
Department of Electrical and Computer Engineering

The University of Texas at Austin
EE 460N, Spring 2023

Lab Assignment 6

Due: Monday, April 24th, 5:00PM

●​ Submission instructions
●​ Control store sheet (Excel spreadsheet)
●​ Sample simulator runs to help you in debugging your simulator (Each of the hex files

were simulated cycle by cycle using the "run 1" command and an "idump" was
performed after each cycle. *.dump files show the cycle by cycle output of idump. *.state
files summarize the contents of the pipeline latches. *.timeline shows a timeline of the
execution of the program in the pipeline):

○​ example0.asm, example0.hex, example0.dump, example0.state,
example0.timeline

○​ example1.asm, example1.hex, example1.dump, example1.state,
example1.timeline

○​ example2.asm, example2.hex, example2.dump, example2.state,
example2.timeline

●​ Note that these test cases are not meant to be exhaustive. You should write your own
test cases to make sure that your simulator is working for every instruction and program.

https://docs.google.com/document/u/1/d/1yNKRI-8lWauiRF_guvF-5wr9eSHNm6MiwlKcaPVGBzE/edit
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/control_store_lab6.xls
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example0.asm
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example0.hex
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example0.dump
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example0.state
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example0.timeline
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example1.asm
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example1.hex
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example1.dump
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example1.state
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example1.timeline
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example2.asm
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example2.hex
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example2.dump
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example2.state
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/example/example2.timeline

Introduction
For this assignment, you will write a simulator for the pipelined LC-3b. The simulator will take
two input files:

1.​ A file entitled ucode which holds the control store that is located in the DE stage of the
pipeline.

2.​ A file entitled isaprogram holding an assembled LC-3b program.

The simulator will execute the input LC-3b program using the control store and the code you
write inside the simulator functions to direct the simulation of the datapath and memory
components of the LC-3b.

Note: The file isaprogram is the output you generated in Lab Assignment 1. This file should
consist of 4 hex characters per line. Each line of 4 hex characters should be prefixed with ‘0x’.
For example, the instruction NOT R1, R6 would have been assembled to
1001001110111111. This instruction would be represented in the isaprogram file as
0x93BF. The file ucode is an ASCII file that consists of 64 rows and 23 columns of zeros and
ones.

Similar to the simulator you used in Lab 3, the simulator for this lab is partitioned into two main
sections, the shell, which allows a user to control the simulator, and the simulation routines,
which carry out the simulation.

The Shell
The purpose of the shell is to provide the user with commands to control the execution of the
simulator. In order to extract information from the simulator, a file named dumpsim will be
created to hold information requested from the simulator. The shell supports the following
commands:

1.​ go – simulate the program until a HALT instruction is executed.
2.​ run <n> – simulate the execution of the machine for n cycles
3.​ mdump <low> <high> – dump the contents of memory, from location low to location high,

to the screen and the dump file.
4.​ rdump – dump the current cycle count, the contents of R0–R7, PC, condition codes to

the screen and the dump file.
5.​ idump – dump the current cycle count, the contents of R0–R7, PC, condition codes, and

the state of the pipeline latches to the screen and the dump file. This function also
dumps the values of stall signals.

6.​ ? – print out a list of all shell commands.
7.​ quit – quit the shell

Do not change any of the code related to the shell. We will be using these functions to grade
your program and our grading script expects the output format provided by these functions.

The Simulation Routines
The simulator simulates one processor cycle via the cycle() function. This function calls the
following functions, each of which corresponds to one of the stages in the pipeline:

1.​ FETCH_stage();
2.​ DE_stage();
3.​ AGEX_stage();
4.​ MEM_stage();
5.​ SR_stage();

The SR_stage() function has been written for you to get you started. Your job is to write the
remaining four functions. Note: For each stage, your code must fully implement the structures in
that stage of the pipeline. Refer to the description of the pipeline, the figures of the pipeline
stages, and the list of control signals to figure out what to implement in each pipeline stage.
The simulator code provided contains two structures that hold the state of the pipeline latches:
PS and NEW_PS. PS contains the state of the pipeline latches during the current clock cycle.
NEW_PS contains the new values of the pipeline latches that will be latched at the end of the
current clock cycle. At the end of each cycle, NEW_PS is assigned to PS (PS = NEW_PS) to
simulate the latching of data values into the pipeline registers. You need to make use of these
structures while writing the simulation routines. When you need to read a value from a pipeline
latch, you need to read it from the PS structure. When you need to update the value in a
pipeline latch, you should update it in the NEW_PS structure. In other words, the PS structure
should always be used in the right-hand side of an assignment statement, and the NEW_PS
structure should always be used on the left-hand side of an assignment statement. Please
carefully examine the code related to these two structures as you have to use them in the code
you write.

