SPACE NEBULA
AND STARFIELD
V3 :

PLUGIN FOR UNREAL ENGINE
THAUROS-DEVELOPMENT

— DRAFT «— — CONSTRUCTIONZONE «— — WIP «

Based on Version 3.24 (As part of Space-Nebula and Starfield Plugin.
V2.201) '

Space Nebula and Starfield
V2

Documentation

This tutorial gives you a quick introduction into the Plugin and how to use
it.

https://drive.google.com/file/d/1cQPy3tzST0pKDWtKPv1Q_W4Lj-3VAkVC
https://drive.google.com/file/d/1cQPy3tzST0pKDWtKPv1Q_W4Lj-3VAkVC
https://drive.google.com/file/d/1cQPy3tzST0pKDWtKPv1Q_W4Lj-3VAkVC

Table of contents:

1. Installation
1.1. Space-Nebula
1.2. Overview
1.8, Visualize Nebulas
1.3.1. Simple Rendering
1.3.2. Advanced Rendering

1. Installation

When the Plugin is installed though the Epic-Games Launcher, it is placed
inside your Engine-folder. Ensure in your Project that the Plugin is enabled
in the Plugins-Browser. To find all the Example-Content enable “Show
Engine Content” and “Show Plugins Content” in the View-Settings of the
Asset-Browser.

1.3.2.1. Color-Lookup
1.3.2.2. Microstructure
1.3.2.3. Acceleration

1.3.3. Block Rendering

1.3.4. Signed-Distancefield Rendering

1.3.5. Within Rendering

1.4. Create Nebulas
1.4.1. Creation-Pipeline
1.4.2. Creation-Stages
1.4.2.1. Nebula-Material
1.4.2.2. Lightsource
1.4.2.3. Nebula-Brush
1.4.2.4. Flow-Simulation
1.4.2.5. Mean-/Median-Blur
1.4.2.6. Cellular-Automatas
1.4.2.6.1. CA
1.4.2.6.2. CCA
1.4.2.6.3. CNN
1.4.3. Bake Volume-Textures
1.4.4. Randomizer
1.5, Niagara and Volumetric-Clouds
1.5.1. Niagara-Nebula
1.5.2. Niagara-Vectorfield
1.5.3. Volumetric-Clouds
1.6. Pick Nebulas
Procedural Starfield
More Tips
4. Example Presets

copLS

(1)
- % plugins X
» Installed » FX
@Al 2 . Ties
SpaceNebulaStarfield List
v & Installed)
oy ++x Space Nebula and Starfield V2 (Stable) and V. Columns
*f= Animation (SPAC? U'[A Universe *++ Volumetric rendering and creation
_: AND § X ELD procedurally generated Starfield of millions of si
i= Assets & I"‘ ' activate Plugin- and Engine-Content to find the Lock Content Browser
“I= Editor (<« Preset-Levels and take a look into the Tutorial-E
— us in the forum or via Thauros-Development@o
FX m apdiduign and are always happy to see your oy /' Show Folders >
“I= Mixed Reality (Enabled = Edit... Package... [Support | Show Favorites
B « Filter Recursively
v @ Buiilt-In (362) + Show Sources Panel

B5 Content Browsel x ' Show C++ Classes
e S T E

4+ ADD [¥Import ESaveAl © B SpaceNebulaStarfield Content > V3 @ %F Settings: « Show Engine Content
~/ Show Plugin Content

v NEBULASTARSV3 G QL B = Snow Luvans ea Content

CoUNUrIeIas LT LIasses

v I SpaceNebulaStarfield Content s
JiZ=MshilaPresets ‘ ‘ ‘ ~/ Search Asset Class Names
> imTech Search Asset Path
B ul

= way lebi =
> @m HallwayAssets Hi”m(i :;I;‘Lw]f +/ Search Collection Names

Nebula
= Presets
> im NebulaBasics
S B o

You can also paste the Plugin into your Project’s “/Plugins/’-folder. It is then
Active by default and just “Show Plugin Content” has to be enabled.

2. Space-Nebula

A Space-Nebula in this Plugin is an Actor which you can freely place your
Level as an Object. The SpaceNebula-Actor has the general abilities to
create and visualize Volume-Textures.

