Basics

Agentic Al Development - Complete
Learning Resources

Author: Prashant Kulkarni, Google

Table of Contents

Agentic Al Development - Complete Learning ReSOUICes.........cccceriinniiinmrnnsnnssssssssnssssnnnns 1
Table Of CONENTS......coo e 1
BIOOKS. ...ttt e et e e e e e e e e e e e r e e e e e e aaaa 3
WAt @re AQENES? ...ttt e e e e e e e e e e e e e e e e e e 5
Agent Tools, MCP & Agent-to-Agent CommuniCation...............eeeiiiiiiiiiiiieiee e 5

1. Agent TOOIS ECOSYSEIM.......eeiiiiiiiiiiiiiie et e e e e e e e e e e e anes 5
Core Tool Categori€s.....cccovviiiiiiiiiiie e 5
Tool Development Best PractiCes..........ooovviiiiiiiiii e 6

2. Model Context ProtoCol (MCP).......ooeiiieieeeeeeeee e 7
WAt IS IMCP 2.ttt ettt e e e s e e e e na e e e s anneeeeeennes 7
KEY COMPONENTES. ...ttt e e et e e e e e e e e e e e e e e e e nnneeeeas 7
MCP IMPIEMENTALION........eiiiiiiiiiiiieeeeeeeee et a e e e e e e 7

3. Agent-to-Agent (A2A) COMMUNICALION...........uuiiiiiie e e 8
Communication Patterns. ... e 8
A2A Protocols & Standards............ooooiiiiiiii s 9
Multi-Agent Coordination..............ooviiiiiiiiiiiii e, 9
Implementation FrameEWOIKS.........cooooi i 10

4. Integration Patterns. ..o, 10
fL oo IO 1 F=11 11 o Tc [P PP P PPPPPPPRPPRN 10
CONEEXE SNAMING. ...t e a e e 10
SeCUNtY & GOVEINMANCE.cci i it e s s b s e s s e s s e eseesseeeeeeeeeees 10
Monitoring & ObServability..............uueiiiiiiiiiieeeeeeeeeeeeeeeee e 11

5. Advanced Integration SCENAIIOS.cooiiuiiiiiiie e 11
Enterprise INtegration...........oo i 11
Cloud-Native Patterns.ueeiiiiiiieieeeeeeeeeeeee e 11
Real-Time SYStemS........ooooiiiii 11

Resources for TOOIS, MCP & A2A. ... e 11

The AGentiC Al LANASCAPE.uu ittt et e e e e et eeeeeeeeeeeeeeeeeeeaeeeeeaeaeeees 12

What IS AGENTIC A6, ettt e e e a e e 12

The EVOIULION TIMEINE.......ueiiiiiiieiieeeeeeeeeeeee e 12

Why Agentic Al Matters NOW.........oi i e e 12

Foundational KNOWIEAGE..........ccooeuiiiiiie e e e e e e e e e e e 12

Essential PrereqUISItes. ... 12

1. Machine Learning Fundamentals................ccooiiiiii i, 12

2. Large Language Models (LLIMS)..........uiiiiiiiiieiiiiiee e 13

3. Programming & Software ENgineering............ocooviiiiiiiiiiieieee e 13

Core Concepts & ArChiteCtUres.ooooii i eee e 13
1. AQENt ArChItECIUIES.o e 13
Agent Architectures & Classifications...............uuuuiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeer e 13

1. REACHVE AQENTS......oiiiiiiiii e 13

2. Deliberative (Planning) AQENTS.coui it 13

3. HYDIA AGENTS. ... 14

4, Learning AQENTS.ccoi it e e e e e e erraaa 14
Specialized AGeNt TYPES.....cooi i 14

1. Conversational AQENTS.........cc.uiiiiiiii s 14

2. Task-Oriented AGENTS.......cooiiiiiiiiiiei e 14

3. Collaborative AQENtS..........uuiiiiiiii i 15

4. Monitoring & Control Agents..........cooooiiiiiiiiii 15

D 0701 @70] 1 410 o] 0 =] | K= 15
Tool Usage & Function Calling..........coooiiiiiiiiiiiiiiiieee e 15
Memory & Context Management............oooiiiiiiiiii e 15

AgeNt CoOMMUNICALION.......ooiiiiiiii e e e e neeees 15

Agent Communication & Coordination..............ccooeiiiiiiiiiiiiiccc 16

Agent DesigN PriNCIPIES.....uu e 16
Development Frameworks & TOOIS.......coooiiioiiiii et ee e e 17
Enterprise-Grade FrameWOIKS............uuuuiiiiiiiiiiiiiiiiiiiieieieeeeee ettt e e eee e e e e e e e e e e e e e eeeaaaaeaas 17
Google ADK (Agent Development Kit).........ccoooiiiiii e 17
Microsoft Semantic Kernel.............oooiiiiiiiii e 17

OpeN SOUrCE FrameWOIKS.ccooiiiiiiiiiiiciecicc bbb eaassaeasbsesssssssesseeeees 17
LangChain/LangGraph...........oo e 17

L0 =1 T 17
AULOGEN (IMICTOSORL).....eieiee e e e 18
SpPeCialized TOOIS......ooiiiiiiiii e —— 18
AGENt EVAIUALION.......co i ————————— 18
Observability & MONITOIING........ceiiiiiiieee e 18
Implementation PathWays...........ouuiiiiiiii e 18
Learning Path 1: Research & Experimentation...............ccceiiiiiiiiiiiiiie e 18
Learning Path 2: Enterprise Development............ooo oo 18
Learning Path 3: Academic ReSearch...........cooouviiiiiiiiiiii e, 19

0 V7= e7=To IR Lo o] o= USSP 19
1. Agent Safety & AlIGNMENT.......ooo e 19

2. Scalable Agent Systems..........ooooiii i ———————— 19

3. Agent Learning & Adaptation...........cccoccoii s 19

4. Human-Agent Interaction.............uueiiiiii i 19

[aTo [UES] 1 YA N o o] To7=1 (o] 1= R 20
CUITENE SUCCESS STOMES. .. uuuiiiiiiie e ettt e e e e e e e e e e s e e e e e e e e annneeeeeeeens 20
Emerging APPlICAtIONS.cooii i 20

