Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-ldentifier: Apache-2.0 WITH LLVM-exception

Carbon Language - http://github.com/carbon-language

Safety Unit No. 14 Status: Oraf

Created: 2025-10-25

Interface effects Docs stored n £z ford o

"Safety Unit" is a series of docs with "units of discussion": a doc to help written, async
communication.

Example

in safety unit no. 11, we identified that instances where type information is erased need
particular care.

Java

interface A {
// Move allows For Swap().
let T:! Core.Move;
fn B[ref self: Self]() -> ref T;
fn Cl[ref self: Self]() -> ref T;
}

interface D {
// QUESTION: What effects can we put here, given that we can't
// talk about the fields of “Self'?
fn Flref self: Self]();

}

impl forall [U:! A] U as D {
fn Flref self: Self]() {
Swap(ref self.B(), ref self.C());
}
}

// QUESTION: What are the effects of 'G'?
fn G[V:! Al(ref x: V) {

x.(D.F)();
}

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
http://github.com/carbon-language
https://drive.google.com/drive/folders/1aC5JJ5EcI8B7cgVDrLvO7WNw97F0LpS2
https://github.com/carbon-language/carbon-lang/blob/trunk/CONTRIBUTING.md#getting-access
https://docs.google.com/document/u/0/d/1nuNDjDOWhSAsSZ4aWOOYNwwjvDNjG573-1lJ-q0bj8Y/edit

class E {
// pointers to be returned by B and C
var b: i32**;
var c:. 132%*%*;
// other pointers to be swapped by a specialization of 'D°
var p: 132%*%*;

impl as A where .T = i32*%* {
fn Blref self: Self]() -> ref T { return self.b; }
fn Clref self: Self]() -> ref T { return self.c; }

}
// specialization overriding the blanket impl of D in terms of A
impl as D {
fn Flref self: Self]()
// Can have specific effects here. Note: getting pretty verbose!
// Longer than the function itself.
[[fout.*self.c = A*self.p, “out.*self.p = **self.c,
write(...)]] {
Swap(ref *self.c, ref *self.p);
}
}
}
fn H() {

var e: E = {...};
// QUESTION: What are the effects of this call?
G(ref e);

}

There are a few big concerns:

e Difficulty of specifying effects on interfaces, since we can't reference specifics of the
type.

e Effects for specific implementations can vary widely, won't be accurately captured by
effect annotations on the interface.

e Effects may come from a different interface than those mentioned in the function's
constraints due to blanket imp1ls.
Specialization adds further uncertainty about what an interface function can or does do.
Some operations, like swap, affect individual alias sets without affecting the union we
would use to summarize when you don't have the individual fields.

Idea: delegated effects

Observe that the specific results of a copy operation are different for different types. We want to
preserve which specific fields have captured which references. A specific type might implement
"copy" in a way that doesn't just copy. So we have some unspecific effects on the interface that
are used to check uses within a generic, but the concrete consumer of the generic would like to
see the more specific effects from the impl of the interface for the specific type. So instead of
including the net effect from the interface in the effect signature, the idea is to mention the
interface itself and let the caller compute the effects with whatever more specific information
the caller has.

QUESTION: How would that work?

Rejected option: effects in associated constants

One possibility is for an interface to have an associated effect constant (or just "associated
effect” analogous to "associated type") as in

None

interface Destroy {
let E:! Core.Effect;
fn Op[ref self: Self]() [[with(E)]]

}

But then we have a problem of decoupling effects from the parameters and then later rebinding
them, as discussed on 2025-11-05.

Option: unknown and call effects

Better instead to get rid of Core.Effect values entirely, and use the delegated effects idea
both for interface methods and for function types:

None
fn G[FN:! call[ref](ref C) [[unknown]]
I(ref h: FN) [[calls(h(...)) 11;

interface Destroy {
fn Op[ref self: Self]() [[unknown]];

}

https://docs.google.com/document/d/1Yt-i5AmF76LSvD4TrWRIAE_92kii6j5yFiW-S7ahzlg/edit?tab=t.1ji9ixn9bbnn#heading=h.ejnd4lzi66fn

fn F2[T:! Destroy](ref a: T, ref b: T) [[calls(a.(Destroy.op)()) 11

This would imply a call(...) effect for delegated effects. This requires a good default broad

effect for unknown (maybe similar to the defaults for unannotated C++ functions?) that can be
used to check generically, or an explicit broad effect specified in the interface for type checking
generics that all imp1ls of that interface would be constrained by.

Option: template effects

Since the definitions of generic functions are visible to callers, we can delay checking of effects
until after they are instantiated/monomorphized.

Advantages:
e Easier onramp to memory safety by avoiding the need to write down long and tricky
function contracts.
e Precise effects based on the impls used for concrete types.
Disadvantages
e The usual problems with templates:
They can fail based on new uses.
Poor experience when there are compile failures: diagnostics can only say what
happened, not what contract was violated nor whether the problem is in the caller
or callee.
o They expose the implementation as part of the function's contract, making
evolution difficult.

To avoid template being viral to all callers, it can be contained by an assertion that a set of
effects are bounded by an explicit effects expression.

My expectation is that we will have template effects but minimize their use, in line with our
generics strategy.

Option: Effect constraints in facet types

The idea here is that a generic function using an interface as a constraint has more specific
knowledge of what effects it can allow and still pass effect checking. So if the generic function
could write T:! MyInterface where... and then specify effect constraints on the methods of
MyInterface that T's impl of MyInterface would have to satisfy. Two big concerns:
e The effect constraints would need to be expressed in terms of the parameters to those
methods, which are not currently in scope.
e This would generally be quite verbose.

In Rust
h J/rust. It.org/z/xsY545Er4

Rust

trait Write {
fn write(&mut self);

trait A {
type T : Write;
fn B(&mut self) -> &mut Self::T;
fn C(&mut self) -> &mut Self::T;
}

trait D {
fn F(&mut self);
}

impl<U: A> D for U {
fn F(&mut self) {
self.B().write();
}

// QUESTION: What are the effects of 'G'?
fn G<V: A>(x: &mut V) {

<V as D>::F(x);
}

struct E<'e> {
// pointers to be returned by B and C
b: &'e mut &'e mut i32,
c: &'e mut &'e mut i32,

// other pointers to be swapped by a specialization of °

p: &'e mut &'e mut i32,
}
impl<'e> A for E<'e> {
type T = &'e mut &'e mut i32;
fn B(&mut self) -> &mut Self::T { &mut self.b }
fn C(&mut self) -> &mut Self::T { &mut self.c }
}

impl Write for &'_ mut &'_ mut i32 {
fn write(&mut self) {
**k*self *= 2;

https://rust.godbolt.org/z/xsY545Er4

// specialization overriding the blanket impl of D in terms of A
/*
impl as D {
fn Flref self: Self]() {
Swap(ref *self.c, ref *self.p);

fn H() A
let mut i1 = ©;
let mut p1 = &mut it;
let mut i2 = ©;
let mut p2 = &mut i2;
let mut i3 = ©;
let mut p3 = &mut i3;

let mut e = E{
b: &mut p1,
c: &mut p2,
p: &mut p3,

i

G(&mut e);

	Safety Unit No. 14: interface effects
	Example
	Idea: delegated effects
	Rejected option: effects in associated constants
	Option: unknown and call effects
	Option: template effects
	Option: Effect constraints in facet types

	In Rust