€ 5 | &= SpaceNebulaStarfield Content » V3 » NebulaPres:

- er— --mmmee Many Example-Presets are available as Levels

4= SpaceNebulastarfield Content
sets

and Blueprints to jump directly into Space and

rrrrrrrr beyond, W Place Actors
) i
\&", RecentlyPlaced

& sky Atmosphere

Basic

o B You can also find

the base-class of
the SpaceNebula-Actor in the “Place
Actors” tab and derive a Blueprint

child-class from this like the Example-Presets do.

£55 sky Light
e

2.1. Overview

Notes on V2 vs V3

while V2 is the Blueprint Edition of the Plugin, V3 is the C++
implementation gathering more speed, usability and possibilities.
Introducing a modular Rendering-System and a Creation-Pipeline with
customizable and randomizable Stages (introducing
Material-Compute-Shaders), the SpaceNebulaV3-Plugin is more like a

general Tool for Creating and Visualizing real Volumetric-Textures.

2.2. Visualize Nebulas

Visualize Nebulas
Every Space-Nebula has a Volume-Texture to specify the Color- and
Density- distribution in 3D-Space. Inside the Level, the Nebula is a

Bounding-Cube but can freely be placed, rotated and scaled/stretched. In
the SpaceNebula Actor, a NebulaRendering is set-up to specify the
visualization. Different kinds of NebulaRenderings are available for
simple to advanced purposes.

Info: Volume-Raymarching is the common approach to visualize
Volume-Textures to display semi-transparent, surfaceless shapes in
3D-Space.

In respect to a certain View, a 3D-Texture is projected onto the
2D-Screen. To achieve this, a straight line from the View is shot through
each Pixel of the Screen and further through Space. The final
Screen-Color gets accumulated by sampling the Color and Density
properties, while marching along this line in well-defined step-sizes.

Nebula-Volume 1s the actual

Volume-Texture asset defining the - vt E
o . © - Nebula_Alpha - +Add eIv o
content of the 3D-space. It is either cotattoha -
o © - Nebula_Alpha - (Self)
stored on disk (Asset-Browser) or a o .
procedurally created using the) D T =l B
Space-Nebula Creation utility. s s
NebulaAlpha_VolTex v
Nebula Volume @ r
Dens lty— Intensi ty ScaleS the Nebula Rendering Advanced Rendering v
Absorption properties of the entire B
3D-structure. Increasing this makes Acceleraton

the Nebula darker and more dense. seners

Emissive Intensity 200

EmiSSiVe—Intensity scales the Screen Resolution Scales

Screen Resolution Distances 2 Array elemer

overall light emission. Increasing this - .

Nebula Post Process Mate None :
makes the Nebula more bright. =L

Hide Nebula

Screen-Resolution settings are
performance related controls. The Screen-Resolution is scaled down
3

when the camera is close to the Nebula (due to limited volume-resolution)
and scaled up when further away (to still show all details in the distance).
The Distances parameters will define when to switch between Near-,

Mid- and Far-Scales.

Nebula-Post-Process-Material can be set optionally to modify the
appearance of the Nebulas in a separate, post-raymarching pass. This can
be useful to e.g. increase contrast or apply color-grading (LuT) at full
screen-resolution. When setting a Material for a single Nebula, then the
effect gets applied to all Nebulas in the Level.

%2 NebulaPostProcess_LightenDarken_Mat > Material Graph
Intensity) .
Param (1) Add(;1) v Power W
* — 1A @ @ Base @
N Exp
= MakeFloat3
Nebula Post-Processing
v ~ ~
o / X (S) Result @ T —
e / & PR P
ce 7 B i = < B -
NebulaPostProcess_LightenDarken_Mat
B® Alpha
@ Emissive Color
A
@ Ambient Occlusion
+ add Vimport [Esaveal ® B Al > Pluging > SpaceNebulaStarfield Content > V3 > NebulaBasics > RenderingMaterials
b Favorites Q Q =
v MyProject2 Q P n | -
-y oo ¥
s NebulaBasics o N . . .
im CreationCurves 4 B 4
il CreationMaterialFunctions il B
i CreationMaterials NebulaPost MebulaPost hebulaPost NebulaPost

Process _ Process_ Process _ Process_

i RenderingMaterials ColarlUT.. ColerVolu. Lighten. Lighten.

