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Preamble 
Hello dear reader! 
 
This is a draft of my book available for a free reading. This version of the book is incomplete, 
unedited, not properly styled. It won’t be updated. Consider buying the book, and you’ll get a 
complete text revised by a professional editor. You’ll also get some additional materials such 
as educational videos. 
 
https://leanpub.com/functional-design-and-architecture 
 
Here is the example of how deeply the text was edited: 
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5​ 
Application state 

 
This chapter covers 

▪​ What is stateful application in functional programming 
▪​ How to design operational data 
▪​ What the State monad is useful for in pure and impure environment 

What puzzles me from time to time is that I meet people who argue against functional 
programming by saying it can't work for real tasks because it lacks mutable variables, which 
probably means that no state could change and therefore interaction with the program is not 
possible. You even might be hearing that “a functional program is really a math formula 
without effects, and consequently it doesn't work with memory, network, standard input and 
output, and whatever else the impure world has. But when it does, it's not functional 
programming anymore”. There are even more emotional opinions and questions there, for 
example: “Is Haskell cheating with terms masking the imperative paradigm by its IO 
monad?” An impure code the Haskell's IO monad abstracts over makes someone skeptical 
how it can be functional while it's imperative. 

Hearing that, we, functional developers, start asking ourselves whether we all wander in 
the unmerciful myths trying to support immutability when it's infinitely beneficial to use good 
old mutable variables. However it's not the case. Functional programming doesn't imply the 
absence of any kind of state. It's friendly to side effects but not so much to allow them to 
vandalize our code. When you read an imperative program, you probably run it in your head 
and see if there is any discrepancy between two mental models: one you are building from 
the code (operational), and one you've got from requirements (desired). When you hit an 
instruction that changes the former model in a contrary way to the latter model, you feel this 
instruction does a wrong thing. Stepping every instruction of the code, you change your 
operational model bit by bit. It's probably true that your operational model is mutable and 
your mind doesn't accumulate changes to it as lazy functional code can do. Next time you 
meet a code in State monad and you try the same technique to evaluate it. You'll be 
succeeded, because it can be read this way, however functions in the stateful monadic chain 
aren't imperative and they don't mutate any state. And that's why it is easily composable and 
safe. 

What about the IO monad, the code just feels imperative, and it's fine to reason this way 
on some level of abstraction, but for deep understanding of the mechanism one should know 
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the chain of IO functions is just a declaration. By declaring an impure effect we don't make 
our code less functional. We separate declarative meaning of impurity from actual impure 
actions. The impurity will happen only when the main function will be run. With help of a 
static type system, the code that works in the IO monad is nicely composable and 
declarative, - in sense you can pass your IO actions here and there as first-class objects. Still 
the running of such code can be unsafe, because we can make mistakes. This is a bit of a 
philosophical question, but it really helps to not to exclude Haskell from pure functional 
languages. 

However these two monads - State and IO - are very remarkable because the state itself 
you are able to express with them can be safe, robust, convenient, truly functional and even 
thread-safe. How so - this is the theme of this chapter. 

5.1​ Architecture of the stateful application 
This section prepares a ground for introduction of concepts about state. You'll find here 
requirements to the stateful simulator of the spaceship, and also you'll develop its high-level 
architecture to some degree. But before that became possible, the notion of another free 
language was needed, namely the language for defining a ship controllable network. In this 
section I also give you some rationale why it's even important to build something partially 
implemented that already does not all but a few real things. You'll see that the design path 
we have chosen in previous chapters works well and helps to achieve simplicity. 

5.1.1​ State in functional programming 
State is the abstraction about keeping and changing a value during some process. We usually 
say that a system is stateless if it doesn't hold any value between calls to it. Stateless 
systems often look like a function that takes a value and “immediately” (after a small time 
that is needed to form a result) returns another value. We consider function to be stateless if 
there is no any evidence for the client code that function can behave differently be given by 
the same arguments. In imperative language, it's not often clear that the function doesn't 
store anything after it's called. In imperative language, effects are allowed, so the function 
can, theoretically, mutate a hidden, secret state, for instance a global variable or file. If the 
logic of this function also depends on that state, the function is not deterministic. If 
imperative state is not prohibited by the language, it's easy to fall into the “global variable 
anti-pattern”: 
 

secretState = -1 
 
def inc(val): 
    if secretState == 2: 
        raise Exception('Boom!') 
    secretState += 1 
    return val + secretState 

 
Most functional languages don't watch you like Big Brother: you are allowed to write such 
code. However it's a very, very bad idea, because it makes code behave unpredictably, 
breaks the purity of function and brings code out of the functional paradigm. The opposite 
idea to have stateless calculations and immutable variables everywhere may firstly make 
someone think the state is not possible in functional language, but it's not true. State do 
exist in functional programming. Moreover, several different kinds of state may be used to 
solve different kinds of problems. 

The first division of state kinds lies along the lifetime criteria: 

▪​ State that exist during a single calculation. This kind of state is not visible from 
outside. The state variable will be created in the beginning and destroyed in the end of 
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the calculation (remark: with garbage collecting, this may be true in a conceptual 
sense but not how it really is). The variable can be freely mutated without breaking 
the purity until the mutation is strictly deterministic. Let's name this kind of state 
auxiliary, localized. 

▪​ State with the lifetime comparable to the lifetime of the application. This kind of state 
is used to drive business logic of the application and to keep important user-defined 
data. Let's call it operational. 

▪​ State with the lifetime exceeding the lifetime of the application. This state lives in 
external storages (databases) which provide long-term data processing. This state can 
be naturally called external. 

The second division concerns a purity question. State can be: 

▪​ Pure. Pure state is not really some mutable imperative variable that is bound to a 
particular memory cell. Pure state is a functional imitation of mutability. We also can 
say, pure state doesn't destroy previous value when assigning a new one. Pure state is 
always bounded by some pure calculation. 

▪​ Impure. Impure state is always operated by dealing with impure side effects such as 
writing memory, files, databases, imperative mutable variables. While an impure state 
is much more dangerous than a pure one, there are techniques that help to secure 
impure stateful calculations. Functional code that works with impure state can be still 
deterministic by the behavior. 

The simulation model represents a state that exists during the simulator lifetime. This model 
holds user-defined data about how to simulate signals from sensors, keeps current 
parameters of the network and other important information. Business logic of the simulator 
application rests on this data. Consequently, this state is operational, application-wide. 

In contrast, the translation process from a HNDL script to the simulation model requires 
updating an intermediate state specifically to each network component being translated. This 
auxiliary state exists only to support compilation of HNDL. After it's done, we get a 
full-fledged simulation model ready to be run by the simulator. In the previous chapters, we 
have slightly touched this kind of state here and there. The external language translator that 
works inside the State monad is the example, and also every interpretation of a free 
language can be considered stateful in bounds of an interpret function. In the rest of this 
chapter we'll study more on this while building the simulation model and an interface to it. 

5.1.2​ Minimum viable product 
So far we have built separate libraries and implemented distinct parts of Logic control and 
Hardware subsystems. According to the architecture diagram (see chapter 2, figure 2.15), 
Andromeda control software should contain such functionality: database, networking, GUI, 
application and native API mapping. All we know about these parts is just a list of high-level 
requirements and a rough general plan on how to implement them. For example, a database 
component is needed to store data about ship properties: values from sensors, logs, 
hardware specifications, hardware events, calculation results and so on. What concrete types 
of data should be stored? How many records expected? What type of database is better 
suitable for this task? How should we organize the code? It's still unknown and should be 
carefully analyzed. Imagine, we did it. Imagine, we went even further and had implemented 
a subsystem that is responsible for dealing with databases. All is fine except we created 
another separate component among separate components. While these components don't 
interact with each other, we can't guarantee they will match like Lego's blocks in the future. 

This is the risk that is able to destroy your project. I saw this many times. Someone 
spends weeks developing a big god-like framework, and when the deadline happens, he 
realizes that the whole system can't work properly. He has to start from scratch. The end. To 
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not fall into this problem, we should prove that our subsystems can work together even if the 
whole application is still not ready. Integration tests can help here a lot. They are used to 
verify the system in the whole, when all parts are integrated and functioning in the real 
environment. When integration tests pass it shows that the circle is now complete, the 
system is proven to be working. Besides that, there is a much better choice: a sample 
program, a prototype that has limited but still enough functionality to verify the idea of the 
product. You may find many articles about this technique by keywords “minimal viable 
product” or MVP. The technique aims to create something real, something you may touch and 
feel right now, even not all functionality is finished. This will require a pass-through 
integration of many application components and also the MVP is more presentable than 
integration tests. 

