
Design “Class” Diagram 
See diagram here on Miro 

Major Components 

 
(View an enlarged version on Miro) 
 
The diagram shows the relationship between components, page components, API route handlers, 
and the DBManager singleton within UMaine Together. Standard components are functional 
React components which typically display application data that has been passed as props. Page 
components are special React components used by the NextJS framework to define individual 
pages within the broader web application. Page Components are able to fetch data using the 
getServerSideProps method. This method will be executed during server rendering on initial 
page load, or it will be executed by an API request (and serialized) during client-side page 
transitions. These different use cases are handled by NextJS automatically. API route handlers 
are also run by the NextJS framework in response to HTTP requests under the /api/ path. All API 
routes make requests to the database using DBManager, receive properties using an HTTP post 
with a JSON-encoded body, and return data also using JSON serialization. 
 

https://miro.com/app/board/uXjVNaxNYCA=/?share_link_id=142184382650


The DBManager is visible in the center of the diagram. It implements a number of asynchronous 
methods which wrap around PostgreSQL queries (see the Database Tables section below). Only 
one instance of the DBManager will be created per instance of the UMaine Together server. It is 
lazily initialized by the first user of the getDbContext function, which will typically be a 
getServerSideProps method on one of the main pages. One important DBManager method is 
getUserSession, which checks for a session cookie present in requests to either an API handler or 
a getServerSideProps on a page. All page components or API handlers which make database 
requests have an arrow on the diagram connecting to the DBManager. 
 
The other major server-side component is the EmailManager class. This class is also lazily 
instantiated as a singleton. It is in charge of sending email via SMTP for the invite and check-in 
functionality of UMaine Together. It implements a number of asynchronous methods for sending 
mail. So far, this component is only accessed by the handler for the /sendinvite route. However, 
the class can also be instantiated in “test mode”, in which case the backend will only write 
messages to an in-memory queue instead of over an SMTP connection. This allows automated 
testing of components that use the manager. 
 

Database Tables 

 
 
The state of UMaine Together is stored in a PostgreSQL database. This schema of this database 
marks the ultimate interface between the server code and the actual data. The individual tables 
are represented as the components in this part of the diagram. The attributes represent columns in 
the database, with a simplified version of the SQL types (in particular, varchar and text fields 
have both been labeled “string”). In the actual application, most of the code calls methods on the 
“DBManager” object, a wrapper over the database. This wrapper allows the database to 
potentially be given a new schema in the future, or even changed out for a different provider. 



 
Several of the tables reference each other using foreign keys. For instance, the invites table, 
which tracks email invites sent to potential users, uses the “creator” field and a foreign key to 
reference the user who originally created the invite. The foreign key relationships are shown by 
the arrows in the diagram. Many of the tables also use a “created_at” field, which is 
automatically given a value of the current time by Postgres. 
 

Design Patterns 

 
UMaine Together uses the Adapter pattern to facilitate loading data into the views. The 
DBManager singleton handles access to a variety of database tables. In order to query a table, the 
particulate structure, including the column names, must be known. However, from Typescript 
classes, it is more convenient to work with defined types. The DBManager handles the 
translation by providing a series of methods that wrap SQL queries. 
 
The class diagram excerpt below shows a number of connections from page components and api 
handlers to the DBManager. The manager makes at least one corresponding SQL request for 
each method call, although this is not shown in the diagram. See the Miro board for a more 
complete version. 
 



 


	Design “Class” Diagram 
	Major Components 
	Database Tables 
	Design Patterns 