Learning Path Recommendations...........oouuiiiiiiiii e 20
For Beginners (No Al Background).........coccooiiiiiiieee e e e e e e eeees 20
o |V | I T T Y SR 20
For Software ENGINEEIS.........ooiuiiiiiiiie e 20
o Tl TS T T o g =Y =P 21

Ly S (= o TR 21

Books

Purpose
Building Al Agents with LLMs, RAG, m i First step towards building
and Knowledge Graphs: A practical o Agentic Al
i nom nd modern Al Building Al Agents
agents with LLMs, RAG, and
Knowledge Graphs

Salvatere Reieli | Gabricle lucvlane (pOCk‘b
Al Engineering: Building Applications —_— Go Deeper into various
with Foundation Models .) application that can be
Al Eng"']eenng built with Foundational

Models

Building Applications
with Foundation Models

Chig Huyen

https://a.co/d/6kt46EJ
https://a.co/d/6kt46EJ
https://a.co/d/6kt46EJ
https://a.co/d/6kt46EJ
https://a.co/d/dLh5W1y
https://a.co/d/dLh5W1y

Machine Learning with PyTorch and
Scikit-Learn: Develop machine
learning and deep learning models
with Python

EXPERT INSIGHT

Machine
Learning

with PyTorch
and Scikit-Learn

Develop machine learning and deep learning
models with Python

bool ling

Sabastian Raschka
Yuxi (Hayden) Liu
Vahid Mirjalili

@ python™

Go even more deep into
how to code them

Build a Large Language Model (From
Scratch)

BUILD A

Large L
Mo pPre

Sebastian Raschka

| | FTYTHT

Go to the pisces for LLM
development - Gold
Standard

Practicing Trustworthy Machine
Learning: Consistent, Transparent,

and Fair Al Pipelines

CREILLY”

Practicing
Trustworthy
Machine Learning

Consistent, Transparent, and Safe Al Pipelines

Yodo Pruksachothkun,
Matthew McAteer &
Subhabrata Majumdar

Trustworthy ML - the title is
enough!

https://a.co/d/0cVs2JF
https://a.co/d/0cVs2JF
https://a.co/d/0cVs2JF
https://a.co/d/0cVs2JF
https://a.co/d/csM20UF
https://a.co/d/csM20UF
https://a.co/d/2dgT7XO
https://a.co/d/2dgT7XO
https://a.co/d/2dgT7XO

What are Agents?

An Al agent is an autonomous system that can perceive its environment, reason about goals,
make decisions, and take actions to achieve those goals. Unlike traditional software that follows
predetermined logic, agents can adapt their behavior based on context and feedback.

Core Agent Characteristics

Autonomy: Can operate independently without constant human guidance
Reactivity: Responds to changes in environment or input

Proactivity: Takes initiative to achieve goals

Social Ability: Can communicate and coordinate with other agents or humans

Levels of Autonomy on Al Agents. https://arxiv.org/abs/2506.12469

Autonomy

Definition: The ability to operate independently without constant human guidance.
Levels of Autonomy:

Level 0 - No Autonomy: Human performs all tasks

Level 1 - Assistance: Agent provides suggestions, human decides

Level 2 - Partial Autonomy: Agent handles specific subtasks

Level 3 - Conditional Autonomy: Agent operates independently in defined scenarios
Level 4 - High Autonomy: Agent handles most situations, requests help rarely

Level 5 - Full Autonomy: Complete independence in all scenarios

Reactivity

Definition: The ability to perceive and respond to changes in the environment in a timely
manner.

Types of Reactive Behaviors:

Immediate Response: Real-time reaction to stimuli
Event-Driven: Triggered by specific occurrences
Threshold-Based: Action when metrics exceed limits
Pattern Recognition: Response to detected patterns

https://arxiv.org/abs/2506.12469

Proactivity

Definition: Goal-directed behavior where agents take initiative rather than just responding to
events.

Proactive Capabilities:

e Goal Setting: Establishing objectives based on high-level directives
e Planning: Creating action sequences to achieve goals
e Opportunity Recognition: Identifying beneficial actions without prompting
e Preventive Actions: Anticipating and preventing problems
Social Ability

Definition: The capacity to interact with other agents and humans through communication and
coordination.

Social Interaction Patterns:

Cooperation: Working together toward shared goals
Negotiation: Resolving conflicts and reaching agreements
Competition: Engaging in competitive scenarios
Teaching/Learning: Knowledge transfer between agents

Agent Tools, MCP & Agent-to-Agent Communication

1. Agent Tools Ecosystem
Core Tool Categories
Information Retrieval

Web Search: Google Search API, Bing Search, SerpAPI

Knowledge Bases: Wikipedia API, Wolfram Alpha, specialized databases
Document Processing: PDF parsers, OCR, document summarization
Code Search: GitHub API, Stack Overflow integration

Code Execution & Development

Code Interpreters: Python REPL, Jupyter kernels, sandboxed execution
Version Control: Git operations, repository management

Development Tools: Linting, testing, deployment automation
Resources:

o EZ2B Code Interpreter

o Replit Agent
o GitHub Copilot Workspace

Data & Analytics
e Database Connections: SQL execution, NoSQL queries
e APl Integrations: REST/GraphQL clients, authentication handling
e Data Processing: ETL operations, data validation, visualization
e Business Intelligence: Report generation, dashboard creation

Communication & Collaboration

Email: Send/receive, calendar integration
Messaging: Slack, Discord, Teams integration

File Management: Cloud storage, document sharing
Project Management: Jira, Asana, Notion integration

Tool Development Best Practices
Tool Design Principles

Atomic Operations: Single responsibility per tool

Error Handling: Graceful failure and retry mechanisms
Schema Validation: Clear input/output specifications
Security: Authentication, authorization, input sanitization

Tool Integration Patterns

Python
Example tool structure
{
"name" : "search_documents",
"description”: "Search through document collection”,
"parameters”: {
"type": "object",
"properties”: {
"query": {"type": "string"},
"max_results": {"type": "integer", "default": 10}
}

"required”: ["query"]

https://e2b.dev/
https://replit.com/ai
https://copilot.github.com/

2. Model Context Protocol (MCP)
What is MCP?

The Model Context Protocol (MCP) is an open standard developed by Anthropic that provides
a unified way for Al assistants to connect with external data sources and tools. It establishes a
secure, standardized communication layer between Al models and the resources they need to
access.

