Alexander Granin / Functional Design and Architecture / Draft 0.9.0 1

Preamble

This is a draft of my book available for a free reading. This version of the book is incomplete,
unedited, not properly styled. It won't be updated. Consider buying the book, and you’ll get a
complete text revised by a professional editor. You’ll also get some additional materials such
as educational videos.

Hello dear reader!

https://leanpub.com/functional-design-and-architecture

Here is the example of how deeply the text was edited:

This chapter covers:
= An introduction to software design
= Principles and patterns of software design
= Software design and the functional paradigm

Our world is a complex, strange place that can be described usingby physical math, at
least to some degree. The deeper we look into space, time, and matter, the more
complex such mathematical formulas become — formulasywhieh= we mustmeed te-use
in order to explain the facts we observe. Finding better abstractions for natural
phenomenaens lets us=gives—us—the—ability=te predict the behavior of the systems
involved. We can build wiser and more intelligent things, thuswiiel—ean changeing
everything around us, from life comfort, culture, and technology to the way we think.
Homo Ssapiens have comewent a long way to the present time by climbing the ladder
of progress.

If you think about it, you=will see that this ability tothe-faet-we-ean describe the
Universe using the=mathematical language is=ne't anse obvious one. There’=is no
intrinsic reason why our world should obey the=laws developed by physicists and
verified by mamy=natural experiments. However, =it-i's true: given the same conditions,
you can expect the same results. The Bdeterminism of physical laws seems to be an
unavoidable property of the Universe. Math is a suitable way to explain this
determinism.

You may wonder why I'mwe-a‘re talking about the Universe in a programming book.
Besides the fact that it is an intriguing start for any text, it'-is also a good metaphor for
the central theme of this book: functional programming in large. Fhe="Functional Design
and Architecture” beek=presents yeu-the most interesting ideas about software design
and architecture we'=have discovered thus far in functional programming-abeut-seftware
design—and—architecture. You may be asking, why ene-sheuld=break the status quo —
why strayeeimg=far from plain old techniques the imperative world has-elaborated for us
years ago?= Good question. I could answer that functional programming techniques can
make your code safer, shorter, and better in general. I could also say that there
someare problems are much easier to approach within the functional paradigm.
Moreover, I could argue that the functional paradigm is no doubt just as deserving as

https://leanpub.com/functional-design-and-architecture

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 2

Application state

This chapter covers
= What is stateful application in functional programming
= How to design operational data
= What the State monad is useful for in pure and impure environment

What puzzles me from time to time is that I meet people who argue against functional
programming by saying it can't work for real tasks because it lacks mutable variables, which
probably means that no state could change and therefore interaction with the program is not
possible. You even might be hearing that “a functional program is really a math formula
without effects, and consequently it doesn't work with memory, network, standard input and
output, and whatever else the impure world has. But when it does, it's not functional
programming anymore”. There are even more emotional opinions and questions there, for
example: “Is Haskell cheating with terms masking the imperative paradigm by its IO
monad?” An impure code the Haskell's I0 monad abstracts over makes someone skeptical
how it can be functional while it's imperative.

Hearing that, we, functional developers, start asking ourselves whether we all wander in
the unmerciful myths trying to support immutability when it's infinitely beneficial to use good
old mutable variables. However it's not the case. Functional programming doesn't imply the
absence of any kind of state. It's friendly to side effects but not so much to allow them to
vandalize our code. When you read an imperative program, you probably run it in your head
and see if there is any discrepancy between two mental models: one you are building from
the code (operational), and one you've got from requirements (desired). When you hit an
instruction that changes the former model in a contrary way to the latter model, you feel this
instruction does a wrong thing. Stepping every instruction of the code, you change your
operational model bit by bit. It's probably true that your operational model is mutable and
your mind doesn't accumulate changes to it as lazy functional code can do. Next time you
meet a code in State monad and you try the same technique to evaluate it. You'll be
succeeded, because it can be read this way, however functions in the stateful monadic chain
aren't imperative and they don't mutate any state. And that's why it is easily composable and
safe.

What about the IO monad, the code just feels imperative, and it's fine to reason this way
on some level of abstraction, but for deep understanding of the mechanism one should know

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 3

the chain of IO functions is just a declaration. By declaring an impure effect we don't make
our code less functional. We separate declarative meaning of impurity from actual impure
actions. The impurity will happen only when the main function will be run. With help of a
static type system, the code that works in the IO monad is nicely composable and
declarative, - in sense you can pass your IO actions here and there as first-class objects. Still
the running of such code can be unsafe, because we can make mistakes. This is a bit of a
philosophical question, but it really helps to not to exclude Haskell from pure functional
languages.

However these two monads - State and IO - are very remarkable because the state itself
you are able to express with them can be safe, robust, convenient, truly functional and even
thread-safe. How so - this is the theme of this chapter.

5.1 Architecture of the stateful application

This section prepares a ground for introduction of concepts about state. You'll find here
requirements to the stateful simulator of the spaceship, and also you'll develop its high-level
architecture to some degree. But before that became possible, the notion of another free
language was needed, namely the language for defining a ship controllable network. In this
section I also give you some rationale why it's even important to build something partially
implemented that already does not all but a few real things. You'll see that the design path
we have chosen in previous chapters works well and helps to achieve simplicity.

5.1.1 State in functional programming

State is the abstraction about keeping and changing a value during some process. We usually
say that a system is stateless if it doesn't hold any value between calls to it. Stateless
systems often look like a function that takes a value and “immediately” (after a small time
that is needed to form a result) returns another value. We consider function to be stateless if
there is no any evidence for the client code that function can behave differently be given by
the same arguments. In imperative language, it's not often clear that the function doesn't
store anything after it's called. In imperative language, effects are allowed, so the function
can, theoretically, mutate a hidden, secret state, for instance a global variable or file. If the
logic of this function also depends on that state, the function is not deterministic. If
imperative state is not prohibited by the language, it's easy to fall into the “global variable
anti-pattern”:

secretState = -1

def inc(val):
if secretState == 2:
raise Exception('Boom!")
secretState += 1
return val + secretState

Most functional languages don't watch you like Big Brother: you are allowed to write such
code. However it's a very, very bad idea, because it makes code behave unpredictably,
breaks the purity of function and brings code out of the functional paradigm. The opposite
idea to have stateless calculations and immutable variables everywhere may firstly make
someone think the state is not possible in functional language, but it's not true. State do
exist in functional programming. Moreover, several different kinds of state may be used to
solve different kinds of problems.
The first division of state kinds lies along the lifetime criteria:

= State that exist during a single calculation. This kind of state is not visible from
outside. The state variable will be created in the beginning and destroyed in the end of

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 4

the calculation (remark: with garbage collecting, this may be true in a conceptual
sense but not how it really is). The variable can be freely mutated without breaking
the purity until the mutation is strictly deterministic. Let's name this kind of state
auxiliary, localized.

= State with the lifetime comparable to the lifetime of the application. This kind of state
is used to drive business logic of the application and to keep important user-defined
data. Let's call it operational.

