
ROS Catkin UX Discussion: Improving Catkin and its Tools

Planning for June 9th, 10:15am (PDT) 2014 Video Conference

Participants (add your name here and speak your mind!):

●​ Jonathan Bohren
●​ Mike Purvis
●​ William Woodall
●​ Dirk Thomas
●​ Jack O’Quin

Please add any concerns with the current released catkin toolchain or enhancement ideas for
future versions in Sections 2 and 3 respectively. Additionally, please add your comments under
each concern or enhancement in a flat list, responses and discussion of each person’s
comments will happen during the videoconference. These comments should be questions,
related concerns, or even proposed solutions.

Table Of Contents

Table Of Contents
1. Non-Issues with the Current Released Toolchain
2. Concerns with the Current Released Toolchain

2.1. “Auto-Extension” and “Rollback” of Workspace Environment Is Counter-Intuitive
Proposal / Jonathan Bohren (catkin_tools#58)
Proposal / Jonathan Bohren

2.2. Lack of Introspection into Workspace Configuration
Proposal / Jonathan Bohren

2.3. Configure-Time Cross-Talk
Proposal / Jonathan Bohren

2.4. Overloaded use of `$CMAKE_PREFIX_PATH`
Proposal / Jonathan Bohren (based on comments in catkin_tools#47)

2.5. Workspace Management In General
Proposal / Jonathan Bohren
Question / Jack O’Quin

2.6. Nomenclature: What is a “Catkin Workspace” ?
Comment / Jonathan Bohren

2.7. Novice User Failure Modes
Proposal / Jonathan Bohren

2.8. Deprecation Pathway For catkin_make and catkin_make_isolated
Proposal / Jonathan Bohren
Question / Mike Purvis
Question / Opinion / Vincent Rabaud

Comment / Jack O’Quin
2.9. There is No Well-Defined Pattern / API for Cleaning Up Catkin env-hooks

Proposal / Jonathan Bohren
Question / Mike Purvis
Question / Jack O’Quin

3. Desired Functionality and Interface Enhancements
3.1. Initiating Workspace Builds Without Navigating to Workspace Root

Proposal / Jonathan Bohren
3.2. Building Pure CMake Projects Without Adding a package.xml

Proposal / Jonathan Bohren
4. General remarks

4.1 Targeted ROS distros
4.2 Tools on top of core functionality
4.3 Environments and CMake

Conclusions / follow ups

1. Non-Issues with the Current Released Toolchain

The following are considered “acceptable” and are not the focus of this discussion:

●​ CMake API
●​ package.xml format (v2)

2. Concerns with the Current Released Toolchain

This is a summary of several of the concerns raised in relation to catkin_tools#48. Most of the
concerns relevant to this discussion are related to workspace configuration, management, and
debugging. This discussion should have an emphasis on streamlining flexible development,
introspection, and design with novice users in mind.

The numbered sub-sections of this section each pertain to a given concern about the catkin
toolchain user experience and workflow. In each section is a bulleted list of solutions or
comments by a user.

2.1. “Auto-Extension” and “Rollback” of Workspace Environment Is

Counter-Intuitive

Currently, when a user invokes `catkin build`, the tool assumes that the user wants to build the
current workspace against all paths listed in the `$CMAKE_PREFIX_PATH` environment
variable. This assumption is correct only inasmuch as the user knows what is already in his or
her `$CMAKE_PREFIX_PATH`.

https://github.com/catkin/catkin_tools/issues/48

If one understands the underlying mechanism that Catkin uses, it’s easy to predict the results of
actions:

Given the following actions:

Load /opt/ros/hydro workspace​
source /opt/ros/hydro/setup.bash​
Make a new workspace, called "ws1" ​
mkdir -p ~/ws1/src​
cd ~/ws1/src && catkin_create_pkg foo​
Build the new workspace, chaining it from /opt/ros/hydro​
cd ~/ws1 && catkin_make

Catkin has the following “sticky” behavior:

●​ The initial configure-time CMAKE_PREFIX_PATH, “/opt/ros/hydro”, is statically stored in
the following places:

○​ ~/ws1/build/catkin_generated/setup_cached.sh
○​ ~/ws1/build/catkin_generated/generate_cached_setup.py
○​ ~/ws1/devel/_setup_util.py

●​ The only way to fully re-set the parent workspace is by removing the build directory,
re-setting the environment, and re-building. Simply changing the cached
CMAKE_PREFIX_PATH is not enough.

