

SPACE NEBULA

AND STARFIELD

V3
PLUGIN FOR UNREAL ENGINE

THAUROS-DEVELOPMENT

✧

→ DRAFT ← → CONSTRUCTIONZONE ← → WIP ←

Based on Version 3.24 (As part of Space-Nebula and Starfield Plugin

V2.201)

Space Nebula and Starfield ​
V2 ​

Documentation

This tutorial gives you a quick introduction into the Plugin and how to use

it.

1

https://drive.google.com/file/d/1cQPy3tzST0pKDWtKPv1Q_W4Lj-3VAkVC
https://drive.google.com/file/d/1cQPy3tzST0pKDWtKPv1Q_W4Lj-3VAkVC
https://drive.google.com/file/d/1cQPy3tzST0pKDWtKPv1Q_W4Lj-3VAkVC

Table of contents:

1.​ Installation

1.1.​ Space-Nebula

1.2.​ Overview

1.3.​ Visualize Nebulas

1.3.1.​ Simple Rendering

1.3.2.​ Advanced Rendering

1.3.2.1.​ Color-Lookup

1.3.2.2.​ Microstructure

1.3.2.3.​ Acceleration

1.3.3.​ Block Rendering

1.3.4.​ Signed-Distancefield Rendering

1.3.5.​ Within Rendering

1.4.​ Create Nebulas

1.4.1.​ Creation-Pipeline

1.4.2.​ Creation-Stages

1.4.2.1.​ Nebula-Material

1.4.2.2.​ Lightsource

1.4.2.3.​ Nebula-Brush

1.4.2.4.​ Flow-Simulation

1.4.2.5.​ Mean-/Median-Blur

1.4.2.6.​ Cellular-Automatas

1.4.2.6.1.​ CA

1.4.2.6.2.​ CCA

1.4.2.6.3.​ CNN

1.4.3.​ Bake Volume-Textures

1.4.4.​ Randomizer

1.5.​ Niagara and Volumetric-Clouds

1.5.1.​ Niagara-Nebula

1.5.2.​ Niagara-Vectorfield

1.5.3.​ Volumetric-Clouds

1.6.​ Pick Nebulas

2.​ Procedural Starfield

3.​ More Tips

4.​ Example Presets

1.​ Installation

When the Plugin is installed though the Epic-Games Launcher, it is placed

inside your Engine-folder. Ensure in your Project that the Plugin is enabled

in the Plugins-Browser. To find all the Example-Content enable “Show

Engine Content” and “Show Plugins Content” in the View-Settings of the

Asset-Browser.

You can also paste the Plugin into your Project’s “/Plugins/”-folder. It is then

Active by default and just “Show Plugin Content” has to be enabled.

2

2.​ Space-Nebula

A Space-Nebula in this Plugin is an Actor which you can freely place your

Level as an Object. The SpaceNebula-Actor has the general abilities to

create and visualize Volume-Textures.

Many Example-Presets are available as Levels

and Blueprints to jump directly into Space and

beyond.

​
You can also find

the base-class of

the SpaceNebula-Actor in the “Place

Actors” tab and derive a Blueprint

child-class from this like the Example-Presets do.

2.1.​ Overview

Notes on V2 vs V3

while V2 is the Blueprint Edition of the Plugin, V3 is the C++

implementation gathering more speed, usability and possibilities.

Introducing a modular Rendering-System and a Creation-Pipeline with

customizable and randomizable Stages (introducing

Material-Compute-Shaders), the SpaceNebulaV3-Plugin is more like a

general Tool for Creating and Visualizing real Volumetric-Textures.

2.2.​ Visualize Nebulas

Visualize Nebulas

Every Space-Nebula has a Volume-Texture to specify the Color- and

Density- distribution in 3D-Space. Inside the Level, the Nebula is a

Bounding-Cube but can freely be placed, rotated and scaled/stretched. In

the SpaceNebula Actor, a NebulaRendering is set-up to specify the

visualization. Different kinds of NebulaRenderings are available for

simple to advanced purposes.

Info: Volume-Raymarching is the common approach to visualize

Volume-Textures to display semi-transparent, surfaceless shapes in

3D-Space.

