
Motivation
MergeFunctions is an optimization pass of LLVM which merges identical functions.
The Comparison of functions boils down to the comparison of basic blocks and function
attributes. The comparison of functions is the result of comparison of each instruction.
MergeFunction uses FunctionComparator in LLVM utils to introduce total ordering
among functions which hash to the same bucket and then implements a logarithmical
search on the ordered set.

However, as new types are added to the IR or if the semantics of the IR changes,
MergeFunctions can cause miscompiles (e.g.,https://reviews.llvm.org/D79261). The
problem lies in the comparison of IR instructions. When the semantics of IR operations
change and MergeFunctions is not updated with abilities to compare the new ones, the
optimization happily merges functions which may be different in ways unknown to the
optimization. So, the primary goal would be to clearly specify the equivalence of each IR
operation.

MergeSimilarFunctions is an optimization which can merge not just identical functions
but also functions with differing instructions. It achieves this by partial comparators
which account for the differing instructions between two functions. We propose to
integrate precise and partial comparators of MergeSimilarFunctions to tablegen so that
the optimization can call into the auto-generated C++ code for comparing IR
instructions. This will help maintain MergeFunctions/MergeSimilarFunctions in sync with
the IR. Then, it would be ideal to integrate the features of MergeSimilarFunctions into
MergeFunctions. A decision regarding when to schedule the MergeSimilarFunctions
pass so that the compile-time is improved is to be determined. Any other
optimizations(like function-outlining) which may relate with MergeSimilarFunctions need
to be taken care of. In light of these factors, this plan has been designed. Also,
documentation is done continuously as that is a benchmark of GSoC.

Tentative Timeline
●​ Community Bonding Period

○​ Read the code of MergeSimilarFunctions and MergeFunctions
○​ Read about tblgen.
○​ Send out the proposal to the llvm-dev mailing list for review.
○​ Read publications about MergeSimilarFunctions in more detail.

https://reviews.llvm.org/D79261

●​ Week 1 - 3
○​ Add precise equality to each IR type. Currently, MergeFunctions uses the

FunctionComparator defined FunctionComparator.cpp in LLVM Utils.
cmpOperations() method from this module is being used to compare two
instructions. This function doesn’t support equality of every IR type, when
presented with a new IR type can lead to a decision driving mis-compiles.
So, the precise equality of every IR operation needs to be defined and
integrated to be able to compare functions effectively.

○​ Figure out a benchmark that can be used to measure compile-time and
code size. Build a GitHub repository which checks some of the good large
C++ codebases like Chromium, Webkit, MySQL, etc and figure out the
benchmark which can be used.

●​ Week 4 - 6

○​ The precise and partial comparators are used to compare whether
functions are exactly identical or whether functions are similar to a certain
extent. Integrating these partial and precise comparators of
MergeSimilarFunctions to use the equality operators defined for
comparison to maintain sync of IR with MergeSimilarFunctions is vital.

○​ Figure out when to run MergeFunctions, that is when to do merging of
exact similar functions. If exact similar functions are merged at the
beginning, the amount of optimization work decreases.

●​ Week 7 - 9
○​ Integrate features of MergeSimilarFunctions into MergeFunctions.

■​ Port MergeSimilarFunctions to MergeFunctions and add flags to
selectively enable whether to do precise merging or partial merging.

■​ Some notable high-level functions / ideas from
MergeSimilarFunctions which may need to be moved into
MergeFunctions :

●​ doDiffMege() : To perform merging of different functions.
●​ Setting up a Registry class to handle buckets of similar

functions.
●​ Adding FunctionComparators with the ability to account for

similar functions and differing instructions.
●​ Calculation of Similarity metric, a metric used to account for

the level of similarity between two functions.

○​ Figure out when it is ideal to schedule MergeSimilarFunctions pass. The
MegreSimilarFunctions pass merges functions which are similar. If run at
the wrong stage, this can lead to an increase in the code-size by merging
functions which might have been dumped entirely.

○​ Testing with the benchmark for code size, bootstrapping the compiler for
correctness, running llvm test suite for correctness.

●​ Week 10 - 11
○​ Investigate interactions with other optimizations like inliner, function

outliner.
○​ Workaround any other optimizations which might conflict with

MergeSimilarFunctions.
○​ Testing with the benchmark for code size, bootstrapping the compiler for

correctness, running llvm test suite for correctness.

●​ Week 12
○​ Investigate the debuggability of the functions merged using the improved

MergeFunctions pass and how it can be improved.
○​ Review the work done.

	Motivation
	Tentative Timeline