EmTextures

Note: Translucent Materials get drawn after the Nebula-Rendering, so
close objects (e.g. cockpit glass) cover Nebulas correctly. Otherwise
consider Opaque and Dither Opacity Mask to cover a Translucent
Object by the Nebulas.

2.2.1. Simple Rendering

This Rendering method is a simple Volume-Raymarcher, displaying the
Volume-Texture as its RGB-Colors and using the Alpha-Channel for
Density. The Sampling Stepsize is...

2.2.2. Advanced Rendering

The Advanced Rendering method is similar to the simple Raymarching,
though it uses additional methods to specify the visual appearance and
improve performance.

2.2.2.1. Color-Lookup

At Rendering the RGB channels of the Nebula-Texture are used to look-up
the actual color from an additional Color-Lookup texture. This concept may
be familiar as Transfer-Function (mapping a grayscale onto a Color-Curve)
or Color-Grading using LUTs.

Generally the Color-Lookup specifies different particles as Emissive (RGB)
and Absorbing (Alpha) properties, while the Nebula-Texture specifies for
each Voxel what type of particle (RGB) and how much (Alpha) it represents.
A Color-Lookup Volume-Texture can be created with Materials (see 2.4.2.1 -
Nebula-Creation-Material), e.g. allowing the utilization of Color-Curve
assets for composing.

Almost any example Nebula is using the ColorLookup_Curves_VolMat
which combines three Color-Curves into a Volume-Texture. But it is totally

valid to modify/exchange this Material to specify the emissive and
absorptive properties of the 3D structure.

- rat >
ReadCurvesWithHSVParams_MatFunc (>

®x(Colox @ ———————— 4@
T R) ColorY @ S — B —
BreakouFloataComponents Wik~ ek (REB)
310) Coloz @
Position @ — - Float3 (V3) Re Wialtiply v/. (g

A e
B

s
s

RS e
T e / . re
B [3

Alpha

2.2.2.2. Microstructure

Microstructure

2.2.2.3. Acceleration
Acceleration

Important: The Acceleration considers the Density- and
Emissive-Intensity parameters as well as the Microstructure. So when
changing these settings, re-creation of the Nebula/Acceleration is
recommended.

2.3. Block Rendering
Block Rendering

2.3.1. Signed-Distancefield Rendering

Signed Distancefield Rendering

The Signed-Distancefield-Rendering works a bit different than the classical
approach of Volume-Raymarching. Thereby the Density-Channel of the
Volume-Texture describes an approximation of a Surface which is not
constrained by the Volume-Resolution. The Nebula-Rendering will induce
Density near and inside the Surface, which gives more details than the
usual Rendering-Method. Also, since the most change in structure is
expected at its surface, the Signed-Distancefield deals directly as sampling
Acceleration to systematically skip empty areas for performance reasons.
So, no need of an Acceleration-Stage and no Micro-Structure required.

Though the designing of structure is restricted to output Distance not
Density. In the Nebula-Creation-Material, a Signed-Distancefield can be
designed e.g. by describing various Shapes (see '"DistanceField"
Material-Functions) or a Voronoi-Noise. As Result, each point in space
holds the distance to its nearest surface, with a negative sign when

the pixel is inside the structure.

2.3.2. Within Rendering
Within Rendering

2.4. Create Nebulas

Create Nebulas

Serialization:

By default, the Volume-Creation does process one Creation-Stage each
Frame and will block the Game-Thread. This may cause hitches or longer
durating drops in Frame-Rate, especially when excecuting complex
scenarios like high-quality Flow-Simulation.

With the Serialization parameter set to a larger value, GPU-work gets
split into multiple parts and the Game-Thread will not stall for the
Creation-Stage to finish, maintaining a constant framerate during
Nebula-Creation. Though, the overall Creation-Process will take longer and
results may be visible at later frames.

bHDR: By default the Nebula-Volume-Texture uses 8-bit values to store
Pixel-values in a range of 0 to 1. bLHDR decides to use 16-bit values instead
to allow more different values, also <0 and >1.