We have also provided you with interfaces to the instruction and data caches:
icache_access and dcache_access functions. You must use these functions to perform
accesses to the I-Cache and the D-Cache.

What To Do
First, read and understand the documentation for the pipelined version of LC-3b you are going
to implement. You may download it from the link below:

lab6_documentation.pdf

Your job is to implement the pipelined LC-3b microarchitecture exactly as it is described in the
above documentation. Some of the logic blocks in the pipeline are left for you to implement. It is
advisable that you design these logic blocks on paper before you start writing the simulator
code.

The shell has been written for you. From your ECE LRC account, copy the following file to your
work directory: lc3bsim6.c

At present, the shell reads in the control store and input program and initializes the machine. It
is your responsibility to write the correct control store file and to augment the shell with the
simulation routines that simulate the activity of the pipelined LC-3b. In particular, you are to write
the code to perform the activities of the first four pipeline stages as described above.
Add your code to the end of the shell code. Do not modify the shell code.

The accuracy of your simulator is your main priority. It is suggested that you start out by writing
a one instruction program and simulating the execution of this program cycle by cycle using the
idump command to verify that the instruction propagates correctly through the pipeline. We
suggest that you start out by making sure a simple instruction, like an ADD, flows correctly
through the pipeline. Then you can move on to more complicated instructions like loads and
branches. Try instructions one by one to make sure each works as it is supposed to. After you
get the memory and control instructions working correctly, you can try more complicated
programs that contain dependencies and test whether or not your pipeline stalls correctly.

You are not responsible for implementing the RTI instruction. You are also not required to
support exception/interrupt handling, although you are encouraged to think about the issues
related to the handling of exceptions and interrupts on a pipelined microarchitecture.

Since we will be evaluating your code on linux, you must be sure that your code compiles on
one of the ECE linux machines using gcc with the -std=c99 flag. This means that you need to
write your code in C such that it conforms to the C99 standard. You should also make sure that
your code runs correctly on grader2 machine.

If the value of a control signal is a don't care, you should set that signal to 0. We will be
checking the state of the internal pipeline latches and architectural state when testing your
simulator. To receive full credit, the values stored in these latches by your simulator
should exactly match the values stored in these latches by a correct simulator.

http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/lab6_documentation.pdf
http://users.ece.utexas.edu/~patt/13s.460N/labs/lab6/lab6_documentation.pdf
http://users.ece.utexas.edu/~patt/19s.460n/labs/lab6/lc3bsim6.c
http://users.ece.utexas.edu/~patt/13s.460N/labs/lab6/lc3bsim6.c

What To Turn In
Please submit your lab assignment electronically on grader1. You will submit the following:

1.​ lc3bsim6.c – adequately documented source code of your simulator.
2.​ ucode6 – microcode file.

Optional: Support for Exceptions
For this lab, you may optionally implement support for exceptions and the RTI instruction. Note
that implementing these optional additions will receive no extra credit; this is merely for
those students who wish to challenge themselves as an additional learning experience.
Before implementing exception support into the pipeline, please first complete the basic pipeline
functionality.

As a starting point for exception support in the LC-3b pipeline, we recommend making many
simplifying assumptions. First, begin with support for only two kinds of exceptions: unknown
opcode and unaligned access (LDW/STW only initially). The unknown opcode exception should
use exception vector x01, and the unaligned access exception should use exception vector x02.

Assume that all programs will only execute in Supervisor Mode with PSR[15]=0. Thus, no
support for two levels of privilege will be required. As a consequence, assume that R6 will
always contain the Supervisor Stack Pointer; thus, no switching of stack pointers will be
necessary.

