
LiteRAG: A Lightweight RAG Framework

1. Introduction

LiteRAG is a lightweight information retrieval and retrieval-augmented generation (RAG)
framework designed for edge nodes and low-memory environments.

Initially developed as a search engine supporting TF-IDF ranking and classical information
retrieval (IR), LiteRAG’s long-term goal is to evolve into a resource-optimized RAG system
capable of running efficiently on constrained hardware such as Raspberry Pi, IoT gateways, or
single-board computers.

2. Current Capabilities

A. Parsing

●​ Supports parsing of large text corpora such as Wikipedia XML dumps.​

●​ Extracts document ID, title, and body content.​

●​ Batches parsed output into compressed .json.gz files for downstream processing.​

●​ Includes optional checkpointing and progress logging.​

B. Tokenization

●​ Implements diacritics removal, lowercasing, and punctuation normalization.​

●​ Removes English stop words from a configurable list.​

●​ Integrates a Porter Stemmer for term normalization.​

●​ Outputs tokenized data as structured JSON documents with per-document token lists.​

C. Indexing (SPIMI)

●​ Builds Single-Pass In-Memory Index (SPIMI) blocks.​

●​ Each block stores:​

○​ Term → { docID → frequency }​

●​ Supports periodic flushing of blocks to compressed disk batches (.json.gz) once memory
threshold is exceeded.​

●​ Includes tiered merge using a min-heap k-way merge strategy for scalable index
consolidation.

●​ Index compression is done using Delta encoding, this has lead to an approx 50%
reduction in space needed to store the index.

●​ Token to offset indexing allowing for immediate seek for file offset in index based on
token we are searching for.

●​ The entire token offset file is loaded into a hashmap on engine initialization, this can be
optimized to use lesser space later on maybe with an FST.

●​ The inverted index is not compressed for now, we can look into block based indexing for
scalability and optimizations.

3. Architecture Overview
Insert a well written read/write path arch here. For clarity.

4. Roadmap / Next Steps (Phase 1)
●​ Make the data queryable and implement IR and TF-IDF.

○​ Implement doc stats.
●​ Implement a basic UI for the query engine.
●​ Look into how to pivot to RAG.
●​ Add multithreading, better architecture, right now its very simple.
●​ Add more complex flushing mechanisms while indexing.
●​ Compress the generated indexes, currently they’re taking up a lot of space
●​ Come up with the query processing core.

5. Technical Goals

7. Vision

LiteRAG aims to redefine RAG accessibility bringing retrieval-augmented systems to low-cost,
low-power devices without relying on large cloud models or heavy vector databases.

	LiteRAG: A Lightweight RAG Framework
	1. Introduction
	A. Parsing
	B. Tokenization
	C. Indexing (SPIMI)
	4. Roadmap / Next Steps (Phase 1)
	5. Technical Goals
	7. Vision