2.4.1. Creation-Pipeline

Creation Pipeline

2.4.2. Creation-Stages

Creation Stages

2.4.2.1. Nebula-Creation-Material

The most used and useful Creation-Stage is using a Material-Asset to
define the Color and Density at each 3D-point (Voxel) of the Volume (Grid).
The procedural composition of 3D structures comes with the mathematical
definition of Shapes, Noises and Gradients, with respect to the Local- or
World-Position of each Voxel and laid out in four channels of RGBA.

Note: While Materials in Unreal are Vertex-/Pixel-Shaders, the
Nebula-Creation-Materials are Compute-Shaders and so do
straight-forward GPU utilization for Volume-Creation.

Important: In the Material-Editor Texture-based Noise-Types are
currently not supported for Nebula-Creation-Materials! Use

Computational Noises instead.

2.4.2.2.

Lightsource

Lightsource

(SceneOcclusion struggles with Nebula-Scale)

2.4.2.3.
Nebula Brush

2.4.2.4.
Flow Simulation

2.4.2.5.
3D Blur

2.4.2.6.

Cellular Automatas
Cyclic Cellular Automata
Cellular Nonlinear Network

Nebula-Brush

Flow-Simulation

Mean-/Median-Blur

Cellular-Automatas

2.4.3. Bake Volume-Textures

Volume Texture Bake

2.4.4. Randomizer

Use the Randomizer utility to design a procedural set of Nebulas to be
created at runtime. Most Nebula Creation-Stages do have a List of
Parameters for Randomization. The list can be automatically filled by
using the Recollect-Randomization button/function and will then
mirror all design-related Parameters of the Creation-Stage with Min-, Max-
and Default-Values. For Nebula-Creation-Materials, all the
Scalar-Material-Parameters are gathered and their Slider Min and Slider
Max values are for the Randomize Min and Max. This allows active
designing of the procedural Nebula-Creation within Material and the
Randomize-Parameters Lists. Note that changing a Stage’s actual
parameter may have no effect since it may get overwritten by the
randomized parameter from the List.

Every time the Randomize button/function is used, a Random-Seed is
applied to derive all randomized Parameters from a Random-Stream
internally. A positive Seed-Number will cause the Randomizer to apply this
specific Seed on the Parameters. When the Seed is a negative number, the
Seed will be randomized on Randomization so you can use that Seed
without the negative sign to restore a certain randomization.

2.4.5. Particles and Volumetrics

2.4.5.1. Niagara-Nebula

Niagara-Nebula: This example shows how a Nebula can be used to feed a
Niagara-System for Particle-Distribution.

Inside the Niagara-System, the Particles itself are made of 2D-Textures
while the Volume-Texture from the Nebula-Creation is read to define
Particle-Color
and -Opacity.

2.4.5.2. Niagara-Vectorfield

Niagara-Vectorfield: In this Example a Nebula-Actor is used to dynamically
create Vectorfield-Textures for the

Niagara-Particle-System. Inside Niagara, a Force is applied to each
Particle which is directly read from a Volume-Texture.

This Vectorfield Volume-Texture gets created from a single
Nebula-Material-Creation-Stage. In this Nebula-Material, a Gravity and a
Vector-Noise with spherical direction are added together. Also an Attractor
towards a Blueprint-specified position is added to the Vectorfield.

The Nebula-Rendering is set to Simple to visualize the direction of the
Vectorfield-content in Color-values for debugging.

2.4.5.3. Volumetric-Fog and -Clouds

You can create Volume-Textures with a Space-Nebula to apply as
Texture-Parameter in any Material. This way, a baked or runtime changing
Volume-Texture can be induced into Unreal’s Volumetric-Fog and -Cloud
systems.

2.5. Pick Nebulas

Pick Color, Density and Gradient

3. Starfield

Add a sStarfield-Component to your Level for a 3D-cluster with a
gazillion of stars. From the “unlimited” amount of potential stars, only the

actual visible stars are considered for performance.