This chapter is the best place to start working on such a program, namely a simulator of a 
spaceship. The simulator has to be stateful, no exceptions. In fact, devices in spaceships are 
micro-controllers with their own processors, memory, network interfaces, clock and operating 
system. They behave independently. Events they produce occur chaotically, and also every 
device can be switched off while others stay in touch. All the devices are connected to the 
central computer that is called Logic Control. Signals between computers and devices are 
transmitted through the network and may be possibly retransmitted by special intermediate 
devices. Consequently, the environment we want to simulate is stateful, multi-thread, 
concurrent and impure. We'll learn many new concepts of advanced functional programming 
while working on the simulator in this and further chapters. 

As you can see, we need a new concept of a network of devices. Going ahead, this will be 
another free language in the Hardware subsystem in addition to the HDL language. This 
language will allow us to declare hardware networks and construct a simulation model 
against it. Let's first take a quick look into it. We won't follow the complete guide on how to 
construct it because there will be nothing new in the process, however it's a worthy idea to 
get familiar with the main takeaways of this language. 

5.1.3​ Hardware network definition language 
Mind maps we designed in chapter 2 may give useful information about the structure of a 
spaceship. What else do we know about it?  

▪​ Spaceship is a network of distributed controllable components. 
▪​ The following components are available: logic control unit (LCU), remote terminal 

units (RTUs, terminal units, TUs), devices and wired communications. 
▪​ Devices are built from analogue and digital sensors and one or many controllers. 
▪​ Sensors produce signals continuously with a configurable sample rate. 
▪​ Controller is a device component that has network interfaces. It knows how to operate 

by the device. 
▪​ Controllers support a particular communication protocol. 
▪​ Logic control unit evaluates general control over the ship following the instructions 

from users or commands from control programs. 
▪​ The network may have reserve communications and reserve network components. 
▪​ Every device behaves independently from others. 
▪​ All the devices in the network are synchronized in time. 

In chapter 3 we have already defined a DSL for device declaration, namely HDL (Hardware 
definition language), but we still didn't introduce any mechanisms to describe how the 
devices are connected together. Let's call this mechanism the Hardware network definition 
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language (HNDL), as we mentioned in listing 3.1 – the Andromeda project structure. The 
HNDL scripts will describe the network of HDL device definitions. 

We'll now revisit the hardware subsystem. HDL is a free language with small possibilities 
to compose a device from sensors and controllers. Listing 5.1 shows the structure of HDL and 
the sample script in it: 

 

Listing 5.1: The free Hardware definition language 

data Component a 
    = SensorDef ComponentDef ComponentIndex Parameter a 
    | ControllerDef ComponentDef ComponentIndex a 
 
type Hdl a = Free Component a 
 
boostersDef :: Hdl () 
boostersDef = do 
   sensor aaa_t_25 "nozzle1-t" temperature 
   sensor aaa_p_02 "nozzle1-p" pressure 
   sensor aaa_t_25 "nozzle2-t" temperature 
   sensor aaa_p_02 "nozzle2-P" pressure 
   controller aaa_c_86 "controller" 

 
Every instruction defines a component of the device. The HNDL script will utilize these HDL 
scripts. In other words, we have faced the same pattern of scripts over scripts we introduced 
in chapter 4. 

Let's assume the items in the network are connected by wires. The network is usually 
organized in the “star” topology because it's a computer network. This means the network 
has a tree-like structure, not a spider web-like one. We'll adopt the following simple rules for 
our control network topology: 

▪​ Logic control units can be linked to many terminal units. 
▪​ One terminal unit may be linked to one device controller. 

Every device in the network should have its own unique physical address that other devices 
may use to communicate with it. The uniqueness of physical addresses makes it possible to 
communicate with a particular device while there can be many of them identical to each 
other. However it's not enough because every device may have many controllers inside, so 
we need to point the needed controller too. As long as a controller is a component, we can 
refer to it by it's index. We have the ComponentIndex type for this. The pair of physical 
address and component index will point to the right controller or sensor across the network. 
Let it be the ComponentInstanceIndex type: 
 

type PhysicalAddress = String 
type ComponentInstanceIndex = (PhysicalAddress, ComponentIndex) 

 
Now we are about to make HNDL. As usual, we map the domain model to the algebraic data 
type that will be our embedded DSL. As we said, there are three kinds of network elements 
we want to support: LCU, RTU and devices. We'll encode links between them as specific data 
types so we couldn't connect irrelevant elements. You may think about links as a specific 
network interface encoded in types. Listing 5.2 introduces the HNDL language. Notice that 
the automatic Functor deriving is used here to produce the fmap function for the 
NetworkComponent type. I believe you already memorized why the NetworkComponent 
type should be a functor and what the role it plays in the structure of the Free monad. 
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Listing 5.2: The Hardware network definition language 

{-# LANGUAGE DeriveFunctor #-} 
module Andromeda.Hardware.HNDL where 
 
type PhysicalAddress = String 
 
data DeviceInterface = DeviceInterface PhysicalAddress 
data TerminalUnitInterface = TerminalUnitInterface PhysicalAddress 
data LogicControlInterface = LogicControlInterface PhysicalAddress 
 
-- | Convenient language for defining devices in the network. 
data NetworkComponent a 
    = DeviceDef PhysicalAddress (Hdl ()) (DeviceInterface -> a) 
    | TerminalUnitDef PhysicalAddress (TerminalUnitInterface -> a) 
    | LogicControlDef PhysicalAddress (LogicControlInterface -> a) 
    | LinkedDeviceDef DeviceInterface TerminalUnitInterface a 
    | LinkDef LogicControlInterface [TerminalUnitInterface] a 
  deriving (Functor) 
 
-- | Free monad Hardware Network Definition Language. 
type Hndl a = Free NetworkComponent a 
 
-- | Smart constructors. 
remoteDevice :: PhysicalAddress -> Hdl () -> Hndl DeviceInterface 
terminalUnit :: PhysicalAddress -> Hndl TerminalUnitInterface 
logicControl :: PhysicalAddress -> Hndl LogicControlInterface 
linkedDevice :: DeviceInterface -> TerminalUnitInterface -> Hndl () 
link :: LogicControlInterface -> [TerminalUnitInterface] -> Hndl () 

 
Notice how directly the domain is addressed: we just talked about physical addresses, 
network components and links between them, and the types reflect the requirements we 
have collected. Let's consider the DeviceDef value constructor. From the definition, we may 
conclude it encodes a device in some position in the network. The PhysicalAddress field 
identifies that position and the (Hdl ()) field stores a definition of the device. The last field 
holds a value of type (DeviceInterface -> a) that we know represents the continuation 
in the free language. The removeDevice smart constructor wraps this value constructor into 
the Free monad. We can read its type definition as “remoteDevice procedure takes a 
physical address of the device, a definition of the device and returns an interface of that 
device”. In the HNDL script it will be looking so: 
 

networkDef :: Hndl () 
networkDef = do 
    iBoosters <- remoteDevice "01" boostersDef 
    -- rest of the code 

 
where boostersDef is the value of the Hdl () type. 

What's else important, all network components return their own “network interface” type. 
There are three of them: 

 
DeviceInterface 
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TerminalUnitInterface 
LogicControlInterface 

 
The language provides two procedures for linking of network elements: 
 

linkedDevice :: DeviceInterface -> TerminalUnitInterface -> Hndl () 
link :: LogicControlInterface -> [TerminalUnitInterface] -> Hndl () 

 
The types restrict links between network components by exactly the way that follows the 
requirements. Any remote device can be linked to the intermediate terminal unit and many 
terminal units can be linked to the logic control. It seems this is enough to form a tree-like 
network structure that maybe doesn't reflect the complexity of real networks but is suitable 
for demonstration of the ideas. In the future we may decide to extend the language by new 
types of network components and links. 

Finally, listing 5.3 shows the HNDL script for simple network presented in figure 5.1: 
 

Listing 5.3: Sample network definition script 

networkDef :: Hndl () 
networkDef = do 
    iBoosters <- remoteDevice "01" boostersDef 
    iBoostersTU <- terminalUnit "03" 
    linkedDevice iBoosters iBoostersTU     
    iLogicControl <- logicControl "09" 
    link iLogicControl [iBoostersTU] 
 

Figure 5.1: Sample network scheme 

Our next station is “The simulator”. Please keep calm and fasten your seat belts. 
 

5.1.4​ Architecture of the simulator 
The simulator will consist of two big parts: the simulator itself and the graphical user 
interface to evaluate control over the simulated environment. Let's list functional 
requirements to the simulation part. 

