EdTech Internship

Learning Analytics and Learning Processes Group Educational Technology IIT Bombay

Note:

- 1. The data and the problem statements fall under Educational Technologies
- 2. Most of the projects may use deep learning methods

Machine and Deep Learning for Processing

Text Processing
Image Processing
Speech processing
Sensor data Processing
Multimodal Analysis

Process Mining and Data Mining for Understanding

Supervised learning (classification • regression)

Clustering

Dimensionality reduction

Structured prediction

Anomaly detection

Artificial neural network

Reinforcement learning

Business Process Management

Process Discovery

Conformance Checking

Workflow Management

Machine Learning

Data Science

Sequence mining

Intention mining

Data visualization

Process analysis

Environments

Classroom
Collaborative Learning
Online Learning
Virtual reality
Augmented Reality

Sensors

Webcam

Camcorder

Kinect

Tobii eye tracker

Leap Motion

Muse

GSR

EEG

Interaction Log Data

Areas at bird's-eye view

Computer Vision

Natural Language Processing

Signal Processing

Multimodal Learning Analytics

Augmented Reality

Virtual reality

Internet of things

Web Technologies

Human Computer Interaction

Human Robotic Interactions

Learning Analytics

Educational Data Mining

Sample Projects

1. Automatically detecting synchrony and equality (other low-level constructs) in collaborative discourse using audio features of speech

- a. Speech Features: pitch, energy, speaking rate, acoustic features, mean audio level, prosodic and tone features, additionally entrainment and pause-turn taking gap etc
- b. Learning Environment: Collaborative Learning
- c. Sensor Used: Camcorder and Mike
- d. Processing: Speech and Text
- e. Learners: Simultaneous analysis of Multiple Learners
- f. Data: Video (images and audio)
- g. Methods: Machine and Deep Learning
- h. Modalities: Multimodal
- i. Duration: 2 Months (Part-time)
- j. Area: Signal Processing, Computer Vision and Learning Analytics
- k. Level of the project: For intermediate (Some exposure in signal processing)

2. Analysing Students' affective states in Augmented Reality Environment for language learning

- a. Learning Environment: Individual Learning
- b. Sensor Used: Leap Motion
- c. Processing: Image
- d. Learners: Single learner
- e. Data: Images
- f. Methods: Deep Learning
- g. Modalities: Singleh. Duration: 40 hours
- i. Area: Computer Vision, Augmented Reality and Educational Data Mining
- j. Level of the Project: Beginner

Similarly there are several projects that cover the above mentioned details and not all can be provided as the list is quite big. Hence I am providing the broader areas of the project below. In every area there are projects for beginner, intermediate and expert.

List of current Projects but not limited to

1. Students' Microexpressions in online learning to optimise the edge computing aspects of vision based student emotional engagement analysis

- 2. Automatic prediction of NV indicators in co located collaborative learning for graduate student programming course
- 3. Design of 3d characters that are expressive and interactive for mathematics course content delivery
- 4. Temporal nature of learning centred emotion for primary school children
- 5. Monotone detection of teacher voice from online lecture videos
- 6. Blender and Unity 3D avatars in augmented reality based ed. App.
- 7. Addressing the challenges of multimodality for educational data
- 8. Tobii eye tracker based eye gaze analysis for student engagement in high school mathematics education
- 9. Summarization and alignment of interaction log data, facial expressions and eye gaze for cognitive and affective engagement in the METTLE study
- 10. Feature engineering for drop rate and performance prediction in longitudinal data obtained from high school students
- 11. Preserving Privacy of Face and Facial Expression in Computer Vision Data Collected in Learning Environments

Areas of Projects but not limited to

Al-assisted and Interactive Technologies in an Educational Context

Natural language processing and speech technologies; Data-driven processing techniques (educational data mining, deep learning, machine learning,...); Knowledge representation and reasoning; Semantic web technologies; Multi-agent architectures; Tangible interfaces, Wearables; Virtual and augmented reality.

Modelling and Representation

Models of learners, including open learner models; facilitators, tasks and problem-solving processes; Models of groups and communities for learning; Modelling motivation, metacognition, and affective aspects of learning; Ontological modelling; Computational thinking and model-building; Representing and analysing activity flow and discourse during learning; Representing and modelling psychomotor learning.

Models of Teaching and Learning

Al-assisted tutoring and scaffolding; Motivational diagnosis and feedback; Learner engagement; Interactive pedagogical agents and learning companions; Agents that promote metacognition, motivation and positive affect; Adaptive question-answering and dialogue; Data-driven modelling (educational data mining, deep learning, machine learning,...); Learning analytics and teaching support; Learning with simulations; Explainability of models for teaching and learning.

Learning Contexts and Informal Learning

Game-based learning; Collaborative and group learning; Social networks; Inquiry learning; Social dimensions of learning; Communities of practice; Ubiquitous learning environments; Learning through construction and making; Learning grid; Lifelong learning; Learning in informal settings (museum, workplace, etc.); Learning in the physical space; Learning of motor skills.

Evaluation

Studies on human learning, cognition, affect, motivation, engagement, and attitudes; Design and formative studies of AIED systems; Evaluation techniques relying on computational analyses.

Innovative Applications

Domain-specific learning applications (e.g. language, science, engineering, mathematics, medicine, military, industry, sports and more); Scaling up and large-scale deployment of AIED systems.

Equity and Inclusion in Education

Socio-economic, gender, and racial issues; Intelligent techniques to support students from under-resourced schools and communities; Sponsorship, scientific validity, participant's rights and responsibilities, data collection, management and dissemination.

• Ethics and AI in Education

explainability, transparency, accountability, responsible AIED, adoption, involvement of teachers and learners.

• Explore Design, Use, and Evaluation of Human-Al Hybrid Systems for Learning

Research that explores the potential of human-Al interaction in educational contexts; Systems and approaches in which educational stakeholders and Al tools build upon each other's complementary strengths to achieve educational outcomes and/or improve mutually.

Online Learning Spaces

Massive open online courses; Remote learning in k-12 schools; Synchronous and asynchronous learning; Mobile learning; Active learning in virtual settings; Video-based learning; Mixed reality and learning.

Preferred Group Size: 3 (Not Mandatory)

Duration of the Projects: Depends can be from minimum 2 months to an year based on hours per week, part time full time and so on.

Sample works can be observed in the following google scholar profiles (Check the published works related to education)

https://scholar.google.com/citations?user=E3WJWwUAAAAJ&hl=en

https://scholar.google.com/citations?hl=en&user=fzRGk70AAAAJ

https://scholar.google.com/citations?user=-Rdtw4oAAAAJ&hl=en

https://scholar.google.co.in/citations?hl=en&user=I7pOhHsAAAAJ&view_op=list_works&sortby=pubdate