Ad hoc Metrics Based on Generic Trace
Collection

wanaxianzhu@chromium.org

This document is public.

Note that “ad hoc metrics” here has nothing to do with “ad hoc
measurements” in telemetry documentation.

Use Cases

Sometimes we want to measure some ad hoc metrics. We want this to capture metrics similar to
what real-world users would encounter, but can accept running the analysis on initial page loads
of the top 10,000 pages. We need the result to be available quickly, and often run it just once or
a few times, so we want to get the result with minimal coding which may be dirty,
non-performant and not suitable for landing in the Chromium code base, and we don’t want to
write a permanent benchmark or add a permanent UMA.

Examples:

e To measure how often a situation happens in the real world, for trade-off decisions.
Based on the result we can optimize the most frequently happening situations while
accepting certain possible regressions in rarer cases

o How often is a LayoutObject’s background obscured? Based on the answer we
can decide whether the background obscuration optimization is worth the
complexity.

e To measure effectiveness of algorithms and data structures

o How many render surfaces are created with a new render surface creation
algorithm?

o How many LayoutBoxes have rare_data_? What are the reasons that we create
them?

How to use

Prepare with trace events

We can skip this step if we already have trace events for the desired metrics in the supported
format. Otherwise we add trace events. Trace events of event types ‘B’, ‘X, ‘I” and ‘C’ are



mailto:wangxianzhu@chromium.org
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/README.md#data-collection
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/README.md#data-collection
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit#heading=h.uxpopqvbjezh

supported. The following TRACE_EVENT macro formats are supported:

TRACE COUNTERI (“cat”, ™“name”, count)

TRACE COUNTERZ (“cat”, ™“name”, “count namel”, countl, “count name2”,
count?2)

TRACE EVENTI (“cat”, "“name”, “count name”, count)

TRACE EVENT2 (“cat”, “name”, “count namel”, countl, “count name2”,
count?2)

TRACE_EVENT_INSTANTl(“Cat", “name”, TRACE EVENT SCOPE GLOBAL,
“count name”, count)

TRACE_EVENT_INSTANTZ(“Cat", “name”, TRACE EVENT SCOPE GLOBAL,
“count namel”, countl, “count name2”, count2)

All integer values are interpreted as counts. Non-integer values are ignored. The metric name
for each count is like “cat/name/count_name”. Each value is reported as a scalar value with unit
‘count’. If multiple values are reported for one metric name during a perf test cycle (typically a
page load), the perf test result reporter will aggregate them, depending on “Field Value Column
Name” in the ct job.

Counting occurrences

To count the number of occurrences of something interesting, instead of recording the count at a
certain time (which may be difficult to find), you can simply add code like the following:
if (something interesting occured)
TRACE COUNTERI (“cat”, “something”, 1);
When running ct jobs, set “Field Value Column Name” to “count” or “sum” instead of “avg”, and
use “count” or "sum” instead of “avg” on results.html. If you use “count”, the result will be the
total number of this trace event, regardless of the value (the last parameter).

Run locally with top_25 pageset

tools/perf/run benchmark generic trace.top25 --trace-categories=cat

—-—trace—-names=name

You can modify generic_trace.py locally to use other page sets.

Run on Cluster Telemetry (Google only)

1. If we added new trace events, upload the local change to gerrit (CL1), or land it if the
trace events are also useful in the future.

2. Go to http://ct.skia.org.

3. Choose the Performance tab for comparison with and without a CL (CL2), or the
Analysis tab for collecting data without comparison.



https://cs.chromium.org/chromium/src/tools/perf/contrib/cluster_telemetry/generic_trace.py
https://www.chromium.org/developers/cluster-telemetry
http://ct.skia.org

Note that because of a limitation of Cluster Telemetry frontend, CL2 needs to directly
include (not just depend on) CL1.
4. Benchmark Name: generic_trace_ct
5. Benchmark Arguments: --trace-categories=cat --trace-names=name
Append these after the default benchmark arguments.
6. Specify CLs
a. Performance:
Chromium Git patch: CL2
Chromium Git metrics patch: CL1
b. Analyze:
Chromium Git patch: CL1
7. Field Value Column Name: This affects how multiple values of a metric are aggregated
in the report.
a. avg: the default, to get the average of the values
b. sum: to get the sum of the values
c. count: to get the count of the values. See also Counting occurrences
8. Fill the other fields as needed
9. QUEUE TASK

When the task finishes
a. Performance: you can browse the result directly in the result page
b. Analyze: the result is in csv format. You can save it and import it into a spreadsheet to
analyze it.

Report format
Report format is controlled by perf test framework and cluster telemetry.

Sample reports (with this patch which adds some ad hoc metrics for counting layout objects with
different features):

1. This HTML report was generated with the following local command:
tools/perf/run benchmark generic trace.top25

-—-trace-categories=blink --trace-names=counters
Check the Stories checkbox to show details for each page.

2. This CSV report was generated on Cluster Telemetry with an Analysis task.

3. TODO: sample report when we can apply an ad hoc metrics patch in a Cluster Telemetry
Performance task.


https://chromium-review.googlesource.com/864636
https://drive.google.com/file/d/1IXZ_iu0mWmDMuvpnwNrgq0vxRbOl9QFf/view?usp=sharing
https://ct.skia.org/results/cluster-telemetry/tasks/benchmark_runs/wangxianzhu-20190429202947/consolidated_outputs/wangxianzhu-20190429202947.output

Implementation

tools/perf/contrib/cluster telemetry/generic trace.py

blink_perf.py seems the best sample to implement a generic benchmark collecting trace event
values. I’'m not sure if | should use TBMv2, but the mechanism used by blink_perf.py seems
straight-forward.

s-avaitable-in This patch has landed in ToT.

ObjectCounter

This C++ class is for cases that no existing trace event exists for the desired measurement, and
the number of objects is not easily counted otherwise (e.g. number of LayoutObjects).

It counts number of individual objects having each particular feature. It differs from UseCounter
in that it counts individual objects instead of just appearance of features. It's only for ad hoc

measurements, not suitable for production code because of its poor performance.

It's available in this patch. A sample usage is in this patch.

Future work

e Support timing metrics in addition to counts
e Custom page stories


https://cs.chromium.org/chromium/src/tools/perf/contrib/cluster_telemetry/generic_trace.py
https://cs.chromium.org/chromium/src/tools/perf/benchmarks/blink_perf.py?q=blink_perf.py&sq=package:chromium&g=0&l=1
https://docs.google.com/document/d/1LJbh9iF7e18jNEDwD_tYt5WtiOoMJdV12Z9GxdTLJUo/edit#
https://chromium-review.googlesource.com/c/chromium/src/+/1587169
https://chromium-review.googlesource.com/c/chromium/src/+/1588754
https://chromium-review.googlesource.com/864636

	Ad hoc Metrics Based on Generic Trace Collection 
	Use Cases 
	How to use 
	Prepare with trace events 
	Counting occurrences 

	Run locally with top_25 pageset 
	Run on Cluster Telemetry (Google only) 
	Report format 

	Implementation 
	tools/perf/contrib/cluster_telemetry/generic_trace.py 
	ObjectCounter 

	Future work 