= State with the lifetime exceeding the lifetime of the application. This state lives in
external storages (databases) which provide long-term data processing. This state can
be naturally called external.

The second division concerns a purity question. State can be:

= Pure. Pure state is not really some mutable imperative variable that is bound to a
particular memory cell. Pure state is a functional imitation of mutability. We also can
say, pure state doesn't destroy previous value when assigning a new one. Pure state is
always bounded by some pure calculation.

= Impure. Impure state is always operated by dealing with impure side effects such as
writing memory, files, databases, imperative mutable variables. While an impure state
is much more dangerous than a pure one, there are techniques that help to secure
impure stateful calculations. Functional code that works with impure state can be still
deterministic by the behavior.

The simulation model represents a state that exists during the simulator lifetime. This model
holds user-defined data about how to simulate signals from sensors, keeps current
parameters of the network and other important information. Business logic of the simulator
application rests on this data. Consequently, this state is operational, application-wide.

In contrast, the translation process from a HNDL script to the simulation model requires
updating an intermediate state specifically to each network component being translated. This
auxiliary state exists only to support compilation of HNDL. After it's done, we get a
full-fledged simulation model ready to be run by the simulator. In the previous chapters, we
have slightly touched this kind of state here and there. The external language translator that
works inside the State monad is the example, and also every interpretation of a free
language can be considered stateful in bounds of an interpret function. In the rest of this
chapter we'll study more on this while building the simulation model and an interface to it.

5.1.2 Minimum viable product

So far we have built separate libraries and implemented distinct parts of Logic control and
Hardware subsystems. According to the architecture diagram (see chapter 2, figure 2.15),
Andromeda control software should contain such functionality: database, networking, GUI,
application and native API mapping. All we know about these parts is just a list of high-level
requirements and a rough general plan on how to implement them. For example, a database
component is needed to store data about ship properties: values from sensors, logs,
hardware specifications, hardware events, calculation results and so on. What concrete types
of data should be stored? How many records expected? What type of database is better
suitable for this task? How should we organize the code? It's still unknown and should be
carefully analyzed. Imagine, we did it. Imagine, we went even further and had implemented
a subsystem that is responsible for dealing with databases. All is fine except we created
another separate component among separate components. While these components don't
interact with each other, we can't guarantee they will match like Lego's blocks in the future.
This is the risk that is able to destroy your project. I saw this many times. Someone
spends weeks developing a big god-like framework, and when the deadline happens, he
realizes that the whole system can't work properly. He has to start from scratch. The end. To

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 5

not fall into this problem, we should prove that our subsystems can work together even if the
whole application is still not ready. Integration tests can help here a lot. They are used to
verify the system in the whole, when all parts are integrated and functioning in the real
environment. When integration tests pass it shows that the circle is now complete, the
system is proven to be working. Besides that, there is a much better choice: a sample
program, a prototype that has limited but still enough functionality to verify the idea of the
product. You may find many articles about this technique by keywords “minimal viable
product” or MVP. The technique aims to create something real, something you may touch and
feel right now, even not all functionality is finished. This will require a pass-through
integration of many application components and also the MVP is more presentable than
integration tests.

This chapter is the best place to start working on such a program, namely a simulator of a
spaceship. The simulator has to be stateful, no exceptions. In fact, devices in spaceships are
micro-controllers with their own processors, memory, network interfaces, clock and operating
system. They behave independently. Events they produce occur chaotically, and also every
device can be switched off while others stay in touch. All the devices are connected to the
central computer that is called Logic Control. Signals between computers and devices are
transmitted through the network and may be possibly retransmitted by special intermediate
devices. Consequently, the environment we want to simulate is stateful, multi-thread,
concurrent and impure. We'll learn many new concepts of advanced functional programming
while working on the simulator in this and further chapters.

As you can see, we need a new concept of a network of devices. Going ahead, this will be
another free language in the Hardware subsystem in addition to the HDL language. This
language will allow us to declare hardware networks and construct a simulation model
against it. Let's first take a quick look into it. We won't follow the complete guide on how to
construct it because there will be nothing new in the process, however it's a worthy idea to
get familiar with the main takeaways of this language.

5.1.3 Hardware network definition language

Mind maps we designed in chapter 2 may give useful information about the structure of a
spaceship. What else do we know about it?

= Spaceship is a network of distributed controllable components.

= The following components are available: logic control unit (LCU), remote terminal
units (RTUs, terminal units, TUs), devices and wired communications.

= Devices are built from analogue and digital sensors and one or many controllers.
= Sensors produce signals continuously with a configurable sample rate.

= Controller is a device component that has network interfaces. It knows how to operate
by the device.

= Controllers support a particular communication protocol.

= Logic control unit evaluates general control over the ship following the instructions
from users or commands from control programs.

= The network may have reserve communications and reserve network components.
= Every device behaves independently from others.
= All the devices in the network are synchronized in time.

In chapter 3 we have already defined a DSL for device declaration, namely HDL (Hardware
definition language), but we still didn't introduce any mechanisms to describe how the
devices are connected together. Let's call this mechanism the Hardware network definition

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 6

language (HNDL), as we mentioned in listing 3.1 - the Andromeda project structure. The
HNDL scripts will describe the network of HDL device definitions.

We'll now revisit the hardware subsystem. HDL is a free language with small possibilities
to compose a device from sensors and controllers. Listing 5.1 shows the structure of HDL and
the sample script in it:

Listing 5.1: The free Hardware definition language

data Component a
= SensorDef ComponentDef ComponentIndex Parameter a
| ControllerDef ComponentDef ComponentIndex a

type Hdl a = Free Component a

boostersDef :: HdAl ()

boostersDef = do
sensor aaa_t 25 "nozzlel-t" temperature
sensor aaa p 02 "nozzlel-p" pressure
sensor aaa_t 25 "nozzle2-t" temperature
sensor aaa p 02 "nozzle2-P" pressure
controller aaa c 86 "controller"

Every instruction defines a component of the device. The HNDL script will utilize these HDL
scripts. In other words, we have faced the same pattern of scripts over scripts we introduced
in chapter 4.

Let's assume the items in the network are connected by wires. The network is usually
organized in the “star” topology because it's a computer network. This means the network
has a tree-like structure, not a spider web-like one. We'll adopt the following simple rules for
our control network topology:

= Logic control units can be linked to many terminal units.
= One terminal unit may be linked to one device controller.