●​ Without re-setting the workspace, it will always be chained against the
CMAKE_PREFIX_PATH present when the package was originally configured

In an informal poll of several students a JHU who have been using ROS proficiently for the
better part of a year, not one could answer the following questions correctly. Furthermore each
found the answers to be surprising, even though they said ji “made sense” after explaining how
catkin worked and how catkin stored $CMAKE_PREFIX_PATH:

●​ What is the value of $CMAKE_PREFIX_PATH after the following sequence of actions?

unset CMAKE_PREFIX_PATH

source /opt/ros/hydro/setup.bash

mkdir -p ~/ws1/src

add packages to ws1/src

cd ~/ws1

catkin_make

source devel/setup.bash

source /opt/ros/hydro/setup.bash

Highlight options to see the solution

A.​ “/home/user/ws1/devel:/opt/ros/hydro” WRONG

B.​ “/opt/ros/hydro:/home/user/ws1/devel:/opt/ros/hydro” WRONG
C.​ “/opt/ros/hydro” CORRECT

●​ What is the value of $CMAKE_PREFIX_PATH after the following sequence of actions?

unset CMAKE_PREFIX_PATH

source /opt/ros/hydro/setup.bash

mkdir -p ~/ws1/src

add packages to ws1/src

cd ~/ws1

catkin_make

source devel/setup.bash

mkdir -p ~/ws2/src

add packages to ws2/src

cd ~/ws2

catkin_make

source /opt/ros/hydro/setup.bash

catkin_make

source devel/setup.bash

Highlight options to see the solution

A.​ “/home/user/ws2/devel:/home/user/ws1/devel:/opt/ros/hydro” CORRECT
B.​ “/home/user/ws2/devel:/opt/ros/hydro” WRONG
C.​ “/opt/ros/hydro” WRONG

●​ Proposal / Jonathan Bohren (catkin_tools#58)

The automatic chaining is definitely convenient, and there are good arguments against
requiring people to explicitly specify which workspace(s) they want to chain their new
workspace against.

I’ve written a patch (catkin_tools#58) for `catkin build` which adds an `--extend-ws`
argument which lets a user explicitly specify the workspace that a new (or existing)
workspace should be chained against. This is based on discussions from catkin#643.
This is implemented by sourcing the setup-file from the workspace in question and
extracting the resulting environment variables.

Additionally, `catkin build` could add the notion of a “default base workspace” which
could either be whatever’s in `CMAKE_PREFIX_PATH` (the current behavior), or it could
be something like /opt/ros/hydro or ~/path/to/my/overlay/devel. This would make it even
less likely that people accidentally chain workspaces together which they didn’t intend to.

https://github.com/catkin/catkin_tools/pull/58
https://github.com/catkin/catkin_tools/pull/58
https://github.com/ros/catkin/issues/643

●​ Proposal / Jonathan Bohren

In order to increase visibility of catkin’s modification of the `CMAKE_PREFIX_PATH`
when sourcing environments, any changes to this variable could be announced when
sourcing one of the setup files. For example, if an element in `CMAKE_PREFIX_PATH`
is getting “rolled back” then the setup file should announce that to stdout. Even in the
nominal case where a `CMAKE_PREFIX_PATH` is just extended, the setup file should
make it clear to the user what is happening. Of course it should be possible to suppress
these messages with a `--quiet` flag.

2.2. Lack of Introspection into Workspace Configuration

Once a workspace has been created, it’s hard to determine which settings were used to build it.
Such settings include:

●​ build/devel/src/install-space paths
●​ additional CMake arguments
●​ build “style” merged/isolated
●​ devel “style” merged/isolated

●​ Proposal / Jonathan Bohren

Recently, `catkin_make/_isolated` now generate an empty `.catkin_workspace` file in the
root of a given workspace. Instead of leaving this file empty, catkin could put
configuration information in this file which could specify all of the above settings.

This solution prompts two concerns that would need to be resolved:

1.​ What happens when the user edits the file? Does it throw an error or does it just
switch the behavior in the same way that modifying .git/config does?

2.​ What happens when the user wants to clean out the repository. Currently this can
be done confidently by removing the buildspace and develspace directories. We
would need to detect that the .catkin_workspace file describes non-existent
directories and then either ignore the options, or alternatively assume that the
user wants to perform the same options. Either way, an appropriate amount of
feedback would need to be given to the user.

