can use both static and dynamic lighting. For
Arch/Vis projects where assets are typically
stationary,baked (static) lighting is mostly used. - (Older
way) NOTE: Lumen can be used but there is currently
some reflection limits.

●​ Raytracing – This type of lighting is real-time global illumination
updated with all lights set to moveable. If they are animated the
GI updates on the fly.

○​ NOTE: Some aspects of RT is taking into account with
Lumen such as reflections some light calculations

​ Lumen Settings
●​ Project Settings -> Rendering

○​ Global Illumination -> Set to Lumen
○​ Lumen -> Use Hardware Ray Tracing when available (On)
○​ Ray Lighting Mode -> Set to Hit Lighting for Reflections
○​ Software Ray Tracing Mode -> Set to Detail Tracking

●​ Modeling Tools -> Enable Ray Tracing While Editing (On)
●​ SM6 -> Turn on for D3D12 Targeted Shader Formats

○​ Helps with virtual shadow maps
​ Behavior Trees

●​ A framework used for creating complex AI behaviours, using a
hierarchical structure to manage decisions and actions.

○​ Behaviour Trees = The Brain
■​ Visually organizes the sequence of tasks & their

dependencies.
○​ Blackboard = Memory

■​ Store variables that can be easily accessed by the
behaviour tree.

○​ Task = Actions
■​ Scripted actions that can be given to the AI

controller.
○​ Decorator = Filters

■​ Decorators can be used to control the flow in the
behaviour tree.

○​ Service = Checker
■​ The service will run periodically to update the

blackboard.
●​ Decorators and Services are added onto existing nodes to

change behaviour.
●​ Tasks are used to create nodes in which the AI does things or

stores information or etc..
​ State Tree

●​ Must be turned on in plug-ins
●​ Provides better control on transitioning between states

compared to BT
○​ Honestly, BT is an older legacy.. Phase out from BT to

State Machines

●​ State Tree is added to a pawn through a component! And you
set the class of the state tree after.

●​ When setting variables in task for State Tree, you can set the
Category to “Input” or “Output” to require them for the task to
run

●​ You can use evaluators to swap between states in transitions.

Variables for evaluators are just stored in the evals so there’s
no BB to retrieve it from like in BT.

Material Param Collection:

●​ Can be used to create globally stored variables for materials so that
all the materials can be edited at the same time.

○​ For Example, if you have a speed for machine, you can
decrease the speed to stop all parts of the machine that are
connected via diff materials.