Every device in the network should have its own unique physical address that other devices
may use to communicate with it. The uniqueness of physical addresses makes it possible to
communicate with a particular device while there can be many of them identical to each
other. However it's not enough because every device may have many controllers inside, so
we need to point the needed controller too. As long as a controller is a component, we can
refer to it by it's index. We have the ComponentIndex type for this. The pair of physical
address and component index will point to the right controller or sensor across the network.
Let it be the ComponentInstanceIndex type

type PhysicalAddress = String
type ComponentInstanceIndex = (PhysicalAddress, ComponentIndex)

Now we are about to make HNDL. As usual, we map the domain model to the algebraic data
type that will be our embedded DSL. As we said, there are three kinds of network elements
we want to support: LCU, RTU and devices. We'll encode links between them as specific data
types so we couldn't connect irrelevant elements. You may think about links as a specific
network interface encoded in types. Listing 5.2 introduces the HNDL language. Notice that
the automatic Functor deriving is used here to produce the fmap function for the
NetworkComponent type. I believe you already memorized why the NetworkComponent
type should be a functor and what the role it plays in the structure of the Free monad.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 7

Listing 5.2: The Hardware network definition language

{-# LANGUAGE DeriveFunctor #-}
module Andromeda.Hardware.HNDL where

type PhysicalAddress = String

data DeviceInterface = DevicelInterface PhysicalAddress
data TerminalUnitInterface = TerminalUnitInterface PhysicalAddress
data LogicControlInterface = LogicControlInterface PhysicalAddress

-- | Convenient language for defining devices in the network.

data NetworkComponent a
= DeviceDef PhysicalAddress (Hdl ()) (DevicelInterface -> a)
| TerminalUnitDef PhysicalAddress (TerminalUnitInterface -> a)
| LogicControlDef PhysicalAddress (LogicControlInterface -> a)
| LinkedDeviceDef Devicelnterface TerminalUnitInterface a
| LinkDef LogicControlInterface [TerminalUnitInterface] a

deriving (Functor)

-- | Free monad Hardware Network Definition Language.
type Hndl a = Free NetworkComponent a

-- | Smart constructors.

remoteDevice :: PhysicalAddress -> Hdl () -> Hndl DevicelInterface
terminalUnit :: PhysicalAddress -> Hndl TerminalUnitInterface
logicControl :: PhysicalAddress -> Hndl LogicControllInterface
linkedDevice :: DevicelInterface -> TerminalUnitInterface -> Hndl ()
link :: LogicControllInterface -> [TerminalUnitInterface] -> Hndl ()

Notice how directly the domain is addressed: we just talked about physical addresses,
network components and links between them, and the types reflect the requirements we
have collected. Let's consider the DeviceDef value constructor. From the definition, we may
conclude it encodes a device in some position in the network. The PhysicalAddress field
identifies that position and the (Hd1 ()) field stores a definition of the device. The last field
holds a value of type (DeviceInterface -> a) that we know represents the continuation
in the free language. The removeDevice smart constructor wraps this value constructor into
the Free monad. We can read its type definition as “remoteDevice procedure takes a
physical address of the device, a definition of the device and returns an interface of that
device”. In the HNDL script it will be looking so:

networkDef :: Hndl ()

networkDef = do
iBoosters <- remoteDevice "01" boostersDef
-- rest of the code

where boostersDef is the value of the Hd1 () type.
What's else important, all network components return their own “network interface” type.
There are three of them:

DevicelInterface

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 8

TerminalUnitInterface
LogicControlInterface

The language provides two procedures for linking of network elements:

linkedDevice :: DevicelInterface -> TerminalUnitInterface -> Hndl ()
link :: LogicControlInterface -> [TerminalUnitInterface] -> Hndl ()

The types restrict links between network components by exactly the way that follows the
requirements. Any remote device can be linked to the intermediate terminal unit and many
terminal units can be linked to the logic control. It seems this is enough to form a tree-like
network structure that maybe doesn't reflect the complexity of real networks but is suitable
for demonstration of the ideas. In the future we may decide to extend the language by new
types of network components and links.

Finally, listing 5.3 shows the HNDL script for simple network presented in figure 5.1:

Listing 5.3: Sample network definition script

networkDef :: Hndl ()

networkDef = do
iBoosters <- remoteDevice "01" boostersDef
iBoostersTU <- terminalUnit "O03"
linkedDevice iBoosters iBoostersTU
iLogicControl <- logicControl "O09"
link iLogicControl [iBoostersTU]

~ V_

(7 /7

e)

S < Boosters

controller nozzlel-t nozzle2-t nozzlel-p nozzle2-p
- L
L\ 4
. P » Z Boosters RTU
&y o
. ‘ . ‘ . . Logic Control

Figure 5.1: Sample network scheme

Our next station is “The simulator”. Please keep calm and fasten your seat belts.

5.1.4 Architecture of the simulator

The simulator will consist of two big parts: the simulator itself and the graphical user
interface to evaluate control over the simulated environment. Let's list functional
requirements to the simulation part.

= Simulation model should emulate the network and devices as close to reality as
possible.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 9

= Simulated sensors should signal the current state of the measured parameter. Because
none of the physical parameters can be really measured, the signal source will be
simulated too.

= Sensors signal measurements with defined sapling rate.

= It should be possible to configure virtual sensors to produce different signal profiles.
There should be such profiles: random noise generation, generation by mathematical
function with time as parameter.

= Every network component should be simulated independently.

= There should be a way to run logic control scripts over the simulation as it would be a
real spaceship.

= Simulation should be interactive to allow reconfiguring on the fly.

We said that the simulator is an impure stateful and multi-thread application because it
reflects a real environment of distributed independent devices. This statement needs to be
expanded.

= Multi-threaded. Every sensor will be represented as a single thread that will produce
values periodically even if nobody reads it. Every controller will live in the separate
thread as well. Other network components will be separately emulated as needed. To
not to waste CPU time, threads should work with delay that in case of sensors is
naturally interpreted as sample rate.

= Stateful. It should be always possible to read current values from sensors, even
between refreshing moments. Thus, sensors will store current values in their state.
Controllers will hold current logs and options, terminal units may behave like stateful
network routers, and so on. Every simulated device will have a state. Let's call the
notion of threaded state a node.

= Mutable. State should be mutable because real devices rewrite their memory every
time when something happens.

= Concurrent. A node's internal thread updates its state by time, and an external thread
reads that state occasionally. The environment is thereby concurrent and should be
protected from data races, dead blocks, starvation and other bad things.

= Impure. There are two factors here: simulator simulates an impure world; the need of
threads and mutable concurrent state eventually requires impurity.

If you found these five properties in your domain, you should be knowing that there is an
abstraction that covers exactly the requirement of stateful, mutable, concurrent and impure
environment. It is known as Software Transactional Memory (STM). Today it is the most
reasonable way to combine concurrent impure stateful computations safely and program
complex parallel code with much less pain and bugs. In this chapter, we will consider STM as
a design decision that significantly reduces the complexity of the parallel models.

All information about the spaceship network is held in the HNDL network definition. And
now let me tell you a riddle. As soon as HNDL is a free language that we know does nothing
real but declares a network, how to convert it into a simulation model? We do with this free
language exactly what we did with other free languages: we interpret it and create a
simulation model during the interpretation process. We visit every network component (for
example, TerminalUnitDef) and create an appropriate simulation object for it. If we hit a
DeviceDef network component, we then visit its Hd1 field and interpret the internal free
HDL script as desired. Namely, we should create simulation objects for every sensor and
every controller we meet in the device definition. Let's call the whole interpretation process a
compilation of HNDL to a simulation model.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 10

Once we receive the model, we should be able to run it, stop it, configure sensors and
other simulation objects and do other things that we stated in the requirements. The model
will be probably somewhat complex because we said it should be concurrent, stateful and
impure. The client code definitely wants to know as little as possible about the guts of the
model, so it seems a wise idea to establish some high-level interface to it. In our case, the
simulator is just a service that works with the simulation model of the spaceship's network.
To communicate with the simulator, we'll adopt the MVar request-response pattern. We will
send actions that the simulator should evaluate over its internal simulation model. If needed,
the simulator should return an appropriate response or at least say the action is received and
processed. The request-response pipe between the simulator and the client code will
effectively hide the implementation details of the former. If we'll want to do so, we can even
make it remote transparently to the client code.