2.3. Configure-Time Cross-Talk

Catkin’s merged-build behavior has classically suffered from both bugs and un-bugs that result
from the side-effects of configuring one package before another. These include, but are not
limited to:

●​ modifications of environment variables,
●​ global cmake variables,

●​ target name collisions,
●​ failing to call `catkin_package()` before declaring targets

Additionally, the modification of a single CMakeLists.txt file prompts re-configuration of every
package in a workspace, which puts a high cost on large workspaces.

●​ Proposal / Jonathan Bohren

Use `catkin build`, which by default builds each package in isolation while depositing
build products into a common devel-space.

2.4. Overloaded use of `$CMAKE_PREFIX_PATH`

Catkin uses the $CMAKE_PREFIX_PATH environment variable to manage the list of "sourced"
workspaces. This is already a confusing point for new users. When using CMake directly, it's
understandable that they would have to manipulate $CMAKE_PREFIX_PATH, but when using
tools like catkin_make and catkin build, students and novice users are confused that to reset
their catkin environment they need to unset $CMAKE_PREFIX_PATH.

●​ Proposal / Jonathan Bohren (based on comments in catkin_tools#47)

We could switch to using a catkin-specific environment variable, call it
$CATKIN_PREFIX_PATH which is added to $CMAKE_PREFIX_PATH either when you
call find_package(catkin ...) or when you run catkin build. Catkin can add and remove
whatever it wants to $CATKIN_PREFIX_PATH, without concern for colliding with users'
own modifications to $CMAKE_PREFIX_PATH and the new variable will be more
intuitive for novices trying to understand the buildsystem.

It makes things more straightforward in three ways:

1.​ It means that we can be more strict about how we interpret
$CATKIN_PREFIX_PATH since only catkin should be modifying it, and a path on
$CATKIN_PREFIX_PATH must be a catkin workspace. This strictness means we
can more easily detect a broken environment automatically.

2.​ It means that a user who knows about environment variables can more easily
associate $CATKIN_PREFIX_PATH with catkin when trying to debug their
environment.

3.​ It means that people can add things to their $CMAKE_PREFIX_PATH without
having to worry about it colliding with catkin use of the same variable. This is
important on less-supported platforms like OS X and other systems where there
might be non-standard install paths for libraries.

http://github.com/catkin/catkin_tools/issues/47

2.5. Workspace Management In General

Currently, due to the lack of introspection into workspace configurations, and a lack of
confidence of novice users for manipulating `CMAKE_PREFIX_PATH`, it is hard to confidently
switch between workspaces as well as re-define the settings for a given workspace.

●​ Proposal / Jonathan Bohren

We could add a new `catkin workspace` or `catkin ws` verb to catkin_tools which can be
used to both name workspaces in a globally-identifiable way as well as perform the
following workspace management procedures:

●​ catkin ws create [<workspace-name>]

Create a new workspace with default directories and an optional identifier
●​ catkin ws create --extend <workspace-name>

Create a new workspace that explicitly extends another workspace either by
name or by path

●​ catkin ws save [--default] <workspace-name>
Save the current workspace to a persistent file with an identifier, or set an already
saved workspace as the default.

●​ catkin ws get <workspace-name>
Print the path to the workspace identified by <workspace-name>

●​ catkin ws load [<workspace-name>]
Load either the default or a named workspace environment from a persistent file.
This could go into your shell profile so each new shell gets the workspace that
you're currently using.

●​ catkin ws list
List the saved workspaces

●​ catkin ws clean
Remove the appropriate build and devel directories (prevents people from having
to use rm -rf in their workspaces

●​ catkin ws info <workspace-name>
Show a workspace's dependencies, which known workspaces depend on it,
number of packages, if it's been built, how it’s been built, etc

●​ catkin ws discover <path>
Find all catkin workspaces under some path (by looking for marker file introduced
here ros-infrastructure/catkin_pkg#95)

For workspace names, there could be some defaults like ros-hydro for /opt/ros/hydro but
people will also use project names for different workspaces.

https://github.com/ros-infrastructure/catkin_pkg/pull/95

The persistent file could look something like ~/.config/catkin/workspaces.yaml:

workspaces:

 hydro: '/opt/ros/hydro'

 indigo: '/opt/ros/indigo'

 overlay: '/home/jbohren/ws/overlay/devel'

 jhu: '/home/jbohren/ws/jhu/devel'

 nasa: '/home/jbohren/ITAR/nasa/devel'

A catkin ws command should be concerned solely with managing catkin workspaces as
they pertain to the catkin buildsystem. It shouldn't be concerned with rosdep, wstool, or
other external tools. This verb would also help with workspace introspection.