Key Components
MCP Servers

e Purpose: Expose resources (tools, prompts, context) to Al models
e Types: Local servers (file systems, databases), remote servers (APIs, cloud services)
e Examples: File system access, database queries, API integrations

MCP Clients

e Purpose: Al applications that consume MCP server resources
e Integration: Built into Claude Desktop, can be integrated into custom applications
e Security: Controlled access through permission models

Resource Types

e Tools: Executable functions (file operations, API calls)
e Prompts: Reusable prompt templates with parameters
e Resources: Static content (documents, images, data)

MCP Implementation

Setting Up MCP Servers

JSON

{

"mcpServers": {
"filesystem": {

"command" : "npx",

"args": ["-y", "@modelcontextprotocol/server-filesystem",
"/path/to/allowed/files"]

"postgres”: {
"command" : "uvx",
"args": ["mcp-server-postgres”, "--connection-string"”,

"postgresql://..."]
}

Available MCP Servers

Filesystem: Local file operations

Database: PostgreSQL, SQLite, MySQL connections
Git: Repository operations

Google Drive: Cloud file access

Slack: Team communication

Brave Search: Web search capabilities

Resources for MCP

MCP Documentation
MCP Server Examples

Building Custom MCP Servers
MCP Security Guide

3. Agent-to-Agent (A2A) Communication

Agent2Agent (A2A) is a new, open protocol with support and contributions from more than 50
technology partners like Atlassian, Box, Cohere, Intuit, Langchain, MongoDB, PayPal,
Salesforce, SAP, ServiceNow, UKG and Workday.

Communication Patterns
Direct Communication

e Synchronous: Request-response patterns, real-time interaction
e Asynchronous: Message queues, event-driven communication
e Use Cases: Task delegation, information sharing, coordination

Mediated Communication

https://modelcontextprotocol.io/
https://github.com/modelcontextprotocol/servers
https://modelcontextprotocol.io/docs/building-servers
https://modelcontextprotocol.io/docs/concepts/security

Message Brokers: RabbitMQ, Apache Kafka, Redis
API Gateways: Centralized routing and management
Service Mesh: Istio, Linkerd for microservices communication

Broadcast/Multicast

Event Streams: Publishing events to multiple subscribers
Coordination: Distributed consensus, leader election
Use Cases: Status updates, global state changes

A2A Protocols & Standards

Communication Formats

JSON

{
"message_type": "task_delegation”,
"sender_id": "agent_1",
"recipient_id": "agent_2",
"payload”: {

"task": "analyze_data",
"parameters”: {...},
"priority": "high"

)i
"timestamp": "2025-01-15T10:30:00Z"

Protocol Layers

Transport: HTTP/REST, WebSocket, gRPC
Message Format: JSON, Protocol Buffers, MessagePack
Semantic Layer: Task ontologies, shared vocabularies

Multi-Agent Coordination

Coordination Strategies

Centralized: Single coordinator manages all agents
Hierarchical: Tree-like delegation structure

Peer-to-Peer: Distributed coordination without central authority
Hybrid: Combines multiple approaches based on context

Consensus Mechanisms

e Voting: Democratic decision making among agents
e Leader Election: Dynamic selection of coordinating agent
e Conflict Resolution: Handling disagreements and failures

State Management

e Shared State: Distributed databases, state machines
e Event Sourcing: Audit trail of all agent actions
CRDT: Conflict-free replicated data types for consistency

Implementation Frameworks
Multi-Agent Platforms

e JADE (Java): Mature platform with FIPA compliance
e SPADE (Python): Modern multi-agent system framework
e Mesa (Python): Agent-based modeling framework
e Resources:

o JADE Documentation

o SPADE Tutorial

o Mesa Examples

Communication Libraries

ZeroMQ: High-performance messaging library
Apache Kafka: Distributed streaming platform
Redis Streams: Real-time messaging

gRPC: High-performance RPC framework

4. Integration Patterns

Tool Chaining
e Sequential: Output of one tool becomes input to next
e Parallel: Multiple tools executed simultaneously
e Conditional: Tool selection based on runtime conditions
e Error Recovery: Fallback tools and retry mechanisms

Context Sharing

e Session State: Maintaining context across tool calls
e Cross-Agent Memory: Shared knowledge bases
e Event History: Audit trails and learning from past actions

Security & Governance

https://jade.tilab.com/
https://spade-mas.readthedocs.io/
https://github.com/projectmesa/mesa-examples

Access Control: Role-based permissions for tools and agents
Audit Logging: Tracking all agent actions and communications
Rate Limiting: Preventing abuse and managing costs

Data Privacy: Ensuring sensitive information protection

Monitoring & Observability

Agent Behavior Tracking: Understanding decision-making patterns
Performance Metrics: Latency, success rates, resource usage
Communication Analysis: Message flow and bottleneck identification
Debugging Tools: Step-by-step execution tracing

5. Advanced Integration Scenarios
Enterprise Integration

e API Management: Centralized tool catalogs and versioning
e Service Discovery: Dynamic tool registration and lookup

e Load Balancing: Distributing agent workloads

e Disaster Recovery: Failover and backup strategies

Cloud-Native Patterns

Containerization: Docker containers for agent and tool isolation
Orchestration: Kubernetes for scaling and management
Serverless: Function-as-a-Service for event-driven tools

Edge Computing: Distributed agent deployment

Real-Time Systems

Stream Processing: Handling continuous data flows
Event-Driven Architecture: Reactive system design
Low-Latency Communication: Optimizing for speed
Fault Tolerance: Handling failures gracefully

Resources for Tools, MCP & A2A
Essential Reading

e MCP Specification
e Multi-Agent Systems Book
e Distributed Systems Patterns

Practical Tutorials

e Building MCP Servers Tutorial

https://spec.modelcontextprotocol.io/
https://www.masfoundations.org/
https://martinfowler.com/articles/patterns-of-distributed-systems/
https://modelcontextprotocol.io/tutorials

e Multi-Agent System Design
e Agent Communication Patterns

Communities & Forums

e MCP Discord Community
e Multi-Agent Systems Conference
e Agent Communication Research Group

The Agentic Al Landscape

What is Agentic Al?

Agentic Al represents a paradigm shift from reactive Al systems to proactive, autonomous
agents that can plan, reason, and act independently to achieve goals. Think of the difference
between a calculator (responds to input) and a personal assistant (proactively manages your
schedule).

