
LINKED-LIST and their Applications

Section 1

I.​ Maintaining Sorted Linked-List.
II.​ Implementing Doubly Linked-List.
III.​ Write a function in the LinkedList class Reverse(): which should reverse the singly linked list.
IV.​ Reversing a Doubly linked-list: Now write the REVERSE function in doubly LinkedList.
V.​ BubbleSort of LinkedList

Section 2​

CRACKING THE CODE INTERVIEW BOOK (for all these problems you should use STL-library), we
will start again on these problems on MONDAY.

1.​ Write code to remove duplicates from an unsorted linked list.​
​
FOLLOW UP: ​
How would you solve this problem if a temporary buffer is not allowed?​

2.​ Implement an algorithm to find the nth to last element of a singly linked list.​

3.​ Implement an algorithm to delete a node in the middle of a single linked list, given only access
to that node.​
EXAMPLE​
Input: the node ‘c’ from the linked list a->b->c->d->e​
Result: nothing is returned, but the new linked list looks like a->b->d->e​

4.​ You have two numbers represented by a linked list, where each node contains a single digit. The
digits are stored in reverse order, such that the 1’s digit is at the head of the list. Write a function
that adds the two numbers and returns the sum as a linked list.​
EXAMPLE​
Input: (3 -> 1 -> 9 -> 9) + (5 -> 9 -> 2)​
Output: 8 -> 0 -> 2 -> 0 -> 1​

5.​ Given a circular linked list, implement an algorithm which returns a node at the beginning of the
loop.​
DEFINITION​
Circular linked list: A (corrupt) linked list in which a node’s next pointer points to an earlier
node, so as to make a loop in the linked list.​
EXAMPLE​ input: A -> B -> C -> D -> E -> C [the same C as earlier]​ ​ output: C

NOTE: EVERY QUESTION’s derivation of Time Complexity is MUST. 25% credit is writing and explaining about your
algorithm’s Time complexity (in comments section of the code).