●​ Question / Jack O’Quin

Should most of these commands should assume current workspace by default?

2.6. Nomenclature: What is a “Catkin Workspace” ?

The term “catkin workspace” has been used to describe several semantically-different
directories in a user’s filesystem. It would be great to be able to be consistent across all tools
related to catkin and ROS. Which of the following is correct:

1.​ A directory from which `catkin_make{_isolated}` has been called
2.​ A directory containing a `.catkin` marker file
3.​ A directory containing a `.catkin_workspace` marker file
4.​ The “source-space” used in a catkin build
5.​ The “devel-space” used in a catkin build
6.​ The “install-space” used in a catkin build
7.​ A directory containing ROS/Catkin setup files

●​ Comment / William Woodall​

This is defined here, if not sufficient then we should update that REP:
http://www.ros.org/reps/rep-0128.html

Furthermore, other ROS and ROS-related tools define other kinds of workspaces, as well:

●​ `rosws` both manages VCS checkouts and setup files
●​ `wstool` manages VCS checkouts in a source-space

Other nomenclature questions:

●​ What does it mean to “clean” a catkin workspace? How do you “start over from scratch”?

http://www.ros.org/reps/rep-0128.html

●​ When you build one workspace after building another and adding it to your
CMAKE_PREFIX_PATH, is it called “chaining” or “extending”? In the latter, which
workspace is the one “being extended”?

●​ Are chained workspaces “parent” and “child” workspaces?

Note that a partial Catkin glossary is given here: http://wiki.ros.org/catkin/Glossary

●​ Comment / Jonathan Bohren

I think it would be ideal if we could unify the “workspace” moniker so that we could talk
about catkin and wstool in the same sentence without having to use extra adjectives for
describing different kinds of workspaces. ROS development is dramatically enhanced by
the use of wstool, yet, since its forking from rosinstall, it has been pushed back into the
shadows.

●​ Comment / William Woodall​
I would disagree with the assertion that wstool is being pushed back into the shadows,
because it is used in all of our instructions, except in the very lowest tutorials where we
are showing the bare minimum required to build a catkin workspace. wstool is not
required to build a workspace (which I think is a good thing) but is recommended and
used in any tutorials or instructions I have a part in, e.g. the source install instructions
and any posts I make to answers.ros.org.

2.7. Novice User Failure Modes

Novice users have been observed to have most difficulty understanding the hidden behaviors of
catkin like workspace chaining which can be done unintentionally. A recently-patched bug
(catkin#641) also prevented users from cleaning their workspaces and starting over from what
they believed was a “clean” workspace.

Due to the broad spectrum of use cases that catkin is designed to satisfy, there is a LOT of
documentation:

●​ http://wiki.ros.org/catkin
●​ http://wiki.ros.org/catkin/conceptual_overview
●​ http://docs.ros.org/api/catkin/html/
●​ http://wiki.ros.org/catkin/package.xml
●​ http://wiki.ros.org/catkin/CMakeLists.txt
●​ http://wiki.ros.org/catkin/Glossary
●​ http://www.ros.org/reps/rep-0140.html
●​ http://wiki.ros.org/catkin/what

There is additionally more documentation for `catkin build` and other functionality in
catkin_tools.

http://wiki.ros.org/catkin/Glossary
https://github.com/ros/catkin/pull/641
http://wiki.ros.org/catkin
http://wiki.ros.org/catkin/conceptual_overview
http://docs.ros.org/api/catkin/html/
http://wiki.ros.org/catkin/package.xml
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/catkin/Glossary
http://www.ros.org/reps/rep-0140.html
http://wiki.ros.org/catkin/what

As such, it is unlikely that a user will actually read all of this documentation, and novice users
will always miss something. They might not even know that they’re missing something.