In respect to a certain View, a 3D-Texture is projected onto the

2D-Screen. To achieve this, a straight line from the View is shot through

each Pixel of the Screen and further through Space. The final

Screen-Color gets accumulated by sampling the Color and Density

properties, while marching along this line in well-defined step-sizes.

Nebula-Volume is the actual

Volume-Texture asset defining the

content of the 3D-space. It is either

stored on disk (Asset-Browser) or

procedurally created using the

Space-Nebula Creation utility.

Density-Intensity scales the

Absorption properties of the entire

3D-structure. Increasing this makes

the Nebula darker and more dense.

Emissive-Intensity scales the

overall light emission. Increasing this

makes the Nebula more bright.

Screen-Resolution settings are

performance related controls. The Screen-Resolution is scaled down

3

when the camera is close to the Nebula (due to limited volume-resolution)

and scaled up when further away (to still show all details in the distance).

The Distances parameters will define when to switch between Near-,

Mid- and Far-Scales.

Nebula-Post-Process-Material can be set optionally to modify the

appearance of the Nebulas in a separate, post-raymarching pass. This can

be useful to e.g. increase contrast or apply color-grading (LuT) at full

screen-resolution. When setting a Material for a single Nebula, then the

effect gets applied to all Nebulas in the Level.​

Note: Translucent Materials get drawn after the Nebula-Rendering, so

close objects (e.g. cockpit glass) cover Nebulas correctly. Otherwise

consider Opaque and Dither Opacity Mask to cover a Translucent

Object by the Nebulas.

2.2.1.​ Simple Rendering

This Rendering method is a simple Volume-Raymarcher, displaying the

Volume-Texture as its RGB-Colors and using the Alpha-Channel for

Density. The Sampling Stepsize is…

2.2.2.​ Advanced Rendering

The Advanced Rendering method is similar to the simple Raymarching,

though it uses additional methods to specify the visual appearance and

improve performance.

2.2.2.1.​ Color-Lookup

At Rendering the RGB channels of the Nebula-Texture are used to look-up

the actual color from an additional Color-Lookup texture. This concept may

be familiar as Transfer-Function (mapping a grayscale onto a Color-Curve)

or Color-Grading using LUTs.

​

Generally the Color-Lookup specifies different particles as Emissive (RGB)

and Absorbing (Alpha) properties, while the Nebula-Texture specifies for

each Voxel what type of particle (RGB) and how much (Alpha) it represents.

A Color-Lookup Volume-Texture can be created with Materials (see 2.4.2.1 -

Nebula-Creation-Material), e.g. allowing the utilization of Color-Curve

assets for composing.

4

Almost any example Nebula is using the ColorLookup_Curves_VolMat

which combines three Color-Curves into a Volume-Texture. But it is totally

valid to modify/exchange this Material to specify the emissive and

absorptive properties of the 3D structure.

2.2.2.2.​ Microstructure

Microstructure

2.2.2.3.​ Acceleration

Acceleration

Important: The Acceleration considers the Density- and

Emissive-Intensity parameters as well as the Microstructure. So when

changing these settings, re-creation of the Nebula/Acceleration is

recommended.

2.3.​ Block Rendering

Block Rendering

2.3.1.​ Signed-Distancefield Rendering

Signed Distancefield Rendering

The Signed-Distancefield-Rendering works a bit different than the classical

approach of Volume-Raymarching. Thereby the Density-Channel of the

Volume-Texture describes an approximation of a Surface which is not

constrained by the Volume-Resolution. The Nebula-Rendering will induce

Density near and inside the Surface, which gives more details than the

usual Rendering-Method. Also, since the most change in structure is

expected at its surface, the Signed-Distancefield deals directly as sampling

Acceleration to systematically skip empty areas for performance reasons.

So, no need of an Acceleration-Stage and no Micro-Structure required.

Though the designing of structure is restricted to output Distance not

Density. In the Nebula-Creation-Material, a Signed-Distancefield can be

designed e.g. by describing various Shapes (see "DistanceField"

Material-Functions) or a Voronoi-Noise. As Result, each point in space

holds the distance to its nearest surface, with a negative sign when

the pixel is inside the structure.