Figure 5.2 presents the architecture of the simulator.

Sensor Terminal Unit & Controller &

ST™M ST™M ST™M

Simulation Model

ADT
State + 10 monad
Simulator & Compiler P> HDN + HNDL
MVar Req-Resp Free eDSL Free monad eDSL
10 monad State + IO monad

Figure 5.2: Architecture of the simulator

Now we are ready to do real things.

5.2 Pure state

By default definition, pure state is a state that can be created once and every update of this
value leads to copying of it. This is the so-called copy-on-write strategy. The previous value
should not be deleted from memory, although it's allowed that no references are longer
pointed to it. Therefore, pure state can't be mutable in the sense of destruction of an old
value to place a new one instead. A pure function always works with a pure state, but what
we know about pure functions? Just three things:

1. Pure function depends only on the input arguments;
2. Pure function returns the same value on the same arguments;
3. Pure function can't do any side effects.

However there is some kind of escape from these narrow conditions. The third point includes
usually interaction with operative memory because the latter is an external system that may
fail: memory may end. Nevertheless, the memory may end just because you call too many
pure functions in recursion that is not tail-optimized, so the third requirement for the
function to be pure is not that convincing. What if you somehow pass to the function an
empty array that can be changed whatever the ways the function wants to calculate what it
wants? It may freely mutate values in the array, but as long as the function does it the same
way every time it's called, the regular output will be also the same. The only requirement

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 11

here is that no other code should have any kind of access (reading, writing) to the array. In
other words, the mutable array will exist only locally, for this concrete function, and when
calculations are done, the array should be destroyed. It's easy to see that the first and the
second points of the list above are satisfied.

Indeed, this notion of local mutable state exists and it's known as, well, local mutable
state. To just name it, in Haskell this notion is represented by the ST monad. We'll probably
see some applications of this in the book, but in this section we'll learn the following things:

= Argument-passing pure state.
= The State monad.

The ST monad, the RWS monad wouldn't be presented in this chapter, but you can always try
them yourself. There is so much similarity between them and the concepts we have already
learned, so it shouldn't be that difficult.

Also, we will do some revising in this section, but think about it as a possibility to nail
down the knowledge in connection to the development of the next part of the application.
Also, the following text is not about state just because you are very familiar with the
concepts it describes, but this section is about coherent modeling and development of
functionality that haven't been implemented yet.

5.2.1 Argument-passing state

If we consider that the simulator is our new domain then domain modeling is the
construction of the simulation model and operations with it. Let's develop the algebraic data
type SimulationModel that will hold the state of all simulated objects:

data SimulationModel = SimulationModel

{

???? -- The structure is yet undefined.

}

We concluded that simulated objects should live in their own threads, and therefore we need
some mechanism to communicate with them. First of all, there should be a way to identify a
particular object the client code wants to deal with. As soon as the model is built from the
HNDL description, it's very natural to refer to every object by the same identifications that
are used in HNDL and HDL scripts. This is why the PhysicalAddress type corresponds to
every network component and the ComponentIndex type identifies a device component
(see the definition of the HDL language). A pair of PhysicalAddress and
ComponentIndex values is enough to identify a sensor or a controller within the whole
network. Let's give this pair of types an appropriate alias:

type ComponentInstancelndex = (PhysicalAddress, ComponentIndex)

From the requirements it's known that we want to configure our virtual sensors, in particular,
we want to setup a value generation algorithm (potentially, many times). For sure, every
type of simulated object will have some specific options and state, not sensors only. It's wise
to put options into separate data types:

data ControllerNode = ControllerNode
{

???? -- The structure is yet undefined.

}

data SensorNode = SensorNode

{

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 12

???? -- The structure is yet undefined.

}

Because every simulation object (node) is accessed by key of some type, we can use a
dictionary to store them. Well, many dictionaries for many different types of nodes. This is
the easiest design decision that keeps things simple and understandable.

import qualified Data.Map as M -- Dictionary type
type ComponentInstancelndex = (PhysicalAddress, ComponentIndex)

data ControllerNode = ControllerNode
data SensorNode = SensorNode
data TerminalUnitNode = TerminalUnitNode

type SensorsModel = M.Map ComponentInstancelIndex SensorNode
type ControllersModel = M.Map ComponentInstanceIndex ControllerNode
type TerminalUnitsModel = M.Map PhysicalAddress TerminalUnitNode

data SimulationModel = SimulationModel
{ sensorsModel :: SensorsModel
, controllersModel :: ControllersModel
, terminalUnitsModel :: TerminalUnitsModel

Let's return to the SensorNode. It should keep the current value and be able to produce a
new value using a generation algorithm. The straightforward modeling gives us the following:

data ValueGenerator
= NoGenerator
| StepGenerator (Measurement -> Measurement)

data SensorNode = SensorNode
{ value :: Measurement
, valueGenerator :: ValueGenerator
, producing :: Bool

}

If the producing flag holds, then the worker thread should take the current value, apply a
generator to it and place a new value back. The value mutation function may look like so:

applyGenerator :: ValueGenerator -> Measurement -> Measurement
applyGenerator NoGenerator v = v
applyGenerator (StepGenerator f) v = f v

updateValue :: SensorNode -> SensorNode
updateValue node@ (SensorNode val gen True) =

let newVal = applyGenerator gen val

in SensorNode newVal gen True
updateValue node(@ (SensorNode val gen False) = node

The updateValue function takes a value of the SensorNode type (the node), unpacks it
by pattern matching, then changes the internal Measurement value by calling

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 13

applyGenerator function, then packs a new SensorNode value to return it as a result.
Function with type (SensorNode -> SensorNode) has no side effects and therefore it's
pure and deterministic.

A a fine line between stateful and stateless code

You may see functions with type (a —> a) very often in functional code because it's the
most common pattern to pass state through a computation. So the £1 function works
with argument-passing state, the f2 function does the same but takes another useful
value of type b and the f3 function is the same as £2 but with arguments swapped:

fl :: a -> a
f2 :: b -> a -> a
f3 11 a -> b -> a

We can transform the £3 function by flipping arguments:

£f3'" :: b -> a -> a
f3' b a = £f3 ab

It can be argued that any pure unary function with type (a —-> Db) merely transforms a
state of type a into another state of type b. In the other hand, every pure function with
many arguments may be transformed into a function with one argument (we say it can be

curried):

manyArgsFunction :: a -> b -> ¢ -> d
oneArgFunction :: (a, b, c) -> d

oneArgFunction (a, b, c¢) = manyArgsFunction a b c

Consequently, any pure function that takes any number of arguments is a state-passing
function.