●​ Proposal / Jonathan Bohren

Add a pedantic / tutor mode for `catkin build` that can be set by default when it is
installed, and toggled easily with a catkin verb like `catkin --enable-tutor` or `catkin
--disable-tutor`. This global mode will have more verbose information and spend more
time looking for user errors.

2.8. Deprecation Pathway For catkin_make and catkin_make_isolated

Since `catkin build` is planned to supercede `catkin_make` and `cakin_make_isolated`, there is
a huge corpus of tutorials which need to be updated. What is the strategy for rolling out this new
tool?

●​ Proposal / Jonathan Bohren

We could simply create wrapper scripts called `catkin_make` and
`catkin_make_isolated` which call through to `catkin build` and then migrate the
documentation as slowly as we need to.

●​ Question / Mike Purvis

A previous discussion gave me the impression `catkin build` would become
recommended, but that `catkin_make` would live on. Is that still the case? Either way,
what’s the current and future policy avoiding target name collisions? (eg, necessity of
prefixing target names with package names?)

●​ Question / Opinion / Vincent Rabaud

I have rtfm-ed “catkin build” but it seems like there is no option to have one common
build space. How do we deal with cross targets then ? (like docs/tests)
I also dislike the fact that I have to install yet another tool to use catkin (you now need to
install catkin_pkg and catkin to use a catkin package). Having catkin self-contained is
highly desirable to me: something that just does the symlink, cmake, make: it is more
transparent what is happening.

●​ Comment / William Woodall​
I believe that we have already discussed this in the mailing list, `catkin_make` will live
on, as is, so will the ability to just call cmake on a source space with the toplevel.cmake
symlinked in there, which is how you get a combined build space. `catkin build` will be
recommended for users to avoid issues like colliding target names, inter-target ordering
problems, and other problems people have pointed out with plain `catkin_make`. We
discussed replacing the implementation of `catkin_make_isolated` with a shell that
converts the arguments and then calls `catkin build` as well as displaying a warning the
that user should switch to `catkin build`. `catkin build` will not provide a combined build

space option, because they are orthogonal styles of building a workspace.​
​
w.r.t to “How do we deal with cross targets then ? (like docs/tests)”, I’m not sure what
you mean, can you be more specific?​
​
“I also dislike the fact that I have to install yet another tool to use catkin” I agree, and
catkin_tools is strictly _not_ required to use catkin in the simplest case. I have made the
suggestion to embed `catkin_pkg` into `catkin` so that it is not required to be installed to
use catkin, but I have met resistance to this idea, and I have to admit that I am not 100%
certain that is would be better that way.

●​ Comment / Jack O’Quin

One of the conveniences of catkin_make workspaces was:
catkin_make

cd build

make roslint run_tests

or:
make run_tests_camera1394

I have not yet discovered a good way to do either with catkin build, except this
single-package trick:

catkin build camera1394

(cd build/camera1394/; make run_tests)

Making catkin build work from within the source or build spaces would help some:
cd build/camera1394

catkin build camera1394

make run_tests

catkin_test_results test_results

2.9. There is No Well-Defined Pattern / API for Cleaning Up Catkin env-hooks

Catkin currently provides a mechanism through which packages can inject their own shell code
into the setup files which get loaded when someone loads a workspace. This is done through
the catkin_add_env_hooks() CMake macro.

These hooks are normally used for the following:

●​ Append directories to a PATH-type environment variable
●​ Define CLI autocomplete rules
●​ Define additional shell functions
●​ Whatever nasty possibly-platform-specific thing someone can think of...

http://docs.ros.org/hydro/api/catkin/html/dev_guide/generated_cmake_api.html#catkin-add-env-hooks

As mentioned in catkin_tools#58, this presents a problem with cleanup after sourcing one or
more workspaces. This is especially a problem if someone wishes to source a given catkin
workspace in their shell’s rc-file, and isn’t aware of something that a package in their workspace
path is doing. While catkin provides a “rollback” behavior for `$CMAKE_PREFIX_PATH`, there
is no additional support to developers for undoing their own changes related to these setup files.