▪​ Simulation model should emulate the network and devices as close to reality as 
possible. 
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▪​ Simulated sensors should signal the current state of the measured parameter. Because 
none of the physical parameters can be really measured, the signal source will be 
simulated too. 

▪​ Sensors signal measurements with defined sapling rate. 
▪​ It should be possible to configure virtual sensors to produce different signal profiles. 

There should be such profiles: random noise generation, generation by mathematical 
function with time as parameter. 

▪​ Every network component should be simulated independently. 
▪​ There should be a way to run logic control scripts over the simulation as it would be a 

real spaceship. 
▪​ Simulation should be interactive to allow reconfiguring on the fly. 

We said that the simulator is an impure stateful and multi-thread application because it 
reflects a real environment of distributed independent devices. This statement needs to be 
expanded. 

▪​ Multi-threaded. Every sensor will be represented as a single thread that will produce 
values periodically even if nobody reads it. Every controller will live in the separate 
thread as well. Other network components will be separately emulated as needed. To 
not to waste CPU time, threads should work with delay that in case of sensors is 
naturally interpreted as sample rate. 

▪​ Stateful. It should be always possible to read current values from sensors, even 
between refreshing moments. Thus, sensors will store current values in their state. 
Controllers will hold current logs and options, terminal units may behave like stateful 
network routers, and so on. Every simulated device will have a state. Let's call the 
notion of threaded state a node. 

▪​ Mutable. State should be mutable because real devices rewrite their memory every 
time when something happens. 

▪​ Concurrent. A node's internal thread updates its state by time, and an external thread 
reads that state occasionally. The environment is thereby concurrent and should be 
protected from data races, dead blocks, starvation and other bad things. 

▪​ Impure. There are two factors here: simulator simulates an impure world; the need of 
threads and mutable concurrent state eventually requires impurity. 

If you found these five properties in your domain, you should be knowing that there is an 
abstraction that covers exactly the requirement of stateful, mutable, concurrent and impure 
environment. It is known as Software Transactional Memory (STM). Today it is the most 
reasonable way to combine concurrent impure stateful computations safely and program 
complex parallel code with much less pain and bugs. In this chapter, we will consider STM as 
a design decision that significantly reduces the complexity of the parallel models. 

All information about the spaceship network is held in the HNDL network definition. And 
now let me tell you a riddle. As soon as HNDL is a free language that we know does nothing 
real but declares a network, how to convert it into a simulation model? We do with this free 
language exactly what we did with other free languages: we interpret it and create a 
simulation model during the interpretation process. We visit every network component (for 
example, TerminalUnitDef) and create an appropriate simulation object for it. If we hit a 
DeviceDef network component, we then visit its Hdl field and interpret the internal free 
HDL script as desired. Namely, we should create simulation objects for every sensor and 
every controller we meet in the device definition. Let's call the whole interpretation process a 
compilation of HNDL to a simulation model. 
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Once we receive the model, we should be able to run it, stop it, configure sensors and 
other simulation objects and do other things that we stated in the requirements. The model 
will be probably somewhat complex because we said it should be concurrent, stateful and 
impure. The client code definitely wants to know as little as possible about the guts of the 
model, so it seems a wise idea to establish some high-level interface to it. In our case, the 
simulator is just a service that works with the simulation model of the spaceship's network. 
To communicate with the simulator, we'll adopt the MVar request-response pattern. We will 
send actions that the simulator should evaluate over its internal simulation model. If needed, 
the simulator should return an appropriate response or at least say the action is received and 
processed. The request-response pipe between the simulator and the client code will 
effectively hide the implementation details of the former. If we'll want to do so, we can even 
make it remote transparently to the client code. 

Figure 5.2 presents the architecture of the simulator. 
 

 

Figure 5.2: Architecture of the simulator 

Now we are ready to do real things. 

5.2​ Pure state 
By default definition, pure state is a state that can be created once and every update of this 
value leads to copying of it. This is the so-called copy-on-write strategy. The previous value 
should not be deleted from memory, although it's allowed that no references are longer 
pointed to it. Therefore, pure state can't be mutable in the sense of destruction of an old 
value to place a new one instead. A pure function always works with a pure state, but what 
we know about pure functions? Just three things: 

1.​ Pure function depends only on the input arguments; 
2.​ Pure function returns the same value on the same arguments; 
3.​ Pure function can't do any side effects. 

However there is some kind of escape from these narrow conditions. The third point includes 
usually interaction with operative memory because the latter is an external system that may 
fail: memory may end. Nevertheless, the memory may end just because you call too many 
pure functions in recursion that is not tail-optimized, so the third requirement for the 
function to be pure is not that convincing. What if you somehow pass to the function an 
empty array that can be changed whatever the ways the function wants to calculate what it 
wants? It may freely mutate values in the array, but as long as the function does it the same 
way every time it's called, the regular output will be also the same. The only requirement 
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here is that no other code should have any kind of access (reading, writing) to the array. In 
other words, the mutable array will exist only locally, for this concrete function, and when 
calculations are done, the array should be destroyed. It's easy to see that the first and the 
second points of the list above are satisfied. 

Indeed, this notion of local mutable state exists and it's known as, well, local mutable 
state. To just name it, in Haskell this notion is represented by the ST monad. We'll probably 
see some applications of this in the book, but in this section we'll learn the following things: 

▪​ Argument-passing pure state. 
▪​ The State monad. 

The ST monad, the RWS monad wouldn't be presented in this chapter, but you can always try 
them yourself. There is so much similarity between them and the concepts we have already 
learned, so it shouldn't be that difficult. 

Also, we will do some revising in this section, but think about it as a possibility to nail 
down the knowledge in connection to the development of the next part of the application. 
Also, the following text is not about state just because you are very familiar with the 
concepts it describes, but this section is about coherent modeling and development of 
functionality that haven't been implemented yet. 

5.2.1​ Argument-passing state 
If we consider that the simulator is our new domain then domain modeling is the 
construction of the simulation model and operations with it. Let's develop the algebraic data 
type SimulationModel that will hold the state of all simulated objects: 
 

data SimulationModel = SimulationModel 
    { 
    ???? -- The structure is yet undefined. 
    } 

 
We concluded that simulated objects should live in their own threads, and therefore we need 
some mechanism to communicate with them. First of all, there should be a way to identify a 
particular object the client code wants to deal with. As soon as the model is built from the 
HNDL description, it's very natural to refer to every object by the same identifications that 
are used in HNDL and HDL scripts. This is why the PhysicalAddress type corresponds to 
every network component and the ComponentIndex type identifies a device component 
(see the definition of the HDL language). A pair of PhysicalAddress and 
ComponentIndex values is enough to identify a sensor or a controller within the whole 
network. Let's give this pair of types an appropriate alias: 
 

type ComponentInstanceIndex = (PhysicalAddress, ComponentIndex) 
 
From the requirements it's known that we want to configure our virtual sensors, in particular, 
we want to setup a value generation algorithm (potentially, many times). For sure, every 
type of simulated object will have some specific options and state, not sensors only. It's wise 
to put options into separate data types: 
 

data ControllerNode = ControllerNode 
  { 
    ???? -- The structure is yet undefined. 
  } 
data SensorNode = SensorNode 
  { 
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    ???? -- The structure is yet undefined. 
  } 

 
Because every simulation object (node) is accessed by key of some type, we can use a 
dictionary to store them. Well, many dictionaries for many different types of nodes. This is 
the easiest design decision that keeps things simple and understandable. 
 

import qualified Data.Map as M  -- Dictionary type 
 
type ComponentInstanceIndex = (PhysicalAddress, ComponentIndex) 
 
data ControllerNode = ControllerNode 
data SensorNode = SensorNode 
data TerminalUnitNode = TerminalUnitNode 
 
type SensorsModel = M.Map ComponentInstanceIndex SensorNode 
type ControllersModel = M.Map ComponentInstanceIndex ControllerNode 
type TerminalUnitsModel = M.Map PhysicalAddress TerminalUnitNode 
 
data SimulationModel = SimulationModel 
    { sensorsModel :: SensorsModel 
    , controllersModel :: ControllersModel 
    , terminalUnitsModel :: TerminalUnitsModel 
    } 

 
Let's return to the SensorNode. It should keep the current value and be able to produce a 
new value using a generation algorithm. The straightforward modeling gives us the following: 
 

data ValueGenerator 
    = NoGenerator 
    | StepGenerator (Measurement -> Measurement) 
 
data SensorNode = SensorNode 
    { value :: Measurement 
    , valueGenerator :: ValueGenerator 
    , producing :: Bool 
    } 

 
If the producing flag holds, then the worker thread should take the current value, apply a 
generator to it and place a new value back. The value mutation function may look like so: 
 

applyGenerator :: ValueGenerator -> Measurement -> Measurement 
applyGenerator NoGenerator v = v 
applyGenerator (StepGenerator f) v = f v 
 
updateValue :: SensorNode -> SensorNode 
updateValue node@(SensorNode val gen True) = 
    let newVal = applyGenerator gen val 
    in SensorNode newVal gen True 
updateValue node@(SensorNode val gen False) = node 

 
The updateValue function takes a value of the SensorNode type (the node), unpacks it 
by pattern matching, then changes the internal Measurement value by calling 
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applyGenerator function, then packs a new SensorNode value to return it as a result. 
Function with type (SensorNode -> SensorNode) has no side effects and therefore it's 
pure and deterministic. 