2.3.2.​ Within Rendering

Within Rendering

2.4.​ Create Nebulas

Create Nebulas

Serialization:

5

By default, the Volume-Creation does process one Creation-Stage each

Frame and will block the Game-Thread. This may cause hitches or longer

durating drops in Frame-Rate, especially when excecuting complex

scenarios like high-quality Flow-Simulation.

With the Serialization parameter set to a larger value, GPU-work gets

split into multiple parts and the Game-Thread will not stall for the

Creation-Stage to finish, maintaining a constant framerate during

Nebula-Creation. Though, the overall Creation-Process will take longer and

results may be visible at later frames.

bHDR: By default the Nebula-Volume-Texture uses 8-bit values to store

Pixel-values in a range of 0 to 1. bHDR decides to use 16-bit values instead

to allow more different values, also <0 and >1.

2.4.1.​ Creation-Pipeline

Creation Pipeline

2.4.2.​ Creation-Stages

Creation Stages

2.4.2.1.​ Nebula-Creation-Material

The most used and useful Creation-Stage is using a Material-Asset to

define the Color and Density at each 3D-point (Voxel) of the Volume (Grid).

The procedural composition of 3D structures comes with the mathematical

definition of Shapes, Noises and Gradients, with respect to the Local- or

World-Position of each Voxel and laid out in four channels of RGBA.

Note: While Materials in Unreal are Vertex-/Pixel-Shaders, the

Nebula-Creation-Materials are Compute-Shaders and so do

straight-forward GPU utilization for Volume-Creation.

Important: In the Material-Editor Texture-based Noise-Types are

currently not supported for Nebula-Creation-Materials! Use

Computational Noises instead.

2.4.2.2.​ Lightsource

Lightsource

(SceneOcclusion struggles with Nebula-Scale)

2.4.2.3.​ Nebula-Brush

Nebula Brush

2.4.2.4.​ Flow-Simulation

Flow Simulation

2.4.2.5.​ Mean-/Median-Blur

3D Blur

2.4.2.6.​ Cellular-Automatas

Cellular Automatas

Cyclic Cellular Automata

Cellular Nonlinear Network

2.4.3.​ Bake Volume-Textures

Volume Texture Bake

6

2.4.4.​ Randomizer

Use the Randomizer utility to design a procedural set of Nebulas to be

created at runtime. Most Nebula Creation-Stages do have a List of

Parameters for Randomization. The list can be automatically filled by

using the Recollect-Randomization button/function and will then

mirror all design-related Parameters of the Creation-Stage with Min-, Max-

and Default-Values. For Nebula-Creation-Materials, all the

Scalar-Material-Parameters are gathered and their Slider Min and Slider

Max values are for the Randomize Min and Max. This allows active

designing of the procedural Nebula-Creation within Material and the

Randomize-Parameters Lists. Note that changing a Stage’s actual

parameter may have no effect since it may get overwritten by the

randomized parameter from the List.

Every time the Randomize button/function is used, a Random-Seed is

applied to derive all randomized Parameters from a Random-Stream

internally. A positive Seed-Number will cause the Randomizer to apply this

specific Seed on the Parameters. When the Seed is a negative number, the

Seed will be randomized on Randomization so you can use that Seed

without the negative sign to restore a certain randomization.

2.4.5.​ Particles and Volumetrics

2.4.5.1.​ Niagara-Nebula

Niagara-Nebula: This example shows how a Nebula can be used to feed a

Niagara-System for Particle-Distribution.

Inside the Niagara-System, the Particles itself are made of 2D-Textures

while the Volume-Texture from the Nebula-Creation is read to define

Particle-Color

and -Opacity.

2.4.5.2.​ Niagara-Vectorfield

Niagara-Vectorfield: In this Example a Nebula-Actor is used to dynamically

create Vectorfield-Textures for the

Niagara-Particle-System. Inside Niagara, a Force is applied to each

Particle which is directly read from a Volume-Texture.

This Vectorfield Volume-Texture gets created from a single

Nebula-Material-Creation-Stage. In this Nebula-Material, a Gravity and a

Vector-Noise with spherical direction are added together. Also an Attractor

towards a Blueprint-specified position is added to the Vectorfield.

The Nebula-Rendering is set to Simple to visualize the direction of the

Vectorfield-content in Color-values for debugging.