Here is a list of commonly-used patterns in env-hooks (via github search):

●​ roslisp
○​ exports a package-specific variable

export ROSLISP_PACKAGE_DIRECTORY=@CMAKE_INSTALL_PREFIX@/share/common-lisp/ros

●​ orocos_toolchain
○​ defines some RUBY variables
○​ defines some package-specific variables
○​ defines a PATH-like variable, RUBYLIB
○​ extends LUA_PATH
○​ extends LD_LIBRARY_PATH / DYLD_LIBRARY_PATH for plugins

RUBY_VERSION=`ruby --version | awk '{ print $2; }' | sed -e "s/\(.*\..*\)\..*/\1/"`

RUBY_ARCH=`ruby --version | sed -e 's/.*\[\(.*\)\]/\1/'`

export RUBYOPT=-rubygems

export TYPELIB_USE_GCCXML=

envpath=@CMAKE_INSTALL_PREFIX@

if [`uname -s` = Darwin]; then

export

RUBYLIB=$envpath/lib:$envpath/lib/typelib:$envpath/lib/ruby/${RUBY_VERSION}/${RUBY_ARCH}:$

envpath/lib/ruby/${RUBY_VERSION}:/Library/Ruby/Gems/${RUBY_VERSION}:\

/Library/Ruby/Gems/${RUBY_VERSION}/${RUBY_ARCH}:/Library/Ruby/Gems

export DYLD_LIBRARY_PATH=$envpath/lib/typelib:$envpath/lib/orocos:$DYLD_LIBRARY_PATH

else

export

RUBYLIB=$envpath/lib:$envpath/lib/typelib:$envpath/lib/ruby/${RUBY_VERSION}/${RUBY_ARCH}:$

envpath/lib/ruby/${RUBY_VERSION}:

export LD_LIBRARY_PATH=$envpath/lib/typelib:$envpath/lib/orocos:$LD_LIBRARY_PATH

fi

if ["x$LUA_PATH" == "x"];then

LUA_PATH=";;;"

fi

export LUA_PATH="$LUA_PATH;$envpath/share/lua/5.1/?.lua"

●​ axcli
○​ adds shell completion for a program in this package

function _roscomplete_axcli

{

https://github.com/catkin/catkin_tools/pull/58#issuecomment-44912362
https://github.com/search?q=catkin_add_env_hooks+SHELLS&type=Code&ref=searchresults
https://github.com/schneider42/ros_comm6/tree/master/clients/roslisp/env-hooks
https://github.com/smits/orocos_toolchain/tree/master/orocos_toolchain/env-hooks
https://github.com/po1/axcli/tree/master/env-hooks

 local arg opts

 COMPREPLY=()

 arg="${COMP_WORDS[COMP_CWORD]}"

 local cword=$COMP_CWORD

 for a in $(seq $((COMP_CWORD-1))); do

 if [-z "${COMP_WORDS[a]//-*}"]; then

 ((cword--))

 fi

 done

 local words=(${COMP_WORDS[@]//-*})

 if [[$cword == 1]]; then

 opts=`rostopic list | grep '/goal$' | sed 's,/goal$,,' 2> /dev/null`

 COMPREPLY=($(compgen -W "$opts" -- ${arg}))

 elif [[$cword == 2]]; then

 mtype=`rostopic type ${words[1]}/goal`

 opts=`rosmsg-proto msg 2> /dev/null -s ${mtype:0:-10}Goal`

 if [0 -eq $?]; then

 COMPREPLY="$opts"

 fi

 fi

}

complete -F "_roscomplete_axcli" "axcli"

●​ rFSM
○​ extends LUA_PATH

#!/bin/sh

if ["x$LUA_PATH" = "x"]; then

 LUA_PATH=";"

fi

export LUA_PATH="$LUA_PATH;@CMAKE_INSTALL_PREFIX@/share/lua/5.1/rfsm/?.lua"

●​ pano_py
○​ extends LD_LIBRARY_PATH

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:@(CMAKE_INSTALL_PREFIX)/@(CATKIN_GLOBAL_PYTHON_DESTINATION)

●​ Proposal / Jonathan Bohren

Proper env-hooks should be able to clean themselves up just like Catkin workspaces do.
To support this, catkin could expose the PATH-modification and rollback logic into
appropriate shell functions which can be called by catkin package env-hooks.