A a fine line between stateful and stateless code 

You may see functions with type (a -> a) very often in functional code because it's the 
most common pattern to pass state through a computation. So the f1 function works 
with argument-passing state, the f2 function does the same but takes another useful 
value of type b and the f3 function is the same as f2 but with arguments swapped: 

f1 :: a -> a 
f2 :: b -> a -> a 
f3 :: a -> b -> a 

We can transform the f3 function by flipping arguments: 

f3' :: b -> a -> a 
f3' b a = f3 a b 

It can be argued that any pure unary function with type (a -> b) merely transforms a 
state of type a into another state of type b. In the other hand, every pure function with 
many arguments may be transformed into a function with one argument (we say it can be 
curried): 

manyArgsFunction :: a -> b -> c -> d 
oneArgFunction :: (a, b, c) -> d 
oneArgFunction (a, b, c) = manyArgsFunction a b c 

Consequently, any pure function that takes any number of arguments is a state-passing 
function. 

In fact, every stateful computation can be “demoted” into stateless computation by 
extracting the state out and passing it as argument. Just remember C# extension 
methods: they could be defined in a class they work with but they separated into an 
external scope to not to garbage the interface of the certain class. But then these 
methods have to get a state (an object of that class) as a parameter. 

 

In pure functional code, the state is propagated from the top pure functions down to the very 
depths of the domain model walking through many transformations en route. The following 
function works one layer up over the updateValue function: 

updateSensorsModel :: SimulationModel -> SensorsModel 
updateSensorsModel simModel = 
    let oldSensors = sensorsModel simModel 
        newSensors = M.map updateValue oldSensors 
    in newSensors 

 
As you can see, the state is unrolled, updated and returned as the result. You can go up and 
construct the updateSimulationModel function that unrolls all simulation models and 
updates them as necessary. The primer is shown in the listing 5.4, notice how many 
arguments are traveling there between the functions: 
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Listing 5.4: Argument passing state 

-- functions that work with nodes: 
updateValue :: SensorNode -> SensorNode 
updateLog :: ControllerNode -> ControllerNode 
updateUnit :: TerminalUnitNode -> TerminalUnitNode 
 
updateSensorsModel :: SimulationModel -> SensorsModel 
updateSensorsModel simModel = 
    let oldSensors = sensorsModel simModel 
        newSensors = M.map updateValue oldSensors 
    in newSensors 
 
updateControllersModel :: SimulationModel -> ControllersModel 
updateControllersModel simModel = 
    let oldControllers = controllersModel simModel 
        newControllers = M.map updateLog oldControllers 
    in newControllers 
 
updateTerminalUnitsModel :: SimulationModel -> TerminalUnitsModel 
updateTerminalUnitsModel simModel = 
    let oldTerminalUnits = terminalUnitsModel simModel 
        newTerminalUnits = M.map updateUnit oldTerminalUnits 
    in newTerminalUnits 
 
updateSimulationModel :: SimulationModel -> SimulationModel 
updateSimulationModel simModel = 
    let newSensors = updateSensorsModel simModel 
        newControllers = updateControllersModel simModel 
        newTerminalUnits = updateTerminalUnitsModel simModel 
    in SimulationModel newSensors newControllers newTerminalUnits 

 
A code with argument-passing state you see in listing 5.4 can be annoying to write and to 
read because it needs too many words and ceremonies. This is a sign of high accidental 
complexity and bad functional programming. The situation tends to worsen for more complex 
data structures. Fortunately, this problem can be somewhat solved. Just use some function 
composition and record updating syntax in Haskell or an analogue in other language: 
 

updateSimulationModel :: SimulationModel -> SimulationModel 
updateSimulationModel m = m 
    { sensorsModel = M.map updateValue (sensorsModel m) 
    , controllersModel = M.map updateLog (controllersModel m) 
    , terminalUnitsModel = M.map updateUnit (terminalUnitsModel m) 
    } 

 
Despite being told that making more small, tiny functions is the key to clear and 
easy-maintainable code, sometimes it's better to stay sane and keep it simple. 

We just discussed the argument-passing style that I'm convinced is not so exciting 
because it solves a small problem of pure state in functional programming. But remember, 
this kind of functional concept has given a birth to functional composition, to lenses, to all 
functional programming in the end. In chapter 3 we also noticed that the State monad is 
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really a monadic form of argument-passing style. Let's revise it and learn something new 
about monads in whole. 

5.2.2​ The State monad 
We'll compose the SimState monad that will hold a SimulationModel value in the 
context. The following functions from listing 5.4 will be rewritten accordingly: 
 

updateSensorsModel         --->   updateSensors 
updateControllersModel     --->   updateControllers 
updateTerminalUnitsModel   --->   updateUnits 

 
The following functions will stay the same (whatever they do): 
 

updateValue 
updateLog 
updateUnit 

 
Finally, the updateSimulationModel function will do the same thing as well, but now it 
should call a stateful computation over the State monad to obtain an updated value of the 
model. The monad is presented in listing 5.5: 
 

Listing 5.5: The State monad 

import Control.Monad.State 
 
type SimState a = State SimulationModel a 
 
updateSensors :: SimState SensorsModel 
updateSensors = do 
    sensors <- gets sensorsModel           #1 
    return $ M.map updateValue sensors 
     
updateControllers :: SimState ControllersModel 
updateControllers = do 
    controllers <- gets controllersModel   #2 
    return $ M.map updateLog controllers 
 
updateUnits :: SimState TerminalUnitsModel 
updateUnits = do 
    units <- gets terminalUnitsModel       #3 
    return $ M.map updateUnit units 

#1 Extracting sensors model 
#2 Extracting controllers model 
#3 Extracting units model 

 
The type SimState a describes the monad. It says, a value of the SimulationModel type 
is stored in the context. Every function in this monad may access that value. The State 
monad's machinery has functions to get the value from the context, put another value 
instead of existing one, and do other useful things with the state. In the code above we used 
the gets function that has a type: 
 

gets :: (SimulationModel -> a) -> SimState a 
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This library function takes an accessor function with type (SimulationModel -> a). The 
gets function should then apply this accessor to the internals of the SimState structure to 
extract the internal value. In the do-notation of the State monad this extraction is designated 
by the left arrow (<-). In all monads, this means: “do whatever you need with the monadic 
context and return some result of that action”. 

The gets function is generic. It extracts the SensorsModel value (#1),  
ControllersModel (#2) and the TerminalUnitsModel (#3). After that, every model is 
updated with the result returned. It's important to note that working with the bounded 
variables (sensors, controllers, units) doesn't affect the context, so the original 
SimulationModel stays the same. To actually modify the context you may put a value 
into it: 

 
modifyState :: SimState () 
modifyState = do 
    ss <- updateSensors 
    cs <- updateControllers 
    us <- updateUnits 
    put $ SimulationModel ss cs us 
 
updateSimulationModel :: SimulationModel -> SimulationModel 
updateSimulationModel m = execState modifyState m 

 
Remember the execState function? It returns the context you'll get at the end of the 
monadic execution. In our case, the original model m was firstly put into the context to begin 
computation, but then the context was completely rewritten by an updated version of the 
SimulationModel. 

TIP It will not be superfluous to repeat that monadic approach is general because once 
you have a monad, you can apply many monadic combinators to your code irrespective of 
what the monad is. You may find monadic combinators in Haskell's Control.Monad 
module and in Scala's scalaz library. These combinators give you a “monadic 
combinatorial freedom” of structuring your code. There is more than one way to solve the 
same problem usually. 