In fact, every stateful computation can be “demoted” into stateless computation by
extracting the state out and passing it as argument. Just remember C# extension
methods: they could be defined in a class they work with but they separated into an
external scope to not to garbage the interface of the certain class. But then these
methods have to get a state (an object of that class) as a parameter.

In pure functional code, the state is propagated from the top pure functions down to the very
depths of the domain model walking through many transformations en route. The following
function works one layer up over the updateValue function:

updateSensorsModel :: SimulationModel -> SensorsModel
updateSensorsModel simModel =
let oldSensors = sensorsModel simModel
newSensors = M.map updateValue oldSensors

in newSensors

As you can see, the state is unrolled, updated and returned as the result. You can go up and
construct the updateSimulationModel function that unrolls all simulation models and
updates them as necessary. The primer is shown in the listing 5.4, notice how many
arguments are traveling there between the functions:

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 14

Listing 5.4: Argument passing state

-- functions that work with nodes:

updateValue :: SensorNode -> SensorNode

updatelLog :: ControllerNode -> ControllerNode
updateUnit :: TerminalUnitNode -> TerminalUnitNode

updateSensorsModel :: SimulationModel -> SensorsModel
updateSensorsModel simModel =
let oldSensors = sensorsModel simModel
newSensors = M.map updateValue oldSensors
in newSensors

updateControllersModel :: SimulationModel -> ControllersModel
updateControllersModel simModel =
let oldControllers = controllersModel simModel

newControllers = M.map updatelog oldControllers
in newControllers

updateTerminalUnitsModel :: SimulationModel -> TerminalUnitsModel
updateTerminalUnitsModel simModel =
let 0ldTerminalUnits = terminalUnitsModel simModel

newTerminalUnits = M.map updateUnit oldTerminalUnits
in newTerminalUnits

updateSimulationModel :: SimulationModel -> SimulationModel
updateSimulationModel simModel =
let newSensors = updateSensorsModel simModel
newControllers = updateControllersModel simModel
newTerminalUnits = updateTerminalUnitsModel simModel
in SimulationModel newSensors newControllers newTerminalUnits

A code with argument-passing state you see in listing 5.4 can be annoying to write and to
read because it needs too many words and ceremonies. This is a sign of high accidental
complexity and bad functional programming. The situation tends to worsen for more complex
data structures. Fortunately, this problem can be somewhat solved. Just use some function
composition and record updating syntax in Haskell or an analogue in other language:

updateSimulationModel :: SimulationModel -> SimulationModel
updateSimulationModel m = m
{ sensorsModel = M.map updateValue (sensorsModel m)

, controllersModel = M.map updateLog (controllersModel m)
, terminalUnitsModel = M.map updateUnit (terminalUnitsModel m)
}

Despite being told that making more small, tiny functions is the key to clear and
easy-maintainable code, sometimes it's better to stay sane and keep it simple.

We just discussed the argument-passing style that I'm convinced is not so exciting
because it solves a small problem of pure state in functional programming. But remember,
this kind of functional concept has given a birth to functional composition, to lenses, to all
functional programming in the end. In chapter 3 we also noticed that the State monad is

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 15

really a monadic form of argument-passing style. Let's revise it and learn something new
about monads in whole.

5.2.2 The State monad

We'll compose the SimState monad that will hold a SimulationModel value in the
context. The following functions from listing 5.4 will be rewritten accordingly:

updateSensorsModel -——=> updateSensors
updateControllersModel —-——=> updateControllers
updateTerminalUnitsModel —-——=> updateUnits

The following functions will stay the same (whatever they do):
updateValue

updatelog
updateUnit

Finally, the updateSimulationModel function will do the same thing as well, but now it

should call a stateful computation over the State monad to obtain an updated value of the
model. The monad is presented in listing 5.5:

Listing 5.5: The State monad

import Control.Monad.State

type SimState a = State SimulationModel a

updateSensors :: SimState SensorsModel
updateSensors = do
sensors <- gets sensorsModel #1

return $ M.map updateValue sensors

updateControllers :: SimState ControllersModel
updateControllers = do
controllers <- gets controllersModel #2
return $ M.map updatelLog controllers

updateUnits :: SimState TerminalUnitsModel
updateUnits = do
units <- gets terminalUnitsModel #3

return $ M.map updateUnit units
#1 Extracting sensors model
#2 Extracting controllers model
#3 Extracting units model

The type SimState a describes the monad. It says, a value of the SimulationModel type
is stored in the context. Every function in this monad may access that value. The State
monad's machinery has functions to get the value from the context, put another value
instead of existing one, and do other useful things with the state. In the code above we used
the gets function that has a type:

gets :: (SimulationModel -> a) -> SimState a

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 16

This library function takes an accessor function with type (SimulationModel -> a). The
gets function should then apply this accessor to the internals of the SimState structure to
extract the internal value. In the do-notation of the State monad this extraction is designated
by the left arrow (<-). In all monads, this means: “do whatever you need with the monadic
context and return some result of that action”.

The gets function is generic. It extracts the SensorsModel value (#1),
ControllersModel (#2) and the TerminalUnitsModel (#3). After that, every model is
updated with the result returned. It's important to note that working with the bounded
variables (sensors, controllers, units) doesn't affect the context, so the original
SimulationModel stays the same. To actually modify the context you may put a value
into it:

modifyState :: SimState ()
modifyState = do

ss <- updateSensors

cs <- updateControllers

us <- updateUnits

put $ SimulationModel ss cs us

updateSimulationModel :: SimulationModel -> SimulationModel
updateSimulationModel m = execState modifyState m

Remember the execState function? It returns the context you'll get at the end of the
monadic execution. In our case, the original model m was firstly put into the context to begin
computation, but then the context was completely rewritten by an updated version of the
SimulationModel.

TIP It will not be superfluous to repeat that monadic approach is general because once
you have a monad, you can apply many monadic combinators to your code irrespective of
what the monad is. You may find monadic combinators in Haskell's Control.Monad
module and in Scala's scalaz library. These combinators give you a “monadic
combinatorial freedom” of structuring your code. There is more than one way to solve the
same problem usually.

If you decide to not to affect the context, you can just return a new value instead using the
put function. Like this:

getUpdatedModel :: SimState SimulationModel
getUpdatedModel = do

ss <- updateSensors

cs <- updateControllers

us <- updateUnits

return $ SimulationModel ss cs us

updateSimulationModel :: SimulationModel -> SimulationModel
updateSimulationModel m = evalState getUpdatedModel m

But then you should use another function to run your state computation. If you have forgot

what the functions execState and evalState do, revise chapter 3 and external
references.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 17

The following code commits to the “monadic combinatorial freedom” idea. Consider two
new functions: 1iftM3 and the bind operator (>>=):

update :: SimState SimulationModel

update = 1iftM3 SimulationModel
updateSensors
updateControllers
updateUnits

modifyState :: SimState ()

modifyState = update >>= put

updateSimulationModel :: SimulationModel -> SimulationModel
updateSimulationModel m = execState modifyState m

There is no way to not to use the bind operator in the monadic code, because it's the essence
of every monad. We didn't see it before because Haskell's do notation hides it, but it is no
doubt there. The equivalent do-block for the modifyState function will be so:

modifyState :: SimState ()
modifyState = do

m <- update

put m

You may think that the bind operator exists somewhere in between the two lines of the do
block (in fact it exists before the left arrow). Well, the truth is that nothing can be placed
between lines, of course. The do notation will be desugared into the bind operator and some
lambdas:

modifyStateDesugared :: SimState ()
modifyStateDesugared = update >>= (\m -> put m)

The expression (\m -> put m) is equivalent to just (put) that is an eta-converted form of
the former.