One of the following methods could be used to specify the cleanup hooks:

1.​ An additional CMake macro could be added like
`catkin_add_env_cleanup_hook()`

2.​ The current macro could be modified to take additional argument

https://github.com/kmarkus/rFSM/tree/master/env-hooks
https://github.com/turtlebot/turtlebot_apps/tree/0d9f4660158ab3b147dfb74e289eebb03f263060/software/pano/pano_py/env-hooks

3.​ The filename conventions could be extended such that an env-hook named
“10.my_pkg.sh.installspace.in” has an inverse-operation
“10.my_pkg.sh.installspace.cleanup.in” (likewise for *.develspace.* etc)

In this way, packages which extend PATH-type environment variables can remove the
appropriate items for a given workspace, packages which define shell functions or
aliases can unset them, and other cleanup actions can be taken. If someone is injecting
something into the setup files, they should be responsible for cleaning it up.

One argument against this solution is that the cleanup scripts might get removed by a
user if the user starts deleting various parts of the workspace. If that happens, then the
environment will only persist as long as they don’t open a new shell. Users normally only
partially delete workspaces, however, when normal debugging tools fail, and it’s unclear
what is going wrong. If catkin improves clarity, then it is far less likely that this happens.
Even if a user deletes build and devel directories, “rollback” behavior for env-hooks could
be written in a hidden file at the root of the workspace. An environment variable pointing
to that file could get defined, and in the event that the user tries to source another
workspace, we could detect that the rollback script has been removed, and we can
report an error, instructing the user to clean his or her environment and start over in a
new shell.

●​ Question / Mike Purvis

With respect to the “potentially nasty platform-specific things” which are possible, it’d be
great to have some formal guidance about appropriate/non-nasty uses of this powerful
feature, and perhaps a space to propose and receive feedback on possible concepts.
For example, we (Clearpath) are considering a package for our platforms which would
provide hooks for setup-time hardware detection of optional equipment, and set
environment variables accordingly. (eg, if /dev/imu symlink present, flip an env var which
enables that driver in the launch file). It hasn’t been clear to me what the appropriate
forum is to try to discuss the kinds of platform-level challenges Clearpath faces at our
scale, and how to best leverage Catkin and other ROS tooling to address those needs.

●​ Question / Jack O’Quin

Will this fix up all the other environment variables that must be modified to include
per-workspace paths, e.g.: $ROS_PACKAGE_PATH, $PATH, $PYTHONPATH,
$LD_LIBRARY_PATH?

Fixing $CMAKE_PREFIX_PATH without all those others would not help enough for most
users to even notice any improvement.

3. Desired Functionality and Interface Enhancements

3.1. Initiating Workspace Builds Without Navigating to Workspace Root

As described in catkin_tools#10, it would be desirable to have context-aware verbs which could
enable building a single package just by navigating to it and executing something like `catkin
build` to build the whole tree, or `catkin build --this` to build this package and it’s dependencies,
or `catkin build --just-this` to build this package and ignore its dependencies. (Note that these
could be aliased to other verbs).

●​ Proposal / Jonathan Bohren

The newly-added `.catkin_workspace` file could do part of the job of designating the root
of a catkin workspace. `catkin build` could be designed to determine the workspace root
from context.

3.2. Building Pure CMake Projects Without Adding a package.xml

Currently, catkin provides an easy way to develop in an isolated FHS-based workspace, even
for non-catkin packages which are designed to be installed to your system. In order to build
these, however, package.xml files need to be added to the project roots.

●​ Proposal / Jonathan Bohren

All directories with a top-level `CMakeLists.txt` file could be built before all other
packages. This will allow dependency-less packages to be dropped into a catkin
workspace without any effort.

●​ Comment / William Woodall​
I like this idea. Though I think it is very likely that we will have cmake projects which
depend on each other, so maybe we would need to a lighter weight way to specify
dependencies amongst the cmake projects.

4. General remarks

4.1 Targeted ROS distros

In general it would be great to have a consensus about a solution which could be drafted on a
clear plate (without locking us in based on how the current system is designed) and then
consider how this can be integrated into the existing architecture.

Depending on the proposed changes we have to consider for which ROS distro those should be
realized.

https://github.com/catkin/catkin_tools/issues/10

4.2 Tools on top of core functionality

While the tools (catkin build, catkin_make(_isolated)) provide significant usability improvements
it must remain possible to build packages without them. So any solution proposed must also
apply to plain command sequences (e.g. cmake / make / install / source).

4.3 Environments and CMake

CMake uses the shell environment available at the first configure time to make certain decisions
and cache these results in the build/CMakeCache.txt file. Even when the environment is
changed some of those decision are not reconsidered.