If you decide to not to affect the context, you can just return a new value instead using the 
put function. Like this: 
 

getUpdatedModel :: SimState SimulationModel 
getUpdatedModel = do 
    ss <- updateSensors 
    cs <- updateControllers 
    us <- updateUnits 
    return $ SimulationModel ss cs us 
 
updateSimulationModel :: SimulationModel -> SimulationModel 
updateSimulationModel m = evalState getUpdatedModel m 

 
But then you should use another function to run your state computation. If you have forgot 
what the functions execState and evalState do, revise chapter 3 and external 
references. 
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The following code commits to the “monadic combinatorial freedom” idea. Consider two 
new functions: liftM3 and the bind operator (>>=): 

 
update :: SimState SimulationModel 
update = liftM3 SimulationModel 
                updateSensors 
                updateControllers 
                updateUnits 
 
modifyState :: SimState () 
modifyState = update >>= put 
 
updateSimulationModel :: SimulationModel -> SimulationModel 
updateSimulationModel m = execState modifyState m 

 
There is no way to not to use the bind operator in the monadic code, because it's the essence 
of every monad. We didn't see it before because Haskell's do notation hides it, but it is no 
doubt there. The equivalent do-block for the modifyState function will be so: 
 

modifyState :: SimState () 
modifyState = do 
    m <- update 
    put m 

 
You may think that the bind operator exists somewhere in between the two lines of the do 
block (in fact it exists before the left arrow). Well, the truth is that nothing can be placed 
between lines, of course. The do notation will be desugared into the bind operator and some 
lambdas: 
 

modifyStateDesugared :: SimState () 
modifyStateDesugared = update >>= (\m -> put m) 

 
The expression (\m -> put m) is equivalent to just (put) that is an eta-converted form of 
the former. 

I leave the joy of exploration of the mystical liftM3 function to you. The “monadic 
combinatorial freedom” becomes even more sweet having this and other monadic 
combinators: forM, mapM, foldM, filterM. Being a proficient monadic juggler, you'll 
be able to write a compact, extremely functional and impressive code. 

We'll continue to develop this in the section “Impure state with State and IO monads”. But 
what about the compiler of HNDL to SimulationModel? Let this (quite familiar, indeed) 
task will be another introduction to lenses in the context of the State monad. 

First, you declare an ADT for holding state. In Haskell, lenses can be created with the 
TemplateHaskell extension for fields that are prefixed by underscore: 

 
data CompilerState = CompilerState 
    { _currentPhysicalAddress :: PhysicalAddress 
    , _composingSensors :: SensorsModel 
    , _composingControllers :: ControllersModel 
    , _composingTerminalUnits :: TerminalUnitsModel 
    } 
 
makeLenses ''CompilerState 
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type SimCompilerState a = State CompilerState a 
 
These lenses will be created: 
 

currentPhysicalAddress :: Lens' CompilerState PhysicalAddress 
composingSensors :: Lens' CompilerState SensorsModel 
composingControllers :: Lens' CompilerState ControllersModel  
composingTerminalUnits :: Lens' CompilerState TerminalUnitsModel 

 
The Lens' type came from the Control.Lens module. It denotes a simplified type of lens. 
The type of some lens Lens' a b should be read as “lens to access a field of type b inside 
a type”. Thus, the composingSensors lens provides access to the field of the type 
SensorsModel inside the CompilerState ADT. The compiler itself is an instance of the 
Interpreter type class that exists for the HNDL free language. There is also the 
interpretHndl function. This stuff wasn't presented in chapter to save the place, but you 
may see it in code samples for this book. The compiler entry point looks like so: 
 

compileSimModel :: Hndl () -> SimulationModel 
compileSimModel hndl = do 
    let interpreter = interpretHndl hndl 
    let state = CompilerState "" M.empty M.empty M.empty 
    (CompilerState _ ss cs ts) <- execState interpreter state 
    return $ SimulationModel ss cs ts 

 
Then the implementation of two interpreter type classes follows: one for the HNDL language 
and one for the HDL language. The first interpreter visits every element of the network 
definition. The most interesting part here is the onDeviceDef method that calls the 
setupAddress function: 
 

setupAddress addr = do 
    CompilerState _ ss cs ts <- get 
    put $ CompilerState addr ss cs ts 
 
instance HndlInterpreter SimCompilerState where 
   onDeviceDef addr hdl = do 
        setupAddress addr 
        interpretHdl hdl 
        return $ mkDeviceInterface addr 
   onTerminalUnitDef addr = ... 
   onLogicControlDef addr = ... 
   onLinkedDeviceDef _ _ = ... 
   onLinkDef _ _ = ... 

 
The setupAddress function uses the state to save the physical address for further 
calculations. This address will be used during compilation of the device. However the function 
is too wordy. Why not use lenses here? Compare to this: 
 

setupAddress addr = currentPhysicalAddress .= addr 
 
The (.=) combinator from the lens library is intended for usage in the State monad. It sets 
a value to the field the lens points to. Here, it replaces the contents of the 
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_currentPhysicalAddress field by the addr value. The function becomes unwanted 
because it's more handy to setup the address in the onDeviceDef method: 
 

instance HndlInterpreter SimCompilerState where 
    onDeviceDef addr hdl = do 
        currentPhysicalAddress .= addr 
        interpretHdl hdl 
        return $ mkDeviceInterface addr 

 
Next, the instance of the HdlInterpreter: 
 

compileSensorNode :: Parameter -> SimCompilerState SensorNodeRef 
compileSensorNode par = undefined 
 
instance HdlInterpreter SimCompilerState where 
    onSensorDef compDef compIdx par = do 
        node <- compileSensorNode par 
        CompilerState addr oldSensors cs ts <- get 
        let newSensors = Map.insert (addr, compIdx) node oldSensors 
        put $ CompilerState addr newSensors cs ts 
    onControllerDef compDef compIdx = ... 

 
The onSensorDef method creates an instance of the SensorNode type and then adds this 
instance into the map from the _composingSensors field. This requires to get the state 
from the context, update the map and put a new state with the new map back. These three 
operations can be easily replaced by one lens combinator (%=). You'll be also needing the 
use combinator. Compare: 
 

instance HdlInterpreter SimCompilerState where 
    onSensorDef compDef compIdx par = do 
        node <- compileSensorNode par 
        addr <- use currentPhysicalAddress  -- get value from the context 
        let appendToMap = Map.insert (addr, compIdx) node 
        composingSensors %= appendToMap 

 
The use combinator uses a lens to extract a value from the context. It's monadic, so you call 
it as a regular monadic function in the State monad. The function Map.insert (addr, 
compIdx) node is partially applied. It expects one more argument: 
 

Map.insert (addr, compIdx) node :: SensorsModel -> SensorsModel 
 
According to its type, you can apply it to the contents of the _composingSensors field. 
That's what the (%=) operator does: namely, it maps some function over the value behind the 
lens. The two monadic operators (.=) and (%=) and some simple combinators (use) from the 
lens library are able to replace much boilerplate inside any kind of the State monad. 
Moreover, the lens library is so huge that you may dig it like another language. It has 
hundreds of combinators for all occasions. 

It never fails to be stateless, except the state is always there. It's never bad to be pure, 
unless you deal with the real world. It never fails to be immutable, but sometimes you'll be 
observing inefficiency. State is real. Impurity is real. Mutability has advantages. Is pure 
functional programming flawed in this? The answer is coming. 
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5.3​ Impure state 
We talked about pure immutable states while designing a model to simulate a hardware 
network. A good start, isn't it? The truth is that in real life, it's more often that you need 
mutable imperative data structures rather than immutable functional ones. The problem 
becomes much sharper if you want to store your data in collections. This kind of state 
requires careful thinking. Sometimes you can be pleasured by persistent data structures that 
are efficient enough for many cases. For example, you may take a persistent vector to store 
values. Updates, lookups, appends to persistent vectors have complexity O(1), but the 
locality of data seems to be terrible because persistent vector is constructed over tries. If you 
need to work with C-like arrays guaranteed to be continuous, fast and efficient, it's better to 
go impure in functional code. Impure mutable data structures can do all the stuff we like in 
imperative languages, they less demanding to memory, they can be mutated in-place, they 
can be even marshaled to low-level code in C. In the other hand, you sacrifice purity and 
determinism going down to the impure layer which of course increases accidental complexity 
of code. In order to retain control over impure code, you have to resort to functional 
abstractions that solve some imperative problems. 

▪​ Haskell's IORef variable has exactly the same semantics as a regular variable in other 
languages. It can be mutated in-place leaving potential problems (non-determinism, 
race conditions) to the developer's responsibility. The IORef a type represents a 
reference type  over some type a. 1

▪​ MVar is a concept of thread-safe mutable variables. Unlike the IORef, this reference 
type gives guarantees of atomic reading and writing. MVar can be used for 
communication between threads or managing simple use cases with data structures. 
Still, it's susceptible to the same problems: race conditions, deadlocks, 
non-determinism. 

