Design “Class” Diagram

See diagram here on Miro

Major Components

ErailManagor
Accesses DB Tables
DBManager

h | — react-
oauth/google.GoogleLogin
(Component)

Notifications
(ViewController)

M e — w1 +

(View an enlarged version on Miro)

The diagram shows the relationship between components, page components, API route handlers,
and the DBManager singleton within UMaine Together. Standard components are functional
React components which typically display application data that has been passed as props. Page
components are special React components used by the NextJS framework to define individual
pages within the broader web application. Page Components are able to fetch data using the
getServerSideProps method. This method will be executed during server rendering on initial
page load, or it will be executed by an API request (and serialized) during client-side page
transitions. These different use cases are handled by NextJS automatically. API route handlers
are also run by the NextJS framework in response to HTTP requests under the /api/ path. All API
routes make requests to the database using DBManager, receive properties using an HTTP post
with a JSON-encoded body, and return data also using JSON serialization.

https://miro.com/app/board/uXjVNaxNYCA=/?share_link_id=142184382650

The DBManager is visible in the center of the diagram. It implements a number of asynchronous
methods which wrap around PostgreSQL queries (see the Database Tables section below). Only
one instance of the DBManager will be created per instance of the UMaine Together server. It is
lazily initialized by the first user of the getDbContext function, which will typically be a
getServerSideProps method on one of the main pages. One important DBManager method is
getUserSession, which checks for a session cookie present in requests to either an API handler or
a getServerSideProps on a page. All page components or API handlers which make database
requests have an arrow on the diagram connecting to the DBManager.

The other major server-side component is the EmailManager class. This class is also lazily
instantiated as a singleton. It is in charge of sending email via SMTP for the invite and check-in
functionality of UMaine Together. It implements a number of asynchronous methods for sending
mail. So far, this component is only accessed by the handler for the /sendinvite route. However,
the class can also be instantiated in “test mode”, in which case the backend will only write
messages to an in-memory queue instead of over an SMTP connection. This allows automated
testing of components that use the manager.

Database Tables

Postgres Tables

invites (Table) Users (Table) Sessions (Table)

local resources (Table) daily_words (Table)

Attributes

The state of UMaine Together is stored in a PostgreSQL database. This schema of this database
marks the ultimate interface between the server code and the actual data. The individual tables
are represented as the components in this part of the diagram. The attributes represent columns in
the database, with a simplified version of the SQL types (in particular, varchar and text fields
have both been labeled “string”). In the actual application, most of the code calls methods on the
“DBManager” object, a wrapper over the database. This wrapper allows the database to
potentially be given a new schema in the future, or even changed out for a different provider.

Several of the tables reference each other using foreign keys. For instance, the invites table,
which tracks email invites sent to potential users, uses the “creator” field and a foreign key to
reference the user who originally created the invite. The foreign key relationships are shown by
the arrows in the diagram. Many of the tables also use a “created at” field, which is
automatically given a value of the current time by Postgres.

Design Patterns

UMaine Together uses the Adapter pattern to facilitate loading data into the views. The
DBManager singleton handles access to a variety of database tables. In order to query a table, the
particulate structure, including the column names, must be known. However, from Typescript
classes, it is more convenient to work with defined types. The DBManager handles the
translation by providing a series of methods that wrap SQL queries.

The class diagram excerpt below shows a number of connections from page components and api
handlers to the DBManager. The manager makes at least one corresponding SQL request for
each method call, although this is not shown in the diagram. See the Miro board for a more
complete version.

ler)

ntroller)

|- tmanagort: nodemsiler. Transpure

Methods
+ const ructox{testhode: boolean}: EmailManager
+ wezidyl]: Promiscevaids

+ sendInestensil
Tecigient: string, cantent: string
Prosisecstrings

Accesses DB Tables

DBManager
kttributes

DashboardPage (ViewController)

Props:

- neme: strin

- hassession: boolean
- curfuote: string

- getserversiderzops()

| ¢ s (sessiun cookie: strig]

- connection: postgres.SQL

[wethate I
+ getUserlenail: string): Frowise<tbser | nalls
+ aFtusestafolid: nuaber: Frovisestbiser | mlls
+ nenusecinane: string, erail: string):

.

momiscstrings

Frosisecunit>

+ removesllusersessionsivid: mrber):
Frosisecunit>

+ getLocalmmsnyzces () Frosicecocaleesauzcel s

+ getRecentinvites (recigient: stad
Frosisecinvite[]>

+ pentnvite(zecipient: string, creator: nusber}
Frosisecunit>

- firstlegin: baolean

=sion: string

- werifyescglecredential (crad: string):
Promises<GongleldentityInfor

LoginPage (ViewController)
Prope:

- clienttd: string

state

- privatevar: type

ViewDldQuotes(ViewContreoller)

Props:

bealean

Local Resource(Component)

Praps:

- neme: string

- inmg_path: string

- description: string

- extended_description: string

stats
- shom: boolean

Local Resource
Fage (ViewController)

type
(if state is possed don via props)

+ publicver: type
(if setter is passed domn to child
components or functions)

+ HnishLogin{token: string) =

Promize<LoginResponses

+ onErzor: (error: string) =» void
+ onSuccess: {token: string) =» veid

=zetshon{falze)
- handleshon: setshow(true)

s
- hassession: baolean

- getServersidepropsl)

	Design “Class” Diagram
	Major Components
	Database Tables
	Design Patterns

