LiteRAG: A Lightweight RAG Framework

1. Introduction

LiteRAG is a lightweight information retrieval and retrieval-augmented generation (RAG)
framework designed for edge nodes and low-memory environments.

Initially developed as a search engine supporting TF-IDF ranking and classical information
retrieval (IR), LiteRAG’s long-term goal is to evolve into a resource-optimized RAG system
capable of running efficiently on constrained hardware such as Raspberry Pi, loT gateways, or
single-board computers.
2. Current Capabilities
A. Parsing

e Supports parsing of large text corpora such as Wikipedia XML dumps.

e Extracts document ID, title, and body content.

e Batches parsed output into compressed .json.gz files for downstream processing.

e Includes optional checkpointing and progress logging.

B. Tokenization

e Implements diacritics removal, lowercasing, and punctuation normalization.
e Removes English stop words from a configurable list.
e Integrates a Porter Stemmer for term normalization.

e Outputs tokenized data as structured JSON documents with per-document token lists.

C. Indexing (SPIMI)

e Builds Single-Pass In-Memory Index (SPIMI) blocks.

e Each block stores:
o Term — { docID — frequency }

e Supports periodic flushing of blocks to compressed disk batches (.json.gz) once memory
threshold is exceeded.

e Includes tiered merge using a min-heap k-way merge strategy for scalable index
consolidation.

e Index compression is done using Delta encoding, this has lead to an approx 50%
reduction in space needed to store the index.

e Token to offset indexing allowing for immediate seek for file offset in index based on
token we are searching for.

e The entire token offset file is loaded into a hashmap on engine initialization, this can be
optimized to use lesser space later on maybe with an FST.

e The inverted index is not compressed for now, we can look into block based indexing for
scalability and optimizations.

3. Architecture Overview

Insert a well written read/write path arch here. For clarity.

4. Roadmap / Next Steps (Phase 1)

e Make the data queryable and implement IR and TF-IDF.
o Implement doc stats.
Implement a basic Ul for the query engine.
Look into how to pivot to RAG.
Add multithreading, better architecture, right now its very simple.
Add more complex flushing mechanisms while indexing.

e Come up with the query processing core.

5. Technical Goals

7. Vision

LiteRAG aims to redefine RAG accessibility bringing retrieval-augmented systems to low-cost,
low-power devices without relying on large cloud models or heavy vector databases.

	LiteRAG: A Lightweight RAG Framework
	1. Introduction
	A. Parsing
	B. Tokenization
	C. Indexing (SPIMI)
	4. Roadmap / Next Steps (Phase 1)
	5. Technical Goals
	7. Vision