▪​ TVar, TMVar, TQueue, TArray and other primitives of Software Transactional 
Memory (STM) can be thought of as further development of the MVar concept. STM 
primitives are thread-safe and imperatively mutable, but unlike MVar, STM introduces 
transactions. Every mutation is performed in transaction. In case of competing of two 
threads for the access to the variable, one of two transactions will be performed while 
the other can safely delay (retried) or even rollback. STM operations are isolated from 
each other which reduces the possibility of deadlocks. With advanced combinatorial 
implementation of STM, two separate transactional operations can be combined into a 
bigger transactional operation that is an STM combinator too. STM has been 
considered a suitable approach to maintain complex state in functional programs; with 
that, STM has many issues and properties one should know to use effectively. 

And now we are going to discuss how to redesign the simulation model with IORefs. 

5.3.1​ Impure state with IORef 
Look at the SimulationModel and updateSimulationModel function again: 
 

data SimulationModel = SimulationModel 
    { sensorsModel :: SensorsModel 
    , controllersModel :: ControllersModel 
    , terminalUnitsModel :: TerminalUnitsModel 
    } 

 

1​  Reference type in Wikipedia: https://en.wikipedia.org/wiki/Reference_type 
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The problem here is that this model doesn't fit into the idea of separate acting sensors, 
controllers and terminal units. Imagine, the model was compiled from the network we had 
defined earlier (networkDef): 
 

test = do 
    let simModel = compileSimModel networkDef 
    print "Simulation model compiled." 

 
Where the compileSimModel function has come from the SimulationCompiler module: 
 

module Andromeda.Simulator.SimulationCompiler where 
compileSimModel :: Hndl () -> SimulationModel 
compileSimModel = undefined 

 
With a pure state, the only thing you may do is to update it whole. We have wrote the  
updateSimulationModel function for that: 
 

test = do 
    let simModel1 = compileSimModel networkDef 
    let simModel2 = updateSimulationModel simModel1 
     
    print $ "initial: " ++ show (sensorsModel simModel1) 
    print $ "updated: " ++ show (sensorsModel simModel2) 

 
It seems impossible to fork a thread for each sensor as it was planned because neither 
sensor is seen from this test. Forking a thread for updating the whole model will be useless 
too. See the proof: 
 

import Control.Concurrent (forkIO, ThreadId) 
 
updatingWorker :: SimulationModel -> IO () 
updatingWorker simModel1 = do 
    let simModel2 = simModel1 
    updatingWorker simModel2 
 
forkUpdatingThread :: SimulationModel -> IO ThreadId 
forkUpdatingThread model = forkIO $ updatingWorker model 
 
test = do 
    threadId <- forkUpdatingThread (compileSimModel networkDef) 
    -- what to do here?? 

The model will be spinning constantly in the thread, but it's not accessible from the outside. 
How to get values from sensors while the model is updating? How to set up another value 
generator to a specific sensor? How to query the controllers? This design of a pure simulation 
model is wrong. We'll try another approach. 

The idea is that you can observe impure mutation of an IORef value from different 
threads, as it happens in the imperative world with any reference types and pointers. You 
firstly create a mutable variable with some value and then pass it to the threads so they can 
read and write it occasionally. See listing 5.6 that introduces the IORef type, some functions 
to work with, and stuff for threads. This program has two additional threads forked. While 
the main thread is sleeping for 5 seconds, the first worker thread increases refVal by 1 and 
the second worker thread prints what he sees currently in the same refVal. Both threads 
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then sleep for a second before they continue their businesses with refVal. When the 
program runs, you see some numbers from 0 to 5 being printed with some of them repeating 
or absent, for example: 1, 2, 2, 3, 4. 

 

Listing 5.6: IORef example 

module IORefExample where 
 
import Control.Monad (forever) 
import Control.Concurrent (forkIO, threadDelay, killThread, ThreadId) 
import Data.IORef (IORef, readIORef, writeIORef, newIORef) 
 
second = 1000 * 1000 
 
increaseValue :: IORef Int -> IO () 
increaseValue refVal = do 
    val <- readIORef refVal 
    writeIORef refVal (val + 1) 
    threadDelay second 
 
printValue :: IORef Int -> IO () 
printValue refVal = do 
    val <- readIORef refVal 
    print val 
    threadDelay second 
 
main :: IO () 
main = do 
    refVal <- newIORef 0 
    let worker1 = forever $ increaseValue refVal 
    let worker2 = forever $ printValue refVal 
    threadId1 <- forkIO worker1 
    threadId2 <- forkIO worker2 
    threadDelay (5 * second) 
    killThread threadId1 
    killThread threadId2 

 
Here, the purpose of newIORef, readIORef and writeIORef functions is obvious. All 
them work in the IO monad because creating, reading and writing of mutable variable is 
certainly a side effect. 
 

newIORef :: a -> IO (IORef a) 
readIORef :: IORef a -> IO a 
writeIORef :: IORef a -> a -> IO () 

 
The forever combinator repeats a monadic action forever: 
 

forever :: Monad m => m a -> m b 
 
In our case, there are two monadic actions called increaseValue and printValue. The 
forever combinator and an action passed represent a worker that may be forked into a 
thread: 
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worker1 :: IO () 
worker2 :: IO () 
forkIO :: IO () -> IO ThreadId 

 
Due to Haskell's laziness, the construction: 
 

let worker1 = forever $ increaseValue refVal 
 
doesn't block the main thread because it won't be evaluated, it's just binded to the worker1 
variable. It will be called by the forkIO function instead. 

NOTE There is no thread synchronization in the code, the threads are reading and writing 
the shared state (refVal) at their own risk, because neither readIORef nor 
writeIORef function gives guarantees of atomic access. This is a classic example of 
code that one should avoid. To make it more safe, it's worth replacing the writeIORef 
function by the “atomic” version: atomicWriteIORef. Still, programming with bare 
imperative freedom may lead to subtle bugs in parallel code. What if the second thread 
will raise an exception immediately when it's forked? The first thread will never be 
stopped, so you'll get a zombie that just heats the CPU. Something can probably break 
the threadDelay and the killThread functions, this can zombificate your threads 
too. With shared state and imperative threads you may find yourself hardly drawn by a 
tiresome debugging of sudden race conditions, dastardly crashes and deadlocks. 
Conclusion: don't write a code like in listing 5.6. 

How about the simulation model? Let's redesign a sensors-related part of it only because 
other two models can be done by analogy. Revise the sensors model that is a map of index 
to node: 
 

type SensorsModel = M.Map ComponentInstanceIndex SensorNode 
 
You may wrap the node into the reference type: 
 

type SensorNodeRef = IORef SensorNode 
type SensorsModel = M.Map ComponentInstanceIndex SensorNodeRef 

 
The SimulationModel type remains the same, - just a container for three dictionaries, - 
but now every dictionary contains references to nodes. Next, you should create an IORef 
variable every time you compile a sensor node. The compiler therefore should be impure, so 
the type is now constructed over the State and IO monads with the StateT monad 
transformer: 

type SimCompilerState = StateT CompilerState IO 
 
So the HdlInterpreter and the HndlInterpreter instances now become impure. In 
fact, replacing one monad by another doesn't change the instances that you see in the 
previous listings because the definition of interpreter type classes restricts to the generic 
monad class but not to any concrete monad. The lenses will work too. What will change is 
the compileSensorNode function. Let's implement it here: 
 

compileSensorNode :: Parameter -> SimCompilerState SensorNodeRef 
compileSensorNode par = do 
    let node = SensorNode (toMeasurement par) NoGenerator False 
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    liftIO $ newIORef node 
 
According to the requirements, there should be a lever to start and stop the simulation. 
When the simulation is started, many threads will be forked for every node. When the 
simulation is stopped, threads must die, this means you need to store thread handles (the 
type ThreadId in Haskell) after the starting function is called. It would be nice to place this 
information about a sensor and a thread into a special type: 
 

type SensorHandle = (SensorNodeRef, ThreadId) 
type SensorsHandles = M.Map ComponentInstanceIndex SensorHandle 
 
forkSensorWorker :: SensorNodeRef -> IO SensorHandle 
startSensorsSimulation :: SensorsModel -> IO SensorsHandles 
stopSensorsSimulation :: SensorsHandles -> IO () 

 
The implementation of these functions is quite straightforward. It is shown in listing 5.7 (see 
below); it's really short and understandable but it uses three new monadic combinators: the 
when combinator, a new version of the mapM monadic combinator the void combinator. You 
may learn more about them in the corresponding sidebar or you may try to infer theirs 
behavior from the usage, by the analogy as the compiler does type inference for you. 