The Evolution Timeline

Traditional Al: Pattern recognition, classification

Conversational Al: Chat interfaces, Q&A systems

Tool-using Al: LLMs with function calling capabilities

Agentic Al: Autonomous planning, multi-step reasoning, goal-oriented behavior
Multi-Agent Systems: Coordinated networks of specialized agents

Why Agentic Al Matters Now

LLM Capabilities: Advanced reasoning and planning abilities
Tool Integration: Seamless API and system interactions

Cost Efficiency: Automation of complex knowledge work
Scalability: Handling tasks too complex for traditional automation

Foundational Knowledge

Essential Prerequisites
1. Machine Learning Fundamentals

e Concepts: Supervised/unsupervised learning, neural networks, training/inference

https://github.com/microsoft/autogen/tree/main/notebook
https://python.langchain.com/docs/use_cases/multi_agent/
https://discord.gg/modelcontextprotocol
https://www.aamas-conference.org/
https://www.fipa.org/

e Resources:
o Machine Learning Crash Course (Google)

o Coursera ML Course (Andrew Ng)

o Fast.ai Practical Deep Learning

2. Large Language Models (LLMs)

o Key Topics: Transformers, attention mechanisms, prompting, fine-tuning
e Resources:

The lllustrated Transformer

o Attention Is All You Need (Paper)

o LLM University (Cohere

o nAl GPT Gui

(e]

3. Programming & Software Engineering

e Languages: Python (primary), JavaScript/TypeScript (web apps)
e Concepts: APIs, microservices, containerization, version control
e Resources:

o Python for Al Development

o API Design Best Practices

o Docker Fundamentals

Core Concepts & Architectures

1. Agent Architectures
Agent Architectures & Classifications
1. Reactive Agents

Definition: Respond directly to stimuli without internal state
Behavior: Stimulus — Response (no planning or memory)
Use Cases: Simple automation, trigger-based actions
Example: Chatbot that answers FAQ questions
Resources:

o Reactive Agent Patterns
o Behavior-B Roboti

2. Deliberative (Planning) Agents

e Definition: Use internal models to plan and reason about actions
e Behavior: Sense — Plan — Act

https://developers.google.com/machine-learning/crash-course
https://www.coursera.org/learn/machine-learning
https://course.fast.ai/
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762
https://docs.cohere.com/docs/llmu
https://platform.openai.com/docs/guides/gpt
https://realpython.com/learning-paths/python-ai-ml/
https://cloud.google.com/apis/design
https://docs.docker.com/get-started/
https://www.sciencedirect.com/topics/computer-science/reactive-agent
https://mitpress.mit.edu/9780262632157/behavior-based-robotics/

Components: Beliefs, Desires, Intentions (BDI architecture)
Use Cases: Complex task planning, strategic decision making
Example: Travel planning agent that considers multiple constraints
Resources:

o BDI Agent Architecture

o Planning in Al (Russell & Norvig)

3. Hybrid Agents

Definition: Combine reactive and deliberative capabilities

Behavior: Fast reactions for urgent situations, planning for complex goals
Architecture: Layered approach with reactive and deliberative layers

Use Cases: Autonomous vehicles, game Al, robotic systems

Example: Customer service agent that handles simple queries reactively but escalates
complex issues to planning layer

4. Learning Agents

Definition: Improve performance through experience
Components: Learning element, performance element, critic, problem generator
Types: Supervised, unsupervised, reinforcement learning
Use Cases: Personalization, adaptation to user preferences
Example: Recommendation agent that learns user preferences over time
Resources:

o Reinforcement Learning: An Introduction

o Multi-Agent Reinforcement Learning

Specialized Agent Types
1. Conversational Agents

Purpose: Natural language interaction with users
Components: NLU, dialogue management, NLG, knowledge base
Patterns: Rule-based, retrieval-based, generative
Technologies: Large Language Models, intent recognition, entity extraction
Resources:

o Conversational Al Guide

o Dialogue Systems Book

2. Task-Oriented Agents

Purpose: Complete specific objectives (booking, scheduling, analysis)
Components: Goal decomposition, task planning, execution monitoring
Patterns: Workflow-based, goal-oriented, constraint satisfaction
Example: Travel booking agent, data analysis agent

Resources:

https://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_software_model
https://aima.cs.berkeley.edu/
http://incompleteideas.net/book/the-book.html
https://www.marl-book.com/
https://rasa.com/docs/rasa/
https://web.stanford.edu/~jurafsky/slp3/24.pdf

o Task-Oriented Dialogue Systems
o Goal-Oriented Al Planning

3. Collaborative Agents

Purpose: Work together to achieve shared or complementary goals

Components: Communication protocols, coordination mechanisms, shared context
Patterns: Leader-follower, peer-to-peer, hierarchical

Example: Software development team with specialist agents

Resources:

o Multi-Agent Systems Book
o Distributed Al Research

4. Monitoring & Control Agents

Purpose: Oversee systems, detect anomalies, maintain operations
Components: Sensors, event processing, alerting, corrective actions
Patterns: Observer, guardian, supervisor

Example: System monitoring agent, security surveillance agent
Resources:

o Autonomous Systems Engineering
o Control Theory for Computer Scientists

2. Core Components
Tool Usage & Function Calling

e Concepts: APl integration, function schemas, error handling
¢ Implementations: OpenAl Functions, Anthropic Tools, Google Function Calling
e Resources:

o OpenAl Function Calling Guide
o TJool Use Best Practices

Memory & Context Management

e Types: Short-term (conversation), long-term (episodic/semantic), working memory
e Techniques: Vector databases, summarization, retrieval-augmented generation
e Resources:

o Memory in LLM Agents
o Vector Database Comparison

Agent Communication

e Patterns: Message passing, shared memory, event-driven

https://arxiv.org/abs/2003.07490
https://planning.wiki/
https://www.masfoundations.org/
https://www.aaai.org/Library/Workshops/ws99-06.php
https://ieeexplore.ieee.org/document/8567627
https://homes.cs.washington.edu/~todorov/papers/TodorovCDC06.pdf
https://platform.openai.com/docs/guides/function-calling
https://docs.anthropic.com/claude/docs/tool-use
https://lilianweng.github.io/posts/2023-06-23-agent/
https://benchmark.vectorview.ai/

e Protocols: REST APIs, message queues, real-time communication
e Resources:

o Agent Communication Languages

o Microservices Patterns

Agent Communication & Coordination
Communication Patterns

Direct Communication: Point-to-point messaging
Broadcast: One-to-many messaging
Publish-Subscribe: Event-driven communication
Blackboard: Shared information space