Conclusions / follow ups

●​ 2.1 Come up with ways to improve rollback (https://github.com/ros/catkin/issues/648)
●​ 2.1 auto-extend by default, manual override but with warning / notification

(https://github.com/ros/catkin/issues/649)
(https://github.com/catkin/catkin_tools/pull/58#issuecomment-45556611)

●​ 2.1 report what was extended at the end of a build invocation
(https://github.com/ros/catkin/issues/649)
(https://github.com/catkin/catkin_tools/issues/63)

●​ 2.2 Better visibility / introspection, details need to be figured out
●​ 2.3 recommend to use “catkin build” once it is complete
●​ 2.4 keep CMAKE_PREFIX_PATH plus .catkin file but make it more visible /

introspectable, consider switching in the future
●​ 2.5 ws command is a good idea, will be continued in the ticket

(https://github.com/catkin/catkin_tools/issues/47)
●​ 2.6 Name for devel/install space: run / execute space?

(https://github.com/ros-infrastructure/rep/issues/78)
○​ setup space
○​ fhs space
○​ “invel” space (install+devel) (not really though)

●​ 2.7 list of entry points on catkin wiki page to point to the various different information,
potentially also reference answers (https://github.com/ros/catkin/issues/650)

●​ 2.8 deprecation warning in cmi in Indigo once catkin build is available
(https://github.com/catkin/catkin_tools/issues/55)

●​ 2.9 see 2.1
●​ 3.1 can be added (https://github.com/catkin/catkin_tools/issues/10 and

https://github.com/catkin/catkin_tools/issues/27)
●​ 3.2 nice feature to be added (https://github.com/catkin/catkin_tools/issues/64)

https://github.com/ros/catkin/issues/648
https://github.com/ros/catkin/issues/649
https://github.com/catkin/catkin_tools/pull/58#issuecomment-45556611
https://github.com/ros/catkin/issues/649
https://github.com/catkin/catkin_tools/issues/63
https://github.com/catkin/catkin_tools/issues/47
https://github.com/ros-infrastructure/rep/issues/78
https://github.com/ros/catkin/issues/650
https://github.com/catkin/catkin_tools/issues/55
https://github.com/catkin/catkin_tools/issues/10
https://github.com/catkin/catkin_tools/issues/27
https://github.com/catkin/catkin_tools/issues/64

	ROS Catkin UX Discussion: Improving Catkin and its Tools
	Table Of Contents
	1. Non-Issues with the Current Released Toolchain
	2. Concerns with the Current Released Toolchain
	2.1. “Auto-Extension” and “Rollback” of Workspace Environment Is Counter-Intuitive
	●​Proposal / Jonathan Bohren (catkin_tools#58)
	●​Proposal / Jonathan Bohren

	2.2. Lack of Introspection into Workspace Configuration
	●​Proposal / Jonathan Bohren

	2.3. Configure-Time Cross-Talk
	●​Proposal / Jonathan Bohren

	2.4. Overloaded use of `$CMAKE_PREFIX_PATH`
	●​Proposal / Jonathan Bohren (based on comments in catkin_tools#47)

	2.5. Workspace Management In General
	●​Proposal / Jonathan Bohren
	●​Question / Jack O’Quin

	2.6. Nomenclature: What is a “Catkin Workspace” ?
	●​Comment / Jonathan Bohren

	2.7. Novice User Failure Modes
	●​Proposal / Jonathan Bohren

	2.8. Deprecation Pathway For catkin_make and catkin_make_isolated
	●​Proposal / Jonathan Bohren
	●​Question / Mike Purvis
	●​Question / Opinion / Vincent Rabaud
	●​Comment / Jack O’Quin

	2.9. There is No Well-Defined Pattern / API for Cleaning Up Catkin env-hooks
	●​Proposal / Jonathan Bohren
	●​Question / Mike Purvis
	●​Question / Jack O’Quin

	3. Desired Functionality and Interface Enhancements
	3.1. Initiating Workspace Builds Without Navigating to Workspace Root
	●​Proposal / Jonathan Bohren

	3.2. Building Pure CMake Projects Without Adding a package.xml
	●​Proposal / Jonathan Bohren

	4. General remarks
	4.1 Targeted ROS distros
	4.2 Tools on top of core functionality
	4.3 Environments and CMake

	Conclusions / follow ups