I leave the joy of exploration of the mystical 1iftM3 function to you. The “monadic
combinatorial freedom” becomes even more sweet having this and other monadic
combinators: forM, mapM, foldM, filterM. Being a proficient monadic juggler, you'll
be able to write a compact, extremely functional and impressive code.

We'll continue to develop this in the section “Impure state with State and I0 monads”. But
what about the compiler of HNDL to SimulationModel? Let this (quite familiar, indeed)
task will be another introduction to lenses in the context of the State monad.

First, you declare an ADT for holding state. In Haskell, lenses can be created with the
TemplateHaskell extension for fields that are prefixed by underscore:

data CompilerState = CompilerState

{ _currentPhysicalAddress :: PhysicalAddress

, _composingSensors :: SensorsModel

, _composingControllers :: ControllersModel

, _composingTerminalUnits :: TerminalUnitsModel

makeLenses ''CompilerState

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 18

type SimCompilerState a = State CompilerState a

These lenses will be created:

currentPhysicalAddress :: Lens' CompilerState PhysicalAddress
composingSensors :: Lens' CompilerState SensorsModel
composingControllers :: Lens' CompilerState ControllersModel
composingTerminalUnits :: Lens' CompilerState TerminalUnitsModel

The Lens' type came from the Control.Lens module. It denotes a simplified type of lens.
The type of some lens Lens' a b should be read as “lens to access a field of type b inside
a type”. Thus, the composingSensors lens provides access to the field of the type
SensorsModel inside the CompilerState ADT. The compiler itself is an instance of the
Interpreter type class that exists for the HNDL free language. There is also the
interpretHndl function. This stuff wasn't presented in chapter to save the place, but you
may see it in code samples for this book. The compiler entry point looks like so:

compileSimModel :: Hndl () -> SimulationModel

compileSimModel hndl = do
let interpreter = interpretHndl hndl
let state = CompilerState "" M.empty M.empty M.empty
(CompilersSstate ss cs ts) <- execState interpreter state
return $ SimulationModel ss cs ts

Then the implementation of two interpreter type classes follows: one for the HNDL language
and one for the HDL language. The first interpreter visits every element of the network
definition. The most interesting part here is the onDeviceDef method that calls the
setupAddress function:

setupAddress addr = do
CompilerState _ ss cs ts <- get
put $ CompilerState addr ss cs ts

instance HndlInterpreter SimCompilerState where
onDeviceDef addr hdl = do
setupAddress addr
interpretHdl hdl
return $ mkDevicelInterface addr
onTerminalUnitDef addr =
onLogicControlDef addr =
onLinkedDeviceDef _ =
onLinkDef =

The setupAddress function uses the state to save the physical address for further
calculations. This address will be used during compilation of the device. However the function
is too wordy. Why not use lenses here? Compare to this:

setupAddress addr = currentPhysicalAddress .= addr

The (.=) combinator from the lens library is intended for usage in the State monad. It sets
a value to the field the lens points to. Here, it replaces the contents of the

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 19

_currentPhysicalAddress field by the addr value. The function becomes unwanted
because it's more handy to setup the address in the onDeviceDef method:

instance HndlInterpreter SimCompilerState where
onDeviceDef addr hdl = do
currentPhysicalAddress .= addr
interpretHdl hdl
return $ mkDevicelInterface addr

Next, the instance of the HdlInterpreter:

compileSensorNode :: Parameter -> SimCompilerState SensorNodeRef
compileSensorNode par = undefined

instance HdlInterpreter SimCompilerState where
onSensorDef compDef compIdx par = do
node <- compileSensorNode par
CompilerState addr oldSensors cs ts <- get
let newSensors = Map.insert (addr, compIdx) node oldSensors
put $ CompilerState addr newSensors cs ts
onControllerDef compDef compIdx =

The onSensorDef method creates an instance of the SensorNode type and then adds this
instance into the map from the composingSensors field. This requires to get the state
from the context, update the map and put a new state with the new map back. These three
operations can be easily replaced by one lens combinator (%=). You'll be also needing the
use combinator. Compare:

instance HdlInterpreter SimCompilerState where

onSensorDef compDef compldx par = do
node <- compileSensorNode par
addr <- use currentPhysicalAddress -- get value from the context

let appendToMap = Map.insert (addr, compIdx) node
composingSensors %= appendToMap

The use combinator uses a lens to extract a value from the context. It's monadic, so you call
it as a regular monadic function in the State monad. The function Map.insert (addr,
compIdx) node is partially applied. It expects one more argument:

Map.insert (addr, compIdx) node :: SensorsModel -> SensorsModel

According to its type, you can apply it to the contents of the composingSensors field.
That's what the ($=) operator does: namely, it maps some function over the value behind the
lens. The two monadic operators (.=) and (%=) and some simple combinators (use) from the
lens library are able to replace much boilerplate inside any kind of the State monad.
Moreover, the lens library is so huge that you may dig it like another language. It has
hundreds of combinators for all occasions.

It never fails to be stateless, except the state is always there. It's never bad to be pure,
unless you deal with the real world. It never fails to be immutable, but sometimes you'll be
observing inefficiency. State is real. Impurity is real. Mutability has advantages. Is pure
functional programming flawed in this? The answer is coming.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 20

5.3 Impure state

We talked about pure immutable states while designing a model to simulate a hardware
network. A good start, isn't it? The truth is that in real life, it's more often that you need
mutable imperative data structures rather than immutable functional ones. The problem
becomes much sharper if you want to store your data in collections. This kind of state
requires careful thinking. Sometimes you can be pleasured by persistent data structures that
are efficient enough for many cases. For example, you may take a persistent vector to store
values. Updates, lookups, appends to persistent vectors have complexity O(1), but the
locality of data seems to be terrible because persistent vector is constructed over tries. If you
need to work with C-like arrays guaranteed to be continuous, fast and efficient, it's better to
go impure in functional code. Impure mutable data structures can do all the stuff we like in
imperative languages, they less demanding to memory, they can be mutated in-place, they
can be even marshaled to low-level code in C. In the other hand, you sacrifice purity and
determinism going down to the impure layer which of course increases accidental complexity
of code. In order to retain control over impure code, you have to resort to functional
abstractions that solve some imperative problems.

= Haskell's TORef variable has exactly the same semantics as a regular variable in other
languages. It can be mutated in-place leaving potential problems (non-determinism,
race conditions) to the developer's responsibility. The IORef a type represents a
reference type! over some type a.