Coordination Mechanisms

Contract Net Protocol: Task assignment through bidding
Consensus Algorithms: Distributed agreement

Market Mechanisms: Economic coordination
Organizational Hierarchies: Structured coordination

Agent Design Principles
1. Single Responsibility Principle

e Each agent should have one clear purpose or domain of expertise
e Avoid "super agents" that try to do everything
e Enable better testing, maintenance, and reusability

2. Autonomy vs Coordination Balance

e Agents should be autonomous but not isolated
e Design clear interfaces for inter-agent communication
e Establish protocols for conflict resolution

3. Robustness & Fault Tolerance

e Design for graceful degradation when components fail
e Implement retry mechanisms and fallback strategies
e Monitor agent health and performance

https://en.wikipedia.org/wiki/Agent_Communication_Language
https://microservices.io/patterns/

4. Scalability Considerations

e Design agents to handle increasing load
e Consider horizontal scaling patterns
e Minimize shared state and dependencies

Development Frameworks & Tools

Enterprise-Grade Frameworks
Google ADK (Agent Development Kit)

e Strengths: Production-ready, Google ecosystem integration, built-in evaluation
e Use Cases: Enterprise applications, multi-agent systems, scalable deployment
e Resources:

o Official Documentation

o Sample Agents

o Introduction Video

Microsoft Semantic Kernel

e Strengths: .NET/C# focus, enterprise integration, plugin ecosystem
e Use Cases: Microsoft stack integration, enterprise workflows
e Resources:

o Semantic Kernel Docs

o GitHub Repository

Open Source Frameworks
LangChain/LangGraph

e Strengths: Mature ecosystem, extensive integrations, Python/JavaScript
e Use Cases: Rapid prototyping, research, complex workflows
e Resources:

o LangChain Documentation

o LangGraph Guide

o LangChain Academy

CrewAl

e Strengths: Multi-agent focus, role-based design, simple API
e Use Cases: Team-based Al workflows, collaborative agents

https://google.github.io/adk-docs/
https://github.com/google/adk-samples
https://www.youtube.com/watch?v=zgrOwow_uTQ
https://learn.microsoft.com/en-us/semantic-kernel/
https://github.com/microsoft/semantic-kernel
https://python.langchain.com/
https://langchain-ai.github.io/langgraph/
https://academy.langchain.com/

e Resources:
o CrewAl Documentation
o GitHub Repository

AutoGen (Microsoft)

e Strengths: Conversational agents, multi-agent chat, research-oriented
e Use Cases: Research, conversational Al, agent-to-agent communication
e Resources:

o AutoGen Documentation

o Research Papers

Specialized Tools
Agent Evaluation

e Tools: Weights & Biases, MLflow, custom evaluation frameworks
e Metrics: Task success rate, reasoning quality, tool usage efficiency
e Resources:

o Agent Evaluation Guide
o Berkeley Agent Evaluation

Observability & Monitoring

e Tools: LangSmith, Arize, Phoenix, custom logging
e Focus: Agent behavior tracking, performance monitoring, debugging
e Resources:

o LangSmith Tracing

o MLOps for Agents

Implementation Pathways

Learning Path 1: Research & Experimentation
Timeline: 2-3 months

Week 1-2: LLM fundamentals + prompting techniques
Week 3-4: Simple ReAct agents with LangChain
Week 5-6: Tool integration and function calling

Week 7-8: Multi-agent experiments with CrewAl
Week 9-12: Custom research project

abrwbd-~

Learning Path 2: Enterprise Development

https://docs.crewai.com/
https://github.com/joaomdmoura/crewai
https://microsoft.github.io/autogen/
https://arxiv.org/search/?query=autogen&searchtype=all
https://wandb.ai/site/articles/evaluating-llm-agents
https://github.com/berkeley-function-call-leaderboard/bfcl
https://docs.smith.langchain.com/
https://neptune.ai/blog/mlops-for-llm-agents

Timeline: 3-4 months

Month 1: Foundations + Google ADK basics
Month 2: Production patterns + deployment
Month 3: Security, evaluation, and monitoring
Month 4: Real-world project implementation

o=

Learning Path 3: Academic Research
Timeline: 6+ months

1. Months 1-2: Deep theory (papers, algorithms)
2. Months 3-4: Novel architecture experimentation
3. Months 5-6: Research project + publication

Advanced Topics

1. Agent Safety & Alignhment

e Concepts: Constitutional Al, red teaming, robustness testing
e Resources:

o Anthropic Safety Research
o Al Safety Fundamentals

2. Scalable Agent Systems

e Concepts: Distributed systems, load balancing, fault tolerance
e Resources:

o Designing Data-Intensive Applications

o Microservices Architecture

3. Agent Learning & Adaptation

e Concepts: Reinforcement learning, online learning, meta-learning
e Resources:

o RLfor LLMs

o Meta-Learning Survey

4. Human-Agent Interaction

e Concepts: Ul/UX for agents, human-in-the-loop, explainability
e Resources:

https://www.anthropic.com/research
https://www.aisafetyfundamentals.com/
https://dataintensive.net/
https://microservices.io/
https://huggingface.co/blog/rlhf
https://arxiv.org/abs/2004.05439

o HAI Research
o Explainable Al Guide

Industry Applications

Current Success Stories

Customer Service: Automated support agents

Software Development: Code generation and review agents
Data Analysis: Autonomous data scientists

Content Creation: Multi-modal content agents

Research: Literature review and synthesis agents

Emerging Applications

e Scientific Discovery: Lab automation, hypothesis generation
e Financial Services: Trading, risk assessment, compliance

e Healthcare: Diagnostic assistance, treatment planning

e Education: Personalized tutoring, curriculum design

Learning Path Recommendations

For Beginners (No Al Background)

Start with Machine Learning Crash Course
Learn Python programming fundamentals
Understand LLMs through LLM University
Build simple agents with LangChain tutorials
Experiment with Google ADK quickstart

abrowbd~

For ML Engineers

Study agent architectures (ReAct, planning)
Learn LangChain/LangGraph deeply
Explore Google ADK for production use
Focus on evaluation and monitoring

Build multi-agent systems

abrowbd -~

For Software Engineers

https://hai.stanford.edu/
https://christophm.github.io/interpretable-ml-book/
https://developers.google.com/machine-learning/crash-course
https://docs.cohere.com/docs/llmu

Understand LLM APIs and prompting

Learn agent frameworks (ADK, Semantic Kernel)
Focus on system design and scalability

Study deployment patterns

Implement production-ready solutions

akrwbd-~

For Researchers

Read foundational papers on agent architectures
Experiment with novel approaches

Use research-oriented tools (AutoGen)
Contribute to open-source frameworks

Publish novel findings

akrwbd-~

Next Steps

Choose your learning path based on your background and goals, then start with the
foundational resources. Remember that agentic Al is a rapidly evolving field - stay connected
with the community through conferences, papers, and open-source contributions.