Note that both RTI and the steps to initiate the exception handler are complex processes: they
each require multiple memory accesses, stack pointer modification, and change in PC. The
current LC-3b pipeline resolves control instructions in the MEM stage of the pipeline. Because
all exceptions can be detected by this stage, modifying the pipeline to support exceptions will
require an additional exception state machine in the MEM stage. We can add additional bits to
the MEM stage Pipeline Registers to keep track of whether an exception has been detected,
and which state of exception processing the MEM stage is currently carrying out in the case of a
detected exception. RTI can be implemented with a similar state machine in the decode stage of
the pipeline. These state machines will stall the pipeline until they complete.
To support the stack operations required by the RTI instruction and the exception handler setup
steps, it is easiest to assume the MEM stage has access to direct R6 read and write ports from
the Register File. Appropriate dependency stall logic will need to be included to wait on previous
instructions' potential writes to R6. Similar design principles can be applied to the CC (which
need to be saved/restored onto the System Stack as part of the PSR).
Both the RTI instruction and the exception handler setup steps will require additional logic to
ensure earlier stages of the pipeline are properly invalidated; this can be implemented similarly
to the BR.STALL mechanism used by all control instructions currently in the pipeline. One
challenge to consider is that while an RTI can be detected at the same time as other control
instructions, memory exceptions cannot be detected until AGEX.

Please contact the TA for additional details if you wish to implement support for exceptions.

Lab Assignment 6 Clarifications
NOTE: FAQ’s for this semester will be posted here. Please check back regularly.

1. We will check the values of the internal pipeline latches generated by your simulator,
so make sure you follow these conventions:

●​ If the data to be loaded/stored is a byte, set DATA.SIZE to 0. Set DATA.SIZE to 1 if
the data to be loaded/stored is a word.

●​ A load enable signal (LD.REG or LD.CC) should be set to 1, if the instruction is
supposed to write to the structure which is load-enabled by that signal. If the instruction
does not write to a structure, the load-enable signal associated with that structure should
be set to 0.

●​ BR.OP should be set to 1, if the instruction's opcode is BR. UNCON.OP should be set to
1, if the opcode of the instruction is JMP, RET, JSR, or JSRR. TRAP.OP should be set to
1 if the opcode of the instruction is TRAP.

●​ ALUK signals should be 00 for ADD, 01 for AND, 10 for XOR, 11 for PASSB. PASSB lets
the ALU pass the B input to the output undisturbed.

●​ BR.STALL should be set to 1 if the instruction is a control instruction.
●​ LSHF1 is 1, if the output of the ADDR2MUX should be left-shifted by 1.
●​ DCACHE.EN should be set to 1, if the instruction is supposed to access data memory.
●​ DCACHE.RW is 0, if the memory access is a read. It is 1, if the memory access is a

write.
●​ For mux control signals, follow the encodings shown in the figures for the pipeline

stages.
●​ As mentioned in the handout, if the value of a control signal does not matter, set the

signal to 0.

2. If the D-Cache is not enabled (V.DCACHE.EN signal is 0), the data output by the D-Cache
should be set to 0x0000.

3. Control store entries corresponding to invalid opcodes (opcodes 1010 and 1011) should be
set to all 0.

4. Will you check the values in pipeline latches even if the latches are invalid?

If the pipeline latches in a stage are invalid, our grading script is still going to check the values in
the latch. The datapath of a stage performs calculations regardless of whether or not the
instruction in that stage is valid (unless the valid bit is explicitly input to some logic blocks to
gate the calculations). For example, even if AGEX.V is 0, the address generation logic, shifter,
and the ALU will still perform calculations based on the data values in AGEX latches and control
signals in AGEX.CS latch. At the end of the cycle, calculated outputs of these units will be
latched into the MEM latches. Concurrently, AGEX.V is propagated to MEM.V.

5. Because all the TRAP instruction encodings start with 1111 0000, the microinstructions in
states 62 and 63 should be don't cares. However, please fill the same microinstructions into
states 62 and 63 as the ones in 60 and 61. JMP/RET is similar to the TRAP instruction. It
always starts with 1100 000, thus the microinstructions in states 49, 50 and 51 should be don't
cares. However, please fill the same microinstructions into states 49, 50 and 51 as the ones in
48 for the same reason as the TRAP instruction. The JSRR should be treated as the same
above. Please fill the microinstruction in state 16 into state 17.

6. The shifter in AGEX stage should perform a left shift if IR[5:4] is 10.

	Department of Electrical and Computer Engineering
	The University of Texas at Austin

	
	Introduction
	The Shell
	The Simulation Routines
	
	What To Do
	What To Turn In
	Optional: Support for Exceptions
	
	Lab Assignment 6 Clarifications

