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Discovering Exoplanetary Characteristics with RV (and Transit) Data 

 

Recall that changes in the radial velocity of a star as it’s “wobbled” by a planet will Doppler shift 

the star’s spectra. Astronomers then measure this shift in order to derive the radial velocity of 

the star. The shift in a star’s spectrum can be observed by measuring the wavelength of known 

absorption lines (such as the Frauenhofer lines, Balmer series, etc.) and comparing them to the 

known wavelength of those lines in the laboratory.  

 

 
 Credit: Wikimedia Commons 

 

The radial velocity can then be calculated by the following equation: 
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where Δλ is the difference in wavelength, λ0 is the rest wavelength or the known wavelength of 

the line, vr is the radial velocity, and c is the speed of light. 
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The illustration above is helpful for a visualization of how spectral lines shift as a result of the 

Doppler effect, but stellar spectra as measured by instruments and analyzed by astronomers 

look more like the following illustration: 

 
Credit: Gene Smith, UCSD 

 

In this graph, the x-axis corresponds to wavelength, while the y-axis corresponds to the 

intensity or flux of the light measured from the star in that wavelength. Here, absorption lines 

appear as dips in the flux. Lines can vary greatly in width and depth – some are broader, or 

narrower – which are affected by a number of physical processes, and some lines very close 

together can appear blended, but the center of a line is considered the wavelength measured for 

that line. 

 

Measured stellar spectra can be very broad, containing thousands of lines, depending on the 

wavelength range of the instrument used to detect them. In the following exercises, we will 

zoom in and look at one small section of an example stellar spectrum to measure the radial 

velocity of a star with an exoplanet. Then we will use these measurements, in combination with 

other information we know about the star and planet from our data, to extract physical 

characteristics of our planet. 
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Exercise 1: Measuring RV shifts 

Below is a section of a stellar spectrum at rest. Mark the wavelengths of each line you can 

identify; these are your rest/reference wavelengths for those lines. 

 

 

 

Now pretend you’ve received the following observation of this same star. For convenience, the 

reference spectrum is plotted underneath this new observation.  

 

 

 

Using a ruler, measure the shift and find Δλ for each of the lines you identified earlier. Then, 

using the equation for radial velocity, calculate the radial velocity indicated by each of these 

shifts and average your results. What is the radial velocity of this star in this observation? 
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Exercise 2: Measuring RV over time 

When measuring RVs of stars, we are usually interested in the RVs measured over time to search 

for periodicities, i.e. possible planets! Below are 10 different observations of the same star taken 

at different times. For the first observation, let’s take the same observation that you already 

analyzed above, given a date, and record the RV you found: 

 

 

 

RV:____________________________ 

 

For the following 9 observations, use the same procedure you used in Exercise 1 to measure Δλ 

and calculate and record the radial velocity of the star for each observation. 

 

 

 

 

 

 

 

RV:_____________________________ 
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Now, plot your calculated RVs over time on the graph below: 

 

 

 

Take a look at your plot. Do you see a periodicity in the RVs? By looking at a plot of RVs over 

time, we can estimate two important parameters of the orbit of a potential planet: the period, P, 

and the radial velocity semi-amplitude, K. Using this plot, estimate values for P and K: 

 

 

 

 

 

 

Exercise 3: Calculating exoplanetary characteristics 

We now have an estimate for the period and semi-amplitude of the orbit of our potential 

exoplanet. From here, we can now use these estimated parameters, combined with the other 

information we have at our disposal, to calculate estimates for other characteristics of our 

planet. 

 

For these calculations, it is necessary to know some information about the planet’s host star, 

namely its mass and radius. For convenience, we will assume that the star is a Sun-like star. 
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1. Orbital radius. We can calculate the orbital radius, a, of the planet using Kepler’s Third Law: 

 

 𝑃2 = 4π2

𝐺(𝑀+𝑚)( )𝑎3 

 
We know P and M, and we can neglect m of the exoplanet for now since it is negligible 

compared to the mass of the star. Use the equation above to calculate a: 

 

 

 

 

 

 

 

 

 

 

2. Mass of the planet. Recall the following equation, which we can use to calculate the mass of 

the planet: 

 

 𝐾 = ( 2π𝐺
𝑃 )

1/3
· 𝑚·𝑠𝑖𝑛(𝑖)

(𝑀+𝑚)2/3

 

Assume that the planet’s orbit is on an inclination of i = 90° and calculate m: 
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3. Radius of the planet. Calculating the radius of the planet requires knowing some 

information about the planet’s transit. For convenience, we assume that this planet also transits 

its star and that we have transit data available. Then, to calculate the radius of the planet, we can 

use the equation: 

 

 𝑑𝑟𝑜𝑝 = 𝑟2

𝑅2

 

where drop is the measured fractional drop in the star’s brightness/flux caused by the planet’s 

transit. In the transit light curve below, the flux is normalized to 1, so the measured flux drop is 

also the measured fractional drop. 