Key Communities:

r/Machinelearning

Al Safety Discord

LangChain Discord

Twitter Al Research Community

https://reddit.com/r/MachineLearning
https://discord.gg/aisafety
https://discord.gg/langchain
https://twitter.com/search?q=%23AIResearch

Project

Travel Concierge & Rental Car Agents -
ADK Project Guide

Project Overview

Build a multi-agent system using Google ADK that helps users plan trips by coordinating
between a Travel Concierge Agent and a Rental Car Agent. This project demonstrates key
agentic Al concepts including multi-agent coordination, tool usage, and workflow orchestration.

Key Project Highlights:

Multi-Agent Architecture

e Travel Concierge Agent: Coordinator that handles overall trip planning
e Rental Car Agent: Specialized agent for vehicle bookings
e Clear separation of concerns with agent-to-agent communication

Progressive Learning Structure

Phase 1: Foundation setup with basic tools

Phase 2: Specialized agents and communication
Phase 3: Workflow orchestration and integration
Phase 4: Real API integration and production features

ADK Concept Coverage

Tool Usage: Weather, flight search, car availability tools

Agent Communication: Message passing between agents
Workflow Orchestration: Sequential and parallel task execution
Context Management: Shared state across agents

Error Handling: Retry policies and graceful failures

Real-World Application

e Practical APIs: Amadeus, Skyscanner, Booking.com integration
e Production Patterns: Error handling, retries, monitoring
e Deployment Options: Local, Google Cloud, Vertex Al

Extension Opportunities

e MCP Integration: Secure tool access patterns
e Advanced Coordination: Auction-based car selection
e Machine Learning: User preference learning

The project starts simple (mock data, basic agents) and gradually adds complexity, making it
perfect for learning ADK while building something genuinely useful. Each phase has clear
deliverables and builds upon previous work.

System Architecture

None
User Request - Travel Concierge Agent (Coordinator)
!
— Flight Search Tool
- Hotel Search Tool
- Weather Tool
L— Rental Car Agent
!
— Car Availability Tool
- Pricing Tool
L— Booking Tool

Learning Objectives

Multi-Agent Coordination: Agent-to-agent communication and task delegation
Tool Integration: External API usage and custom tool creation

Workflow Orchestration: Sequential and parallel task execution

Context Management: Sharing information between agents

Error Handling: Graceful failure and recovery patterns

Project Phases

Phase 1: Foundation Setup (Week 1)

Goals

e Set up ADK development environment
e Create basic agent structure
e Implement simple tool integration

Tasks

1.1 Environment Setup

Shel

Create and activate conda environment
conda create -n travel-agents python=3.11
conda activate travel-agents

Install core dependencies
pip install google-adk
pip install requests python-dotenv pytest

For development and testing
pip install black flake8 mypy jupyter

Set up project structure

mkdir travel-agents

cd travel-agents

mkdir agents tools tests config data notebooks

Create environment configuration
touch .env
echo "travel-agents" > environment.yml

Initialize git repository
git init
touch .gitignore

1.2 Create Environment Configuration
None

environment.yml
name: travel-agents

channels:
- conda-forge
- defaults
dependencies:
- python=3.11
- pip
- pip:
- google-adk
- requests
- python-dotenv
- pytest
- black
- flake8
- mypy
- jupyter
- amadeus
- openai

1.3 Environment Variables Setup

Shell

.env file
GOOGLE_APPLICATION_CREDENTIALS="path/to/your/credentials.json"
AMADEUS_API_KEY="your_amadeus_api_key"
AMADEUS_API_SECRET="your_amadeus_api_secret”
OPENWEATHER_API_KEY="your_openweather_api_key"
GEMINI_API_KEY="your_gemini_api_key"

Development settings

DEBUG=True
LOG_LEVEL=INFO

1.4 Git Configuration

Shell

.gitignore
__pycache__/

* . py[cod]
*Spy.class

*.S0

.Python

env/

venv/

ENV/

.env

.venv
pip-log.txt
pip-delete-this-directory.txt
.pytest_cache/
.coverage
htmlcov/

.idea/

.vscode/

*.log
credentials. json
config/secrets.yaml

1.2 Create Travel Concierge Agent

Python

agents/travel_concierge.py
from adk import Agent, LlmAgent
from adk.tools import Tool

class TravelConciergeAgent(L1lmAgent):
def __init__(self):
super().__init__(
name="travel_concierge"”,
description="Coordinates travel planning and rental
car booking",

model="gemini-pro"

)

self.tools = [
WeatherTool(),
FlightSearchTool(),
HotelSearchTool()

def process_request(self, user_request):
Parse travel requirements
Coordinate with rental car agent if needed
Return comprehensive travel plan
pass

1.3 Create Basic Weather Tool

Python

tools/weather_tool.py
from adk.tools import Tool
import requests

class WeatherTool(Tool):
def __init__(self):
super().__init__(
name="get_weather",
description="Get weather forecast for a destination",
schema={
"type": "object",
"properties": {
"location": {"type": "string"},
"dates": {"type": "array", "items": {"type":
"string"}}
}

"required": ["location", "dates"]

def execute(self, location, dates):
Call weather API (OpenWeatherMap, etc.)
Return formatted weather data
pass

Deliverable

e Basic agent that can respond to travel queries
e Working weather tool integration
e Simple test cases

Phase 2: Rental Car Agent (Week 2)

Goals

e Create specialized rental car agent
e Implement car search and availability tools
e Establish agent-to-agent communication