Generic mapM, void and when combinators 

The void combinator is really simple. It drops whatever your monadic function should 
return, that's all: 

void :: IO a -> IO () 

The when combinator will evaluate a monadic action when and only the condition holds: 

when :: Monad m => Bool -> m () -> m () 

What can be special about the mapM combinator that we learned already? A new version 
of it comes from the Data.Traversable module. It has a different type definition than 
the mapM combinator from the Control.Monad and Haskell's Prelude modules: 

-- Control.Monad, Prelude: 
mapM :: Monad m => (a -> m b) -> [a] -> m [b] 
 
-- Data.Traversable: 
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b) 

Types are speaking for themselves. The former maps over a concrete data structure - a 
list of something: [a], - whereas the latter maps over anything that can be traversed 
somehow: t a. The Traversable type class restriction ensures that the data structure 
you want to map over has this property - a possibility of every item to be visited. Most 
data structures have this property. You can, for example, visit every item in a list starting 
from the head. All the trees are traversable. The Map data type is traversable too because 
it exports the corresponding type class instance. So the traversable mapM combinator is a 
more general version of the mapM combinator from the Control.Monad module. 
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Listing 5.7 discovers starting-stopping functions, the sensor updating function and the 
worker forking function: 
 

Listing 5.7: IORef-based simulation of sensors 

import Data.IORef (IORef, readIORef, writeIORef, newIORef) 
import Data.Traversable as T (mapM)  -- special mapM combinator 
import Control.Monad (forever, void) 
import Control.Concurrent (forkIO, threadDelay, killThread, ThreadId) 
 
updateValue :: SensorNodeRef -> IO () 
updateValue nodeRef = do 
    SensorNode val gen producing <- readIORef nodeRef 
    when producing $ do 
        let newVal = applyGenerator gen val 
        let newNode = SensorNode newVal gen producing 
        writeIORef nodeRef newNode 
        threadDelay (1000 * 10)   -- 10 ms 
 
type SensorHandle = (SensorNodeRef, ThreadId) 
type SensorsHandles = M.Map ComponentInstanceIndex SensorHandle 
 
forkSensorWorker :: SensorNodeRef -> IO SensorHandle 
forkSensorWorker nodeRef = do 
    threadId <- forkIO $ forever $ updateValue nodeRef 
    return (nodeRef, threadId) 
 
startSensorsSimulation :: SensorsModel -> IO SensorsHandles 
startSensorsSimulation sensors = T.mapM forkSensorWorker sensors 
 
stopSensorWorker :: SensorHandle -> IO () 
stopSensorWorker (_, threadId) = killThread threadId 
 
stopSensorsSimulation :: SensorsHandles -> IO () 
stopSensorsSimulation handles = void $ T.mapM stopSensorWorker handles 

 
With the additional function readSensorNodeValue that is intended for tests only, the 
simulation of sensors may be examined like in listing 5.8: 

Listing 5.8: Simulation usage in tests 

readSensorNodeValue :: ComponentInstanceIndex -> SensorsHandles 
    -> IO Measurement 
readSensorNodeValue idx handles = case Map.lookup idx handles of 
    Just (nodeRef, _) -> do 
        SensorNode val _ _ <- readIORef nodeRef 
        return val 
    Nothing -> do 
        stopSensorsSimulation handles 
        error $ "Index not found: " ++ show idx 
 
test :: IO () 
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test = do 
    SimulationModel sensors _ _ <- compileSimModel networkDef 
    handles <- startSensorsSimulation sensors 
    value1 <- readSensorNodeValue ("01", "nozzle1-t") handles 
    value2 <- readSensorNodeValue ("01", "nozzle2-t") handles 
    print [value1, value2] 
    stopSensorsSimulation handles 

 
This will work now, but it will print just two zeros because we didn't set any meaningful value 
generator there. We could say the goal we aim to is really close, but the solution has at least 
three significant problems: 

1.​ It's thread-unsafe. 
2.​ The worker thread falls into the busy loop anti-pattern when the producing variable is 

false. 
3.​ The worker thread produces a lot of unnecessary memory traffic when the producing 

variable is True. 
The problem with thread-safety is more serious. One of the examples of wrong behavior may 
occur if you duplicate the forking code unwittingly: 
 

forkSensorWorker :: SensorNodeRef -> IO SensorHandle 
forkSensorWorker nodeRef = do 
    threadId <- forkIO $ forever $ updateValue nodeRef 
    threadId <- forkIO $ forever $ updateValue nodeRef 
    return (nodeRef, threadId) 

 
Congratulations, zombie thread achievement is unblocked... unlocked. The two threads will 
now be contending for the writing access to the SensorNode. Mutation of the nodeRef is 
not atomic, - so nobody knows how the race condition will behave in different situations. A 
huge source of non-determinism we mistakenly mold here may lead programs to unexpected 
crashes, corrupted data and uncontrolled side effects. 

The updateValue function reads and rewrites the whole SensorNode variable in the 
IORef container which seems to be avoidable. You may, - and probably should - localize 
mutability as much as possible, so you can try to make all of the SensorNode's fields to be 
independent IORefs that will be updated when it's needed: 

 
data SensorNode = SensorNode 
    { value :: IORef Measurement 
    , valueGenerator :: IORef ValueGenerator 
    , producing :: IORef Bool 
    } 
type SensorsModel = M.Map ComponentInstanceIndex SensorNode 

 
If you want, you may try to rework the code to support a such sensor simulation model. It's 
very likely that you'll face many problems with synchronization here. This is a consequence 
of parallel programming in imperative paradigm. Unexpected behavior, non-determinism, 
race conditions, - all this is a curse of every imperative-like threaded code, and we can do 
better. In spite of our current inability to refuse of threads, there is hopefully a cure of the 
imperative curse we may use to decline the problem. Welcome to the world of Software 
Transactional Memory. 
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5.3.2​ Impure state with State and IO monads 
So far we were communicating with the simulation model directly (see listing 5.8; for 
instance there are functions startSensorsSimulation and readSensorNodeValue), 
but now we are going to add another level of abstraction - the simulator service. Just to 
recall, let's revise what we know about it. According to the architecture in figure 5.2, the 
simulator will be stateful, because it should spin inside its own thread and maintain the 
simulation model. The State monad that is alloyed with the IO monad by means of monad 
transformer will provide the impure stateful context where it's very natural to place the 
simulation model. The simulator should receive requests about what to do with the 
simulation model, should do that and then it should send the results back. From a design 
point of view, this is a good place for the MVar request-response pattern. Every time the 
simulator thread gets the request, it transforms the request into the State-IO monadic action 
and applies that action to the simulation model. The simulator will provide some simple 
embedded language for the requests and responses. It's worth it to show the communication 
eDSL right now: 
 

data In = StartNetwork 
        | StopNetwork 
        | SetGenerator ComponentInstanceIndex ValueGenerator 
data Out = Ok | Fail String 
 
type SimulatorPipe = Pipe In Out    -- Pipe from request-response pattern 

 
It's really ad-hoc for now. These three actions it contains can't cover all the needs, but we 
have to make something minimally viable to be sure that this design approach is good 
enough. Later we'll evolve this code in relation to the theme of FRP and GUI. 

A typical scenario is shown in figure 5.7: 

 

Figure 5.7: Simple interaction scenario 

Let's try to write a test that shapes the minimal interface to the simulator that allows us to 
support the scenario. It's fine that machinery doesn't exist yet; following the Test Driven 
Development (TDD) philosophy, we'll implement it later. Fortunately, something we already 
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have: namely, the compilation subsystem. This piece fits the picture well. Listing 5.12 shows 
the code: 
 

Listing 5.12: Simulator test 

module SimulatorTest where 
 
import SampleNetwork (networkDef) 
import Andromeda.Hardware ( Measurement(..), Value(..), 
    ComponentInstanceIndex) 
import Andromeda.Service (sendRequest) 
import Andromeda.Simulator 
    ( compileSimModel 
    , startSimulator 
    , stopSimulator 
    , ValueGenerator(..) 
    , In(..), Out(..)) 
 
increaseValue :: Float -> Measurement -> Measurement 
increaseValue n (Measurement (FloatValue v))  
    = Measurement (FloatValue (v + n)) 
 
incrementGenerator :: ValueGenerator 
incrementGenerator = StepGenerator (increaseValue 1.0) 
 
test = do 
    let sensorIndex = ("01", "nozzle1-t") :: ComponentInstanceIndex 
    simulationModel <- compileSimModel networkDef 
    (simulatorHandle, pipe) <- startSimulator simulationModel 
    sendRequest pipe (SetGenerator sensorIndex incrementGenerator) 
    stopSimulator simulatorHandle 