The visualization of stars does apply a simple photon-model, spreading
photons accordingly to a gaussian-distribution in screen-space. This
represents kind of a physical approach and is useful to make the
appearance persistent with Temporal-Anti-Aliasing and other Post-Process
effects like Bloom (try Convolutional-Kernels) and Motion-Blur.

Internally stars get placed pseudo-randomly and locations can be gathered,
e.g. to spawn space-objects when close, to be a consistent universe. By
adding elements to the List of Closest-Star-Locations, these get
automatically filled with the stars near the camera. In Blueprint stars near
a point or ray within the Starfield can also be gathered by using
FindStarInStarfieldFromPoint or FindStarInStarfield FromRay.

(7 Find Star in Starfield from Point

[EEanch
— » Tiep == P |

SET
» »
Condiion ~ False [|| /e Target Return Value @

S —
@ Picked Star Location O
—_ Starfield —_—
@ Point 7 Draw Debug Sphere

» o]
—————
————— Picked Star Location @ —— @ cente
F Find Star in Starfield from Ray
F Get Actor Location Target s Starfieid Component 2
» Segments [12

D o]

Target Retum Value @
Target Return Value O

Point
.
o Direction

4. More Tips

Tips and Tricks

5. Example Presets

Example Presets

5.1.

5.2.

5.3.

5.4.

5.5.

Nebula-Alpha,
-Kappa

-Zed,

Galaxy,
Atmospheric-Cloud,
Polar-Lights, Rainbow

Basic example for
Nebula and Flow

Basic examples of

Nebula-
Vectorfield-Volumes

Niagara

Procedural Starfield

-Omega,

Sun,

painting

applying
and
nto

5.6.

5.7.

5.8.

Import examples of Brain-CT
and Mitch-Meyer's Cloud

Signed-Distance Field
Nebula-Sigma, Gas-Planet,
Metaballs, Water-Waves

Cellular-Automata,
Cyclic-Cellular-Automata and
Cellular-Nonlinear-Network

	
	SPACE NEBULA
	AND STARFIELD
	V3
	PLUGIN FOR UNREAL ENGINE
	THAUROS-DEVELOPMENT
	✧
	1.​Installation
	2.​Space-Nebula
	2.1.​Overview
	2.2.​Visualize Nebulas
	2.2.1.​Simple Rendering
	2.2.2.​Advanced Rendering
	2.2.2.1.​Color-Lookup
	2.2.2.2.​Microstructure
	2.2.2.3.​Acceleration

	2.3.​Block Rendering
	2.3.1.​Signed-Distancefield Rendering
	2.3.2.​Within Rendering

	2.4.​Create Nebulas
	2.4.1.​Creation-Pipeline
	2.4.2.​Creation-Stages
	2.4.2.1.​Nebula-Creation-Material
	2.4.2.2.​Lightsource
	2.4.2.3.​Nebula-Brush
	2.4.2.4.​Flow-Simulation
	2.4.2.5.​Mean-/Median-Blur
	2.4.2.6.​Cellular-Automatas

	2.4.3.​Bake Volume-Textures
	2.4.4.​Randomizer
	2.4.5.​Particles and Volumetrics
	2.4.5.1.​Niagara-Nebula
	2.4.5.2.​Niagara-Vectorfield
	2.4.5.3.​Volumetric-Fog and -Clouds

	2.5.​Pick Nebulas

	3.​Starfield
	4.​More Tips
	5.​Example Presets
	5.1.​Nebula-Alpha, -Zed, -Omega, -Kappa
	5.2.​Galaxy, Sun, Atmospheric-Cloud, Polar-Lights, Rainbow
	5.3.​Basic example for painting Nebula and Flow
	5.4.​Basic examples of applying Nebula- and Vectorfield-Volumes into Niagara
	5.5.​Procedural Starfield
	5.6.​Import examples of Brain-CT and Mitch-Meyer's Cloud
	5.7.​Signed-Distance Field Nebula-Sigma, Gas-Planet, Metaballs, Water-Waves
	5.8.​Cellular-Automata, Cyclic-Cellular-Automata and Cellular-Nonlinear-Network

