
Ionic 3 Lazy Loading

Ionic 3.0.0 introduces some optional changes to the file structure of your application in order to
speed up your application. To get started with lazy loading in Ionic see the steps to upgrade
section below.

Please create an issue on the Ionic repository if you find any problems using lazy loading or
upgrading: https://github.com/driftyco/ionic/issues

Steps to Upgrade to Ionic 3
Follow the steps to upgrade under the 3.0.0 release:
https://github.com/driftyco/ionic/blob/master/CHANGELOG.md#300-2017-04-05

Lazy Loading Steps
This will improve your applications startup time, reduce the bundle size, and easily set
up Ionic routing.

Important: the following steps will override any `DeepLinkConfig` defined in the
`IonicModule.forRoot`. You should remove this config in favor of setting the config in the
`IonicPage` decorator of each individual page.

Let's take an app based on the blank starter template:

Right now, our `app.module.ts` file has `HomePage` imported and declared in the
`declarations` as well as the `entryComponents`

``` 
@NgModule({ 
  declarations: [ 
    MyApp, 
    HomePage 
  ], 
  --- 
  entryComponents: [ 
    MyApp, 
    HomePage 

https://github.com/driftyco/ionic/issues
https://github.com/driftyco/ionic/blob/master/CHANGELOG.md#300-2017-04-05


  ], 
  --- 
}) 
 
``` 

The goal is to reduce this so we're only loading the main `app.component.ts`, and
lazy-loading the HomePage component everywhere else.

So we'll remove `HomePage` from the declarations, entryComponents, and remove the
import statement as well.

In our `src/pages/home` directory, we should have something close to this.

``` 
└home 
 ├─ home.html 
 ├─ home.scss 
 └─ home.ts 
``` 

What we'll want to do is create a new file here, called `home.module.ts`, similar to our
`app.module.ts`

``` 
//home.module.ts 
import { NgModule } from '@angular/core'; 
import { HomePage} from './home’; 
import { IonicPageModule } from 'ionic-angular'; 
 
@NgModule({ 
  declarations: [HomePage], 
  imports: [IonicPageModule.forChild(HomePage)], 
}) 
export class HomePageModule { } 
``` 

Now, in our `home.ts` file, we can add the `@IonicPage` decorator to the HomePage
class


``` 
import { Component } from '@angular/core'; 



import { IonicPage } from 'ionic-angular'; 
 
@IonicPage() 
@Component({ 
    --- 
}) 
export class HomePage { 
``` 
Now the last bit of plumbing we'll need to do is back in our `app.component.ts`.

Since our HomePage component is now lazy loaded, we do not want to import it directly
and reference it anywhere. Instead, we can pass a string that matches up with the
component.

So This:

``` 
import { HomePage } from '../pages/home/home'; 
@Component({ 
  templateUrl: 'app.html' 
}) 
export class MyApp { 
  rootPage:any = HomePage; 
``` 

Would become:

``` 
@Component({ 
  templateUrl: 'app.html' 
}) 
export class MyApp { 
  rootPage:any = 'HomePage'; 
 
``` 

During the build process, the deeplinks for the HomePage component will be generated
that know how to handle that string.
The string is actually a reference to the `name` property of the `@IonicPage` decorator,
which defaults to the class name as a string. If we change that name property to
something else, we'll also need to update the reference we use elsewhere


``` 
//home.ts 
import { Component } from '@angular/core'; 
import { IonicPage } from 'ionic-angular'; 
 
@IonicPage({ 
  name: 'home' 
}) 
@Component({ 
    --- 
}) 
export class HomePage { 
 
 
// app.component.ts 
export class MyApp { 
  rootPage:any = 'home'; 
 
``` 


The `IonicPage` decorator supports several fields and options for passing data. Please
review the documentation for more information:
http://ionicframework.com/docs/v2/nightly/api/navigation/IonicPage/

This same concept can and should be applied to pages presented using the Modal or
Popover components, since they are just Components.

Handling Components/Providers/Pipes

The changes above are geared towards pages in your apps, that is, full screen UI that users
can navigate to. An app may also contain custom components for widgets, pipes, or providers
that can load data. We suggest the following pattern for a more straightforward approach to load
the additional pieces.

Components
One module that imports all component classes, no individual modules for each component
components/

●​ components.module.ts (ComponentsModule)

http://ionicframework.com/docs/v2/nightly/api/navigation/IonicPage/

○​ imports and exports all components the user creates
●​ component1/

○​ component1.ts
○​ component1.html

●​ component2/

○​ component2.ts
○​ component2.html

Creating a page using generators automatically imports ComponentsModule

Pipes
One module that imports all pipe classes, no individual modules for each pipe
pipes/

●​ pipes.module.ts (PipesModule)
○​ imports and exports all pipes the user creates

●​ pipe1.ts
●​ pipe2.ts

Providers
No NgModule for providers, import each provider in main app NgModule
providers/

●​ provider1.ts
●​ provider2.ts

A lot of this work will be handled by the Ionic generators, so it will be automatic for the most part. If
a developer wanted to modify this for more fine-grained control, the can do so without any issues.
But things setup provides people with a very straightforward and easy path.

	Ionic 3 Lazy Loading
	Steps to Upgrade to Ionic 3
	Lazy Loading Steps
	Handling Components/Providers/Pipes
	Components
	
	Pipes
	
	Providers