 
The workflow is very straightforward: start, do, stop using a simple interface and no matter 
what miles the simulator has to walk to make this real. That's why our interface is good. 
However we have to elaborate the internals that are not so simple. The most interesting 
function here is the startSimulator one. From code above it's clear that the function 
takes the simulation model and returns a pair of some handle and pipe. The handle is an 
instance of the special type SimulatorHandle that contains useful information about the 
service started: 
 

data SimulatorHandle = SimulatorHandle 
    { shSimulationModel :: SimulationModel 
    , shSensorsHandles :: SensorsHandles 
    , shStartTime :: UTCTime 
    , shThreadId :: ThreadId 
    } 
 
startSimulator :: SimulationModel -> IO (SimulatorHandle, SimulatorPipe) 
startSimulator = undefined 

 

 



Alexander Granin / Functional Design and Architecture / Draft 0.9.0​ 29 

Clear enough. So this function somehow starts a sensor model (that we know how to do), 
gets current time (the UTCTime is the standard type in Haskell), creates the pipe and forks a 
thread for the simulator. This is the code: 
 

forkSimulatorWorker :: SimulationModel -> SimulatorPipe -> IO ThreadId 
forkSimulatorWorker simModel pipe = undefined 
 
startSimulator :: SimulationModel -> IO (SimulatorHandle, SimulatorPipe) 
startSimulator simModel@(SimulationModel sensorsModel _ _) = do 
    pipe <- createPipe :: IO SimulatorPipe 
 
    startTime <- getCurrentTime      #A 
    sensorsHandles <- startSensorsSimulation sensorsModel #B 
    threadId <- forkSimulatorWorker simModel pipe  #C 
 
    let handle = SimulatorHandle simModel sensorsHandles startTime 
threadId 
    return (handle, pipe) 

#A System call from Data.Time.Clock 
#B Known part 
#C Forking a worker - not implemented yet 

 
Notice that the most parts of this function are assembled from code that is already done. All 
we have written before is applied without any modifications. The main gap here is the forking 
of a thread. Let's give birth to the stateful impure service that is awaiting for requests from 
the pipe. This is the type for its state: 
 

import qualified Control.Monad.Trans.State as S 
type SimulatorState a = S.StateT SimulationModel IO a 

 
Fine, we know how that works. Now consider the following listing which describes the core of 
the service: 

Listing 5.13: The simulator core 

import qualified Control.Monad.Trans.State as S 
 
type SimulatorState = S.StateT SimulationModel IO 
 
-- Actions: 
startNetwork :: SimulatorState ()         #1 
startNetwork = undefined 
 
stopNetwork :: SimulatorState () 
stopNetwork = undefined 
 
setGenerator  
    :: ComponentInstanceIndex -> ValueGenerator -> SimulatorState () 
setGenerator idx gen = undefined 
 
-- Core: 
process :: In -> SimulatorState Out       #2 
process StartNetwork = do 
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    liftIO $ print "Starting network..." 
    startNetwork 
    return Ok 
process StopNetwork = do 
    liftIO $ print "Stoping network..." 
    stopNetwork 
    return Ok 
process (SetGenerator idx gen) = do 
    liftIO $ print "Seting value generator..." 
    setGenerator idx gen 
    return Ok 
 
processor :: SimulatorPipe -> SimulatorState ()   #3 
processor pipe = do 
    req <- liftIO $ getRequest pipe 
    resp <- process req 
    liftIO $ sendResponse pipe resp 

#1 Impure monadic actions that do something with the simulator state (that is SimulationModel) 
#2 Translation of request into monadic action 
#3 The processor of requests that spins inside the SimulatorState monad and driven by a separate 
thread 

 
By the points: 

#1: Think about the startNetwork and stopNetwork functions. They should somehow 
affect the simulation model keeping in the state context. By seeing their names you may 
guess they should switch every simulated device on or of - wherever it means for a particular 
node. Thus they will evaluate some STM transactions, as well as the setGenerator action 
that probably should alter a value generator of some sensor node. If you are wondering, see 
code samples for this book, but for now let's omit their implementation. 

#2: The process function translates the ADT language to the real monadic action. It 
also may do something impure, for example, writing a log. The liftIO function allows 
impure calls inside the State-IO monad. 

#3: The processor function. It's a worker function for the thread. It's supposed to be 
run continuously while the Simulator service is alive. When it receives a request, it calls the 
#2 process, and then the request is addressed to the simulation model being converted into 
some action. 

The final step is forkSimulatorWorker: 
 
forkSimulatorWorker :: SimulationModel -> SimulatorPipe -> IO ThreadId 
forkSimulatorWorker simModel pipe = do 
    let simulatorState = forever $ processor pipe 
    forkIO $ void $ S.execStateT simulatorState simModel 

 
You may feel that all these things are similar to you; that's right, we have learned every 
single combinator you see here; but there is one significant idea that may be not so easy to 
see. Remember the state of the simulation model compiler. You run it like so: 
 

(CompilerState _ ss cs ts) <- S.execStateT compiler state 
 
Or even remember how you run stateful factorial calculation: 
 

let result = execState (factorialStateful 10) 1 
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For all these occurrences of the State monad, you run your stateful computation to get the 
result right now. The state lives exactly the time needed to execute a computation, not less, 
not more. When the result is ready, the monadic state context will be destroyed. But the 
case with the SimulatorState is not so. This state continues to live even after the 
s.execStateT function is finished! Woa, magic is here! 

There is no magic, actually. The s.execStateT function will never finish. The thread we 
have forked tries very hard to complete this monadic action but the following string makes 
the action proceed over and over again with the same state context inside: 

 
let simulatorState = forever $ processor pipe 

 
So Achilles will never overtake the tortoise. But it's normal: if you decide to finish him, you 
may just kill him: 
 

stopSimulator :: SimulatorHandle -> IO () 
stopSimulator (SimulatorHandle _ sensorsHandles _ threadId) = do 
    stopSensorsSimulation sensorsHandles 
    killThread threadId 

 
This is why we saved handles for sensors and the Simulator's thread identifier.  

I believe this core of the simulator is tiny and understandable. You don't need weird 
libraries to establish your own service, you don't need any explicit synchronization. Still, STM 
prevents the simulation model from entering into invalid states. I tell you a secret: the 
State-IO monad here serves one more interesting design solution that is not visible from the 
code presented. Did you have a question about what happened with the languages from 
Logic Control and why we don't proceed with them in this chapter? In reality, the 
SimulatorState monad makes it easy to incorporate script evaluation over the simulation 
model. It means, all the developments, the free eDSLs we have made in previous chapters, 
start working! It requires only a little effort to add some new simulator API calls. I hope it 
sounds intriguing to hook your motivation to go further with the book. 

5.4​ Summary 
In this chapter, you have learned a few (but not all) approaches to state in functional 
programs. You also improved your understanding of monads. The examples of the State, IO 
and STM monads you see here commit to the idea that this universal concept - monads - 
solves many problems in a handy way. This is why the book pays so much attention giving 
you a practical view of monads instead of explaining a theory how they really work. At this 
moment it should be clear that monads are a much more useful thing for design of code than 
the community of functional programmers was thinking before. 

Indeed, designing with monads requires you to atomize pieces of code to smaller and 
smaller functions that have only a single responsibility. If that weren't so, then the 
composition surely was impossible. If there are two functions: f and g that you need to 
combine, you can't do this while g has two or more responsibilities. It's more likely the f 
function doesn't return a value that is useful for all parts of the g function. The f function is 
simply unaware about the internals of the g, and this is completely right. As a consequence, 
you have to follow the SRP principle in FP. Again, as a consequence, you immediately gain a 
huge reusability and correctness of code. Even in a multithreaded environment. 

So what concepts did you get from this chapter? 

▪​ The State monad is revisited. Although you can do stateful functional applications 
without any monads, the State monad is able to save lines of code along with time 
needed to write, understand, debug and test a code. The State monad has many 
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useful applications in every functional program. 
▪​ Pure state is good, but for some circumstances, you might want the IORef concept 

that provides you with impure mutable references that are a full analogue of 
imperative variables. But of course you should be aware of the problems the 
imperative nature of IORef drags. At least you don't want to use it with threads. 

▪​ The STM monad comes to the scene when you do need an impure state in a 
multithreaded environment. STM has many transactional data structures such as 
TVar, TMVar, TQueue and others that can be adopted in modeling of concurrent data 
structures. You also might be interested in learning STM deeper, because this only 
concept is so many-sided and powerful that it deserves a separate chapter or even a 
book. But now you should have an idea when to go this way in your code. 

The practices you have learned from the first five chapters are enough for building real-world 
applications of good quality. However, there are more techniques and ideas to study. Keep 
going! 
 

 