= Mvar is a concept of thread-safe mutable variables. Unlike the IORef, this reference
type gives guarantees of atomic reading and writing. Mvar can be used for
communication between threads or managing simple use cases with data structures.
Still, it's susceptible to the same problems: race conditions, deadlocks,
non-determinism.

= TVar, TMVar, TQueue, TArray and other primitives of Software Transactional
Memory (STM) can be thought of as further development of the Mvar concept. STM
primitives are thread-safe and imperatively mutable, but unlike Mvar, STM introduces
transactions. Every mutation is performed in transaction. In case of competing of two
threads for the access to the variable, one of two transactions will be performed while
the other can safely delay (retried) or even rollback. STM operations are isolated from
each other which reduces the possibility of deadlocks. With advanced combinatorial
implementation of STM, two separate transactional operations can be combined into a
bigger transactional operation that is an STM combinator too. STM has been
considered a suitable approach to maintain complex state in functional programs; with
that, STM has many issues and properties one should know to use effectively.

And now we are going to discuss how to redesign the simulation model with IORefs.

5.3.1 Impure state with IORef
Look at the SimulationModel and updateSimulationModel function again:
data SimulationModel = SimulationModel
{ sensorsModel :: SensorsModel
, controllersModel :: ControllersModel
, terminalUnitsModel :: TerminalUnitsModel

}

! Reference type in Wikipedia: https://en.wikipedia.org/wiki/Reference_type

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 21

The problem here is that this model doesn't fit into the idea of separate acting sensors,
controllers and terminal units. Imagine, the model was compiled from the network we had
defined earlier (networkDef):

test = do
let simModel = compileSimModel networkDef
print "Simulation model compiled."

Where the compileSimModel function has come from the SimulationCompiler module:

module Andromeda.Simulator.SimulationCompiler where
compileSimModel :: Hndl () -> SimulationModel
compileSimModel = undefined

With a pure state, the only thing you may do is to update it whole. We have wrote the
updateSimulationModel function for that:

test = do
let simModell = compileSimModel networkDef
let simModel2 = updateSimulationModel simModell

print $ "initial: " ++ show (sensorsModel simModell)
print $ "updated: " ++ show (sensorsModel simModel2)

It seems impossible to fork a thread for each sensor as it was planned because neither
sensor is seen from this test. Forking a thread for updating the whole model will be useless
too. See the proof:

import Control.Concurrent (forkIO, ThreadId)

updatingWorker :: SimulationModel -> IO ()
updatingWorker simModell = do
let simModel2 = simModell
updatingWorker simModel2

forkUpdatingThread :: SimulationModel -> IO ThreadId
forkUpdatingThread model = forkIO $ updatingWorker model

test = do
threadId <- forkUpdatingThread (compileSimModel networkDef)
-- what to do here??
The model will be spinning constantly in the thread, but it's not accessible from the outside.
How to get values from sensors while the model is updating? How to set up another value
generator to a specific sensor? How to query the controllers? This design of a pure simulation
model is wrong. We'll try another approach.

The idea is that you can observe impure mutation of an IORef value from different
threads, as it happens in the imperative world with any reference types and pointers. You
firstly create a mutable variable with some value and then pass it to the threads so they can
read and write it occasionally. See listing 5.6 that introduces the TORef type, some functions
to work with, and stuff for threads. This program has two additional threads forked. While
the main thread is sleeping for 5 seconds, the first worker thread increases refval by 1 and
the second worker thread prints what he sees currently in the same refval. Both threads

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 22

then sleep for a second before they continue their businesses with refval. When the
program runs, you see some numbers from 0 to 5 being printed with some of them repeating
or absent, for example: 1, 2, 2, 3, 4.

Listing 5.6: IORef example

module IORefExample where

import Control.Monad (forever)
import Control.Concurrent (forkIO, threadDelay, killThread, ThreadId)
import Data.IORef (IORef, readIORef, writeIORef, newIORef)

second = 1000 * 1000

increaseValue :: IORef Int -> IO ()
increaseValue refval = do
val <- readIORef refval
writeIORef refval (val + 1)
threadDelay second

printvValue :: IORef Int -> IO ()
printvValue refval = do
val <- readIORef refVal
print val
threadDelay second

main :: IO ()

main = do
refval <- newIORef 0
let workerl = forever $ increaseValue refVval
let worker2 = forever $ printValue refVval

threadIdl <- forkIO workerl
threadId2 <- forkIO worker2
threadDelay (5 * second)
killThread threadIdl
killThread threadId2

Here, the purpose of newIORef, readIORef and writeIORef functions is obvious. All
them work in the IO monad because creating, reading and writing of mutable variable is
certainly a side effect.

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> I0 ()

The forever combinator repeats a monadic action forever:
forever :: Monad m => m a -> m b
In our case, there are two monadic actions called increasevValue and printvValue. The

forever combinator and an action passed represent a worker that may be forked into a
thread:

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 23

workerl :: IO ()
worker2 :: IO ()
forkIO :: IO () -> IO ThreadId

Due to Haskell's laziness, the construction:
let workerl = forever $ increaseValue refVval

doesn't block the main thread because it won't be evaluated, it's just binded to the workerl
variable. It will be called by the forkIO function instead.

NOTE There is no thread synchronization in the code, the threads are reading and writing
the shared state (refVal) at their own risk, because neither readIORef nor
writeIORef function gives guarantees of atomic access. This is a classic example of
code that one should avoid. To make it more safe, it's worth replacing the writeIORef
function by the “atomic” version: atomicWriteIORef. Still, programming with bare
imperative freedom may lead to subtle bugs in parallel code. What if the second thread
will raise an exception immediately when it's forked? The first thread will never be
stopped, so you'll get a zombie that just heats the CPU. Something can probably break
the threadDelay and the killThread functions, this can zombificate your threads
too. With shared state and imperative threads you may find yourself hardly drawn by a
tiresome debugging of sudden race conditions, dastardly crashes and deadlocks.
Conclusion: don't write a code like in listing 5.6.

How about the simulation model? Let's redesign a sensors-related part of it only because
other two models can be done by analogy. Revise the sensors model that is a map of index
to node:

type SensorsModel = M.Map ComponentInstanceIndex SensorNode
You may wrap the node into the reference type:

type SensorNodeRef = IORef SensorNode
type SensorsModel = M.Map ComponentInstancelIndex SensorNodeRef

The SimulationModel type remains the same, - just a container for three dictionaries, -
but now every dictionary contains references to nodes. Next, you should create an IORef
variable every time you compile a sensor node. The compiler therefore should be impure, so
the type is now constructed over the State and IO monads with the StateT monad
transformer:

type SimCompilerState = StateT CompilerState IO

So the HdlInterpreter and the HndlInterpreter instances now become impure. In
fact, replacing one monad by another doesn't change the instances that you see in the
previous listings because the definition of interpreter type classes restricts to the generic
monad class but not to any concrete monad. The lenses will work too. What will change is
the compileSensorNode function. Let's implement it here:

compileSensorNode :: Parameter -> SimCompilerState SensorNodeRef
compileSensorNode par = do
let node = SensorNode (toMeasurement par) NoGenerator False