Tasks

2.1 Rental Car Agent

Python

agents/rental_car_agent.py
from adk import LlmAgent
from adk.tools import Tool

class RentalCarAgent(L1lmAgent):
def __init__(self):
super().__init__(
name="rental_car_agent",
description="Handles rental car search, pricing, and
booking",
model="gemini-pro"

self.tools = [
CarAvailabilityTool(),
CarPricingTool(),
CarBookingTool()

def search_cars(self, pickup_location, return_location,
dates, preferences):
Search available rental cars
Compare prices across providers
Return ranked options
pass

2.2 Car Availability Tool

Python
tools/car_tools.py
class CarAvailabilityTool(Tool):
def __init__(self):
super().__init__(
name="search_rental_cars",
description="Search for available rental cars",
schema={
"type": "object",
"properties": {
"pickup_location": {"type": "string"},
"return_location": {"type": "string"},
"pickup_date": {"type": "string"},
"return_date": {"type": "string"},

"car_type": {"type": "string", "enum":
["economy", "compact", "midsize", "fullsize", "luxury", "suv"']}
Vo
"required": ["pickup_location",
"return_location", "pickup_date", "return_date"]

}

def execute(self, **kwargs):
Mock data for development

return {
"cars": [

{
"provider": "Hertz",
"model”: "Toyota Corolla",
"type": "economy",
"daily_rate": 45.99,
“total_cost": 183.96,
"availability": True

o

Add more mock cars

2.3 Agent Communication

Python
Communication between agents
from adk.messaging import AgentMessage

class TravelConciergeAgent(L1lmAgent):
def coordinate_rental_car(self, travel_details):

Send request to rental car agent

message = AgentMessage(
to="rental_car_agent",
action="search_cars",
data=travel_details

)

response = self.send_message(message)

return response

Deliverable

e Working rental car agent with mock data
e Agent-to-agent communication
e Car search and pricing functionality

Phase 3: Integration & Workflows (Week 3)

Goals

e Implement ADK workflow orchestration
e Create end-to-end travel planning
e Add parallel task execution

Tasks

3.1 Workflow Orchestration

Python
workflows/travel_planning_workflow.py
from adk.workflows import SequentialWorkflow, ParallelWorkflow

class TravelPlanningWorkflow(SequentialWorkflow) :
def __init__(self):
super().__init__(
name="travel_planning",
agents=[
("parse_request”, "travel_concierge"),
("parallel_search", ParallelWorkflow([
("search_flights", "travel_concierge"),
("search_hotels", "travel_concierge"),
("search_cars", "rental_car_agent")

1)),

("compile_plan", "travel_concierge")

3.2 Context Sharing

Python
shared/context.py

from adk.context import SharedContext

class TravelContext(SharedContext):
def __init__(self):

super().__init__()
self.destination = None
self.dates = None
self.preferences = {}
self.flight_options =
self.hotel_options =
self.car_options = []

[]
[]

def update_context(self, key, value):
setattr(self, key, value)
self.notify_agents(key, value)

3.3 End-to-End Integration

Python

main.py

from adk import AgentSystem

from agents.travel_concierge import TravelConciergeAgent
from agents.rental_car_agent import RentalCarAgent

from workflows.travel_planning_workflow import
TravelPlanningWorkflow

def main():
Initialize agent system
system = AgentSystem()

Register agents
system.register_agent(TravelConciergeAgent())

system.register_agent(RentalCarAgent())

Register workflow

system.register_workflow(TravelPlanningWorkflow())

Handle user request

user_request = "Plan a 3-day trip to San Francisco from
December 15-18, need a rental car”

result = system.execute_workflow("travel_planning",
user_request)

print(result)

if __name__ == "__main__":
main()
Deliverable

e Complete workflow orchestration
e Parallel task execution
e Shared context between agents

Phase 4: Real API Integration (Week 4)
Goals

e Replace mock data with real APls
e Implement error handling and retries
e Add booking capabilities

Suggested APls
Travel APls

Amadeus API: Flight and hotel search
Skyscanner API: Flight comparison
Booking.com API: Hotel availability
OpenWeatherMap: Weather data

Rental Car APIs

e Kayak API: Car rental aggregation
e Hertz API: Direct integration
e Enterprise API: Fleet management

e Priceline API: Multi-provider search

4.1 Real API Integration

Python

tools/amadeus_tools.py
import amadeus

class FlightSearchTool(Tool):
def __init__(self):
super().__init__(name="search_flights", ...)
self.amadeus = amadeus.Client(
client_id='YOUR_API_KEY"',
client_secret='YOUR_API_SECRET'

def execute(self, origin, destination, departure_date,
return_date=None) :
try:
response =
self.amadeus.shopping.flight_offers_search.get(
originLocationCode=origin,
destinationLocationCode=destination,
departureDate=departure_date,
returnDate=return_date,
adults=1
)
return self.format_flight_results(response.data)
except Exception as e:
return self.handle_error(e)

4.2 Error Handling & Retries

Python
utils/error_handling.py

from adk.utils import RetryPolicy
import time

class APIErrorHandler:
def __init__(self, max_retries=3, backoff_factor=2):
self.max_retries = max_retries
self.backoff_factor = backoff_factor

def execute_with_retry(self, func, *args, **kwargs):
for attempt in range(self.max_retries):

try:
return func(*args, **kwargs)

except Exception as e:
if attempt == self.max_retries - 1:

raise e

wait_time = self.backoff_factor ** attempt
time.sleep(wait_time)

Deliverable

e Real APl integrations
e Robust error handling
e Production-ready code

Advanced Extensions

Option 1: MCP Integration

Add Model Context Protocol for secure tool access:

Python

mcp/travel_mcp_server.py
from mcp import Server
from mcp.types import Tool

class TravelMCPServer(Server):

def __init__(self):
super().__init__("travel-tools")
self.register_tools(|
self.create_booking_tool(),
self.create_calendar_tool()

1)

def create_booking_tool(self):
return Tool(
name="book_travel",
description="Book confirmed travel arrangements",
input_schema={...}

Option 2: Advanced Multi-Agent Patterns

Implement sophisticated coordination:

Python

patterns/auction_pattern.py
class CarRentalAuction:
def __init__(self):
self.participants = [] # Multiple rental car agents

def conduct_auction(self, requirements):
bids = []
for agent in self.participants:
bid = agent.submit_bid(requirements)
bids.append(bid)

return self.select_winner(bids)

Option 3: Learning & Personalization

Add user preference learning:

Python
learning/preference_engine.py
class UserPreferenceEngine:
def __init__(self):
self.user_profiles = {}

def learn_from_booking(self, user_id, booking_details):
Update user preferences based on bookings
Use for future recommendations
pass