2.4.5.3.​ Volumetric-Fog and -Clouds

You can create Volume-Textures with a Space-Nebula to apply as

Texture-Parameter in any Material. This way, a baked or runtime changing

Volume-Texture can be induced into Unreal’s Volumetric-Fog and -Cloud

systems.

2.5.​ Pick Nebulas

Pick Color, Density and Gradient

3.​ Starfield

Add a Starfield-Component to your Level for a 3D-cluster with a

gazillion of stars. From the “unlimited” amount of potential stars, only the

7

actual visible stars are considered for performance.

The visualization of stars does apply a simple photon-model, spreading

photons accordingly to a gaussian-distribution in screen-space. This

represents kind of a physical approach and is useful to make the

appearance persistent with Temporal-Anti-Aliasing and other Post-Process

effects like Bloom (try Convolutional-Kernels) and Motion-Blur.

Internally stars get placed pseudo-randomly and locations can be gathered,

e.g. to spawn space-objects when close, to be a consistent universe. By

adding elements to the List of Closest-Star-Locations, these get

automatically filled with the stars near the camera. In Blueprint stars near

a point or ray within the Starfield can also be gathered by using

FindStarInStarfieldFromPoint or FindStarInStarfieldFromRay.

4.​ More Tips

Tips and Tricks

5.​ Example Presets

Example Presets

5.1.​ Nebula-Alpha, -Zed, -Omega,

-Kappa

5.2.​ Galaxy, Sun,

Atmospheric-Cloud,

Polar-Lights, Rainbow

5.3.​ Basic example for painting

Nebula and Flow

5.4.​ Basic examples of applying

Nebula- and

Vectorfield-Volumes into

Niagara

5.5.​ Procedural Starfield

8

5.6.​ Import examples of Brain-CT

and Mitch-Meyer's Cloud

5.7.​ Signed-Distance Field

Nebula-Sigma, Gas-Planet,

Metaballs, Water-Waves

5.8.​ Cellular-Automata,

Cyclic-Cellular-Automata and

Cellular-Nonlinear-Network

9

	
	SPACE NEBULA
	AND STARFIELD
	V3
	PLUGIN FOR UNREAL ENGINE
	THAUROS-DEVELOPMENT
	✧
	1.​Installation
	2.​Space-Nebula
	2.1.​Overview
	2.2.​Visualize Nebulas
	2.2.1.​Simple Rendering
	2.2.2.​Advanced Rendering
	2.2.2.1.​Color-Lookup
	2.2.2.2.​Microstructure
	2.2.2.3.​Acceleration

	2.3.​Block Rendering
	2.3.1.​Signed-Distancefield Rendering
	2.3.2.​Within Rendering

	2.4.​Create Nebulas
	2.4.1.​Creation-Pipeline
	2.4.2.​Creation-Stages
	2.4.2.1.​Nebula-Creation-Material
	2.4.2.2.​Lightsource
	2.4.2.3.​Nebula-Brush
	2.4.2.4.​Flow-Simulation
	2.4.2.5.​Mean-/Median-Blur
	2.4.2.6.​Cellular-Automatas

	2.4.3.​Bake Volume-Textures
	2.4.4.​Randomizer
	2.4.5.​Particles and Volumetrics
	2.4.5.1.​Niagara-Nebula
	2.4.5.2.​Niagara-Vectorfield
	2.4.5.3.​Volumetric-Fog and -Clouds

	2.5.​Pick Nebulas

	3.​Starfield
	4.​More Tips
	5.​Example Presets
	5.1.​Nebula-Alpha, -Zed, -Omega, -Kappa
	5.2.​Galaxy, Sun, Atmospheric-Cloud, Polar-Lights, Rainbow
	5.3.​Basic example for painting Nebula and Flow
	5.4.​Basic examples of applying Nebula- and Vectorfield-Volumes into Niagara
	5.5.​Procedural Starfield
	5.6.​Import examples of Brain-CT and Mitch-Meyer's Cloud
	5.7.​Signed-Distance Field Nebula-Sigma, Gas-Planet, Metaballs, Water-Waves
	5.8.​Cellular-Automata, Cyclic-Cellular-Automata and Cellular-Nonlinear-Network