 

 

 

Using this data and the equation above, calculate r of the planet: 
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4. Density of the planet. Given density = mass/volume, calculate the density of the planet: 

 

 

 

 

 

Look up the densities of the materials and Solar System planets listed below and fill in the table. 

How does your calculated density of your possible exoplanet compare to these? What guesses 

might you make about the composition of your planet? 

 

Material/Planet Density 

Water  

Ice  

Iron  

Terrestrial rock(s)*  

Mercury  

Earth  

Jupiter  

Saturn  

* “Rock” is a general term that refers to many different types of minerals and mineral matter. Try looking for a range of and/or average densities 

of common rocks found on Earth. 
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5. Equilibrium temperature of the planet. Finally, we can estimate the equilibrium 

temperature of the planet by using the following equation: 

 

 𝑇
𝑝

= 𝑇
☉

(1 − 𝐴)1/4 𝑅
☉

2𝑎

 

Note the term A, which stands for the albedo of the planet. Recall that albedo is a measure of 

how much energy/light is absorbed or reflected by an astronomical body, and takes a value 

between 0 and 1 (where 0 = total absorption and 1 = total reflection). We don’t know the albedo 

of our planet, but we can try to make a reasonable guess. Try looking up the albedos of the 

materials and Solar System planets whose densities you just found in the previous exercise, and 

use those combined with what you do know about our planet so far to make a reasonable guess 

for its albedo. Then use the equation above to calculate Tp : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Try looking up the equilibrium temperatures of Earth and other Solar System planets. How does 

your calculated Tp compare to these? What, if anything, might you be able to guess about the 

habitability of our planet based on this measurement? 
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Challenge Exercise (Optional): Changing stellar/planetary parameters 

Think about what you’ve learned about how different planetary characteristics can be 

determined from RV and/or transit data and discuss the following questions with your 

neighbors. One additional parameter that we skipped over in this activity was the duration of the 

planet’s transit across the star. Refer back to page 11 and note the duration of the planet’s 

transit. Consider what additional characteristic(s) we might be able to determine from the 

transit duration (hint: think about the geometry of the orbit!). 

 

For these exercises, we assumed that the star in the system we are looking at was a Sun-like star. 

Imagine instead that the star in this system you just looked at was an M dwarf/red dwarf, which 

are significantly smaller than the Sun. Assuming you received the exact same RV and transit 

data, how would this affect the planetary parameters you obtain from the equations above? 

What if the star is significantly larger? 

 

Now imagine that we keep the star Sun-like, but the planet in the system is significantly smaller; 

say, an Earth-like planet. How might this change the RV and transit data we receive from the 

star? If you have time, try calculating the approximate radial velocity semi-amplitude, K, and 

flux drop we would measure as a result of an Earth-like planet’s “wobble” of and transit across a 

Sun-like star. How do these values compare to the RV and transit data we observed for the 

system in the previous exercises? Estimate the uncertainties in the measurements/data you 

worked with in this activity and consider the limitations that these uncertainties place on the 

types of planets you can find with this data. What is the smallest planet you think you could 

detect with RV and/or transit data? 
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Useful constants/values and equations: 

 𝐺 = 6. 67 · 10−11 𝑚3𝑘𝑔−1𝑠−2

 𝑐 = 3 · 108 𝑚 𝑠−1

 𝑀
☉

= 1. 989 · 1030𝑘𝑔

 𝑅
☉

= 6. 957 · 108𝑚

 𝑇
☉

= 5772𝐾

 𝑚
𝐸

= 5. 97 · 1024𝑘𝑔

 𝑟
𝐸

= 6. 37 · 106𝑚

 𝑉
𝑠𝑝ℎ𝑒𝑟𝑒

= 4
3 π𝑟3
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