
Development of Web Applications​

Practical 7: Selenium

Vincent Simonet, 2015-2016

This document: https://goo.gl/u9g0PS

Objective

The objective of this practical exercise is to learn about testing of web applications using Selenium
http://www.seleniumhq.org/

Selenium is a framework allowing to automate web browsers. It's primarily intended for testing
purposes, but it can be used for many other applications. Selenium has the support of the largest
browser vendors on desktop and mobile, including Firefox, Chrome and Internet Explorer.
Selenium comes into two flavors:

●​ Selenium IDE, which is a Firefox extension, which allows to quickly create simple scripts from
an IDE,

●​ Selenium WebDriver, which allows to create robust and more complex scripts using a
programming language (like Python or Java).

In this practical, we will exercise both approaches.

Setup

All the files required for this practical have been packaged in the tar archive available at:
http://www.normalesup.org/~simonet/teaching/upmc-master/2015-2016/lecture7-practical.zip

Download this archive, and uncompress it in your home directory. (In the remainder of this practical,
we will assume it is uncompressed in the directory ~/lecture7-practical/.)

In this practical, we will use MonkeyWiki as an example web application to test. MonkeyWiki is a
simple Wiki implemented in Python. The source code for MonkeyWiki is included in the archive you
just downloaded. To run it locally on your workstation, enter the commands:

cd ~/lecture7-practical/www
chmod u+x cgi-bin/monkeywiki.py
python -m CGIHTTPServer 8000

and visit
http://localhost:8000/cgi-bin/monkeywiki.py

with your web browser.

Because going further, make you familiar with MonkeyWiki by browsing, creating and editing a few
articles. You're also advised to install Firebug as it might be useful for this practical.

Part 1: Selenium IDE

Selenium IDE is a Firefox add-on. To install it, just load the following URL in Firefox:
http://release.seleniumhq.org/selenium-ide/2.8.0/selenium-ide-2.8.0.xpi

Then, in order to launch Selenium IDE, select "Selenium" in the "Developer IDE" menu of Firefox (the
exact menu structure may depend on which version of Firefox you use) This open a separate window
named "Selenium IDE".

http://www.seleniumhq.org/
http://www.normalesup.org/~simonet/teaching/upmc-master/2014-2015/lecture7-practical.zip
http://www.waywood.co.uk/MonkeyWiki/
https://addons.mozilla.org/fr/firefox/addon/firebug/
http://release.seleniumhq.org/selenium-ide/2.8.0/selenium-ide-2.8.0.xpi

1.​ Create a test script "CreateAndDeletePage" in the IDE which creates an article "MyArticle"

with some body text, and then delete it. (To make the script robust, you should ensure you
always start by entering an URL in the web browser, so that the starting point is well defined.)

2.​ Replay this script several times, and check everything goes well.

You can see in the Selenium IDE window that Selenium creates the script as a list of commands,
each command consisting of a command name, and target and an optional value. A full reference of
all available commands in available in Selenium manual.

3.​ Edit the script "CreateAndDeletePage" in order to change the name of the article and the body
text.

4.​ Create a new script "CreatePage" in the IDE which just creates an article "MySecondArticle".
5.​ Replay this script several times. It should fail at the second command. Why?
6.​ Delete this second script.

Element Locators. Selenium IDE has several mechanisms to identify elements on a web page, see
the manual.

7.​ Edit the script "CreateAndDeletePage" to use a CSS locator instead of a name one.

Assertions. Some commands in Selenium IDE allows to make additional checks while the script is
executed.

8.​ The command assertTitle checks the current value of the page title. Extends the script
"CreateAndDeletePage" to check the title page of the article once created. Try this with the
correct page title and also with a wrong one.

9.​ (optional) The command assertText checks the current contents of some HTML element in
the page. Extends the script "CreateAndDeletePage" to check the article body of the article
once created. Try this with the correct page title and also with a wrong one.

10.​(optional) The command assertValue checks the current value of some HTML form
element in the page. Extends the script "CreateAndDeletePage" to check the default contents
of the article when creating it.

Storing values. Selenium IDE also allows to store some values in variable and to re-use them later
in the script.

11.​(optional) Create a script "CopyPage" which copies the contents of the article "MyArticle" into
a new article "MyCopiedArticle".

Part 2: Selenium WebDriver

In this second part, we will use Selenium WebDriver to write test scripts in Python. The Python API
for Selenium WebDriver is included in the archived you downloaded at the beginning of this practical.
You can find an intro to this API and its full documentation online.

1.​ Create a first script that just opens a browser on the main page of the Wiki. Your script should
look like:

#!/usr/bin/python​
​
import sys​

http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html#locators
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html#storeTitle
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html#storeText
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html#storeValue
http://selenium.googlecode.com/git/docs/api/py/index.html
http://selenium-python.readthedocs.org/en/latest/api.html

This command is needed because Selenium is not installed in the main
Python path. Update the path to point to the right directory in your
home directory.​
sys.path.append('/home/vtst/lecture7-practical/selenium-2.43.0/py')​
​
from selenium import webdriver​

The proxy settings may have to be adapted to your network settings.
PROXY_HOST_PORT = 'proxy:3128'

proxy = webdriver.common.proxy.Proxy({
 'proxyType': webdriver.common.proxy.ProxyType.MANUAL,
 'httpProxy': PROXY_HOST_PORT,
 'ftpProxy': PROXY_HOST_PORT,
 'sslProxy': PROXY_HOST_PORT,
 'noProxy': 'localhost'
})

browser = webdriver.Firefox(proxy=proxy)
browser.get('http://localhost:8000/cgi-bin/monkeywiki.py')

Make your script executable (chmod u+x script.py) and execute it (./script.py).

2.​ When using Selenium for testing in Python, it's convenient to use the unittest module from the

Python Standard Library:

[...]
​
import unittest​
​
class MyTestCase(unittest.TestCase):​
​
 def setUp(self):​
 self.browser = webdriver.Firefox(proxy=proxy)​
 self.addCleanup(self.browser.quit)​
​
 def testSuccess(self):​
 self.browser.get('http://localhost:8000/cgi-bin/monkeywiki.py')​
 self.assertIn('Front Page', self.browser.title)​
​
 def testFailure(self):​
 self.browser.get('http://localhost:8000/cgi-bin/monkeywiki.py')​
 self.assertIn('Bob', self.browser.title)​
​
if __name__ == '__main__':​
 unittest.main(verbosity=2)

WebElement. The most important class of the API is WebElement. An instance of WebElement
represents an HTML Element on a page. You can get a WebElement by using the find_* methods you
can see in the documentation. The obtained object has several methods which allow to perform
actions like entering text or clicking.

3.​ Write a test script which creates an article in the Wiki, and then deletes it.
4.​ Write a test script which creates 10 articles in the Wiki.

http://selenium-python.readthedocs.org/en/latest/api.html#module-selenium.webdriver.remote.webelement

	Development of Web Applications​Practical 7: Selenium
	Objective
	Setup
	Part 1: Selenium IDE
	Part 2: Selenium WebDriver