Evaluation & Testing

Unit Tests

Python

tests/test_rental_car_agent.py

import unittest

from agents.rental_car_agent import RentalCarAgent

class TestRentalCarAgent(unittest.TestCase):
def setUp(self):
self.agent = RentalCarAgent()

def test_car_search(self):

result = self.agent.search_cars(
pickup_location="SF0",
return_location="SF0",
dates=["2024-12-15", "2024-12-18"],
preferences={"type": "economy"}

)

self.assertIsNotNone(result)

self.assertIn("cars", result)

Integration Tests

Python
tests/test_workflow_integration.py
def test_end_to_end_travel_planning():
system = AgentSystem()
Test complete workflow
result = system.execute_workflow(
"travel_planning",
"Plan trip to NYC Dec 20-23"
)
assert "flights" in result
assert "hotels" in result
assert "rental_cars" in result

Performance Evaluation

Response time metrics

API call efficiency

User satisfaction scores

Agent coordination effectiveness

Deployment Options

Local Development

Shell
Run locally
python main.py

Google Cloud Deployment

None
cloudbuild.yaml
steps:
- name: 'gcr.io/cloud-builders/docker’
args: ['build', '-t', 'gcr.io/project/travel-agents’,

']

- name: 'gcr.io/cloud-builders/docker"’
args: ['push', 'gcr.io/project/travel-agents']

Vertex Al Agent Engine

Python
deploy/vertex_ai.py
from google.cloud import aiplatform

def deploy_to_vertex():
aiplatform.init(project="your-project")

endpoint = aiplatform.Endpoint.create(
display_name="travel-agents"

model = aiplatform.Model.upload(
display_name="travel-concierge",
artifact_uri="gs://bucket/model"

Success Metrics

Technical Metrics
e Response Time: < 10 seconds for complete travel plan

e API Success Rate: > 95% for all external API calls
e Agent Coordination: Successful task delegation in > 90% of cases

User Experience Metrics
e Plan Completeness: All requested components included

e Relevance Score: User satisfaction with recommendations
e Booking Success: Percentage of plans that lead to actual bookings

Learning Outcomes

Understanding multi-agent coordination
Experience with real API integrations
Knowledge of workflow orchestration
Familiarity with ADK production patterns

Next Steps

Start with Phase 1 - Get basic agents working

Iterate Quickly - Add one feature at a time

Test Thoroughly - Both unit and integration tests

Document Everything - Keep track of lessons learned
Extend Gradually - Add advanced features once basics work

abrwbd-~

This project provides hands-on experience with all key ADK concepts while building something
practical and extensible. The phased approach ensures steady progress and learning
milestones.

	Basics
	Agentic AI Development - Complete Learning Resources
	Table of Contents
	
	Books
	What are Agents?
	Core Agent Characteristics
	Autonomy
	Reactivity
	Proactivity
	Social Ability
	Agent Tools, MCP & Agent-to-Agent Communication
	1. Agent Tools Ecosystem
	Core Tool Categories
	Tool Development Best Practices

	2. Model Context Protocol (MCP)
	What is MCP?
	Key Components
	MCP Implementation

	3. Agent-to-Agent (A2A) Communication
	Communication Patterns
	A2A Protocols & Standards
	Multi-Agent Coordination
	Implementation Frameworks

	4. Integration Patterns
	Tool Chaining
	Context Sharing
	Security & Governance
	Monitoring & Observability

	5. Advanced Integration Scenarios
	Enterprise Integration
	Cloud-Native Patterns
	Real-Time Systems

	Resources for Tools, MCP & A2A

	The Agentic AI Landscape
	What is Agentic AI?
	The Evolution Timeline
	Why Agentic AI Matters Now

	Foundational Knowledge
	Essential Prerequisites
	1. Machine Learning Fundamentals
	2. Large Language Models (LLMs)
	3. Programming & Software Engineering

	Core Concepts & Architectures
	1. Agent Architectures
	Agent Architectures & Classifications
	1. Reactive Agents
	2. Deliberative (Planning) Agents
	3. Hybrid Agents
	4. Learning Agents

	Specialized Agent Types
	1. Conversational Agents
	2. Task-Oriented Agents
	3. Collaborative Agents
	4. Monitoring & Control Agents

	2. Core Components
	Tool Usage & Function Calling
	Memory & Context Management
	Agent Communication
	Agent Communication & Coordination
	
	
	Agent Design Principles

	Development Frameworks & Tools
	Enterprise-Grade Frameworks
	Google ADK (Agent Development Kit)
	Microsoft Semantic Kernel

	Open Source Frameworks
	LangChain/LangGraph
	CrewAI
	AutoGen (Microsoft)

	Specialized Tools
	Agent Evaluation
	Observability & Monitoring

	Implementation Pathways
	Learning Path 1: Research & Experimentation
	Learning Path 2: Enterprise Development
	Learning Path 3: Academic Research

	Advanced Topics
	1. Agent Safety & Alignment
	2. Scalable Agent Systems
	3. Agent Learning & Adaptation
	4. Human-Agent Interaction

	Industry Applications
	Current Success Stories
	Emerging Applications

	Learning Path Recommendations
	For Beginners (No AI Background)
	For ML Engineers
	For Software Engineers
	For Researchers

	Next Steps

	Project
	Travel Concierge & Rental Car Agents - ADK Project Guide
	Project Overview
	Key Project Highlights:
	System Architecture
	Learning Objectives
	Project Phases
	Phase 1: Foundation Setup (Week 1)
	Goals
	Tasks
	Deliverable

	Phase 2: Rental Car Agent (Week 2)
	Goals
	Tasks
	Deliverable

	Phase 3: Integration & Workflows (Week 3)
	Goals
	Tasks
	Deliverable

	Phase 4: Real API Integration (Week 4)
	Goals
	Suggested APIs
	Deliverable

	Advanced Extensions
	Option 1: MCP Integration
	Option 2: Advanced Multi-Agent Patterns
	Option 3: Learning & Personalization

	Evaluation & Testing
	Unit Tests
	Integration Tests
	Performance Evaluation

	Deployment Options
	Local Development
	Google Cloud Deployment
	Vertex AI Agent Engine

	Success Metrics
	Technical Metrics
	User Experience Metrics
	Learning Outcomes

	Next Steps