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 24

1iftIO $ newIORef node

According to the requirements, there should be a lever to start and stop the simulation.
When the simulation is started, many threads will be forked for every node. When the
simulation is stopped, threads must die, this means you need to store thread handles (the
type ThreadId in Haskell) after the starting function is called. It would be nice to place this
information about a sensor and a thread into a special type:

type SensorHandle = (SensorNodeRef, ThreadId)
type SensorsHandles = M.Map ComponentInstanceIndex SensorHandle

forkSensorWorker :: SensorNodeRef -> IO SensorHandle
startSensorsSimulation :: SensorsModel -> IO SensorsHandles
stopSensorsSimulation :: SensorsHandles -> IO (

The implementation of these functions is quite straightforward. It is shown in listing 5.7 (see
below); it's really short and understandable but it uses three new monadic combinators: the
when combinator, a new version of the mapM monadic combinator the void combinator. You
may learn more about them in the corresponding sidebar or you may try to infer theirs
behavior from the usage, by the analogy as the compiler does type inference for you.

Generic mapM, void and when combinators

The void combinator is really simple. It drops whatever your monadic function should
return, that's all:

void :: IO a -> IO ()

The when combinator will evaluate a monadic action when and only the condition holds:
when :: Monad m => Bool -> m () -> m ()

What can be special about the mapM combinator that we learned already? A new version
of it comes from the Data.Traversable module. It has a different type definition than
the mapM combinator from the Control.Monad and Haskell's Prelude modules:

-- Control.Monad, Prelude:
mapM :: Monad m => (a -> m b) -> [a] -> m [Db]

-- Data.Traversable:
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)

Types are speaking for themselves. The former maps over a concrete data structure - a
list of something: [a], - whereas the latter maps over anything that can be traversed
somehow: t a. The Traversable type class restriction ensures that the data structure
you want to map over has this property - a possibility of every item to be visited. Most
data structures have this property. You can, for example, visit every item in a list starting
from the head. All the trees are traversable. The Map data type is traversable too because
it exports the corresponding type class instance. So the traversable mapM combinator is a
more general version of the mapM combinator from the Control .Monad module.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 25

Listing 5.7 discovers starting-stopping functions, the sensor updating function and the
worker forking function:

Listing 5.7: IORef-based simulation of sensors

import Data.IORef (IORef, readIORef, writeIORef, newIORef)

import Data.Traversable as T (mapM) -- special mapM combinator
import Control.Monad (forever, void)

import Control.Concurrent (forkIO, threadDelay, killThread, ThreadId)

updateValue :: SensorNodeRef -> IO ()
updateValue nodeRef = do
SensorNode val gen producing <- readIORef nodeRef
when producing $ do
let newVal = applyGenerator gen val

let newNode = SensorNode newVal gen producing
writeIORef nodeRef newNode
threadDelay (1000 * 10) --— 10 ms
type SensorHandle = (SensorNodeRef, ThreadId)
type SensorsHandles = M.Map ComponentInstanceIndex SensorHandle
forkSensorWorker :: SensorNodeRef -> IO SensorHandle
forkSensorWorker nodeRef = do

threadId <- forkIO $ forever $ updateValue nodeRef
return (nodeRef, threadId)

startSensorsSimulation :: SensorsModel -> IO SensorsHandles
startSensorsSimulation sensors = T.mapM forkSensorWorker sensors
stopSensorWorker :: SensorHandle -> IO ()

stopSensorWorker (_, threadId) killThread threadId

stopSensorsSimulation :: SensorsHandles -> IO ()
stopSensorsSimulation handles = void $ T.mapM stopSensorWorker handles

With the additional function readSensorNodeValue that is intended for tests only, the
simulation of sensors may be examined like in listing 5.8:

Listing 5.8: Simulation usage in tests

readSensorNodeValue :: ComponentInstanceIndex -> SensorsHandles
-> I0 Measurement
readSensorNodeValue idx handles = case Map.lookup idx handles of
Just (nodeRef,) -> do
SensorNode val = <- readIORef nodeRef

return val
Nothing -> do
stopSensorsSimulation handles
error $ "Index not found: " ++ show idx

test :: IO ()

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 26

test = do
SimulationModel sensors _ <- compileSimModel networkDef
handles <- startSensorsSimulation sensors
valuel <- readSensorNodeValue ("01", "nozzlel-t") handles
value?2 <- readSensorNodeValue ("01", "nozzle2-t") handles

print [valuel, value?]
stopSensorsSimulation handles

This will work now, but it will print just two zeros because we didn't set any meaningful value
generator there. We could say the goal we aim to is really close, but the solution has at least
three significant problems:

1. It's thread-unsafe.

2. The worker thread falls into the busy loop anti-pattern when the producing variable is
false.

3. The worker thread produces a lot of unnecessary memory traffic when the producing
variable is True.

The problem with thread-safety is more serious. One of the examples of wrong behavior may
occur if you duplicate the forking code unwittingly:

forkSensorWorker :: SensorNodeRef -> IO SensorHandle
forkSensorWorker nodeRef = do
threadId <- forkIO $ forever $ updateValue nodeRef
threadId <- forkIO $ forever $ updateValue nodeRef
return (nodeRef, threadId)

Congratulations, zombie thread achievement is unblocked... unlocked. The two threads will
now be contending for the writing access to the SensorNode. Mutation of the nodeRef is
not atomic, - so nobody knows how the race condition will behave in different situations. A
huge source of non-determinism we mistakenly mold here may lead programs to unexpected
crashes, corrupted data and uncontrolled side effects.

The updateValue function reads and rewrites the whole SensorNode variable in the
IORef container which seems to be avoidable. You may, - and probably should - localize
mutability as much as possible, so you can try to make all of the SensorNode's fields to be
independent IORefs that will be updated when it's needed:

data SensorNode = SensorNode
{ value :: IORef Measurement
, valueGenerator :: IORef ValueGenerator
, producing :: IORef Bool
}

type SensorsModel = M.Map ComponentInstancelIndex SensorNode

If you want, you may try to rework the code to support a such sensor simulation model. It's
very likely that you'll face many problems with synchronization here. This is a consequence
of parallel programming in imperative paradigm. Unexpected behavior, non-determinism,
race conditions, - all this is a curse of every imperative-like threaded code, and we can do
better. In spite of our current inability to refuse of threads, there is hopefully a cure of the
imperative curse we may use to decline the problem. Welcome to the world of Software
Transactional Memory.

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 27

5.3.2 Impure state with State and 10 monads
So far we were communicating with the simulation model directly (see listing 5.8; for
instance there are functions startSensorsSimulation and readSensorNodeValue),
but now we are going to add another level of abstraction - the simulator service. Just to
recall, let's revise what we know about it. According to the architecture in figure 5.2, the
simulator will be stateful, because it should spin inside its own thread and maintain the
simulation model. The State monad that is alloyed with the I0 monad by means of monad
transformer will provide the impure stateful context where it's very natural to place the
simulation model. The simulator should receive requests about what to do with the
simulation model, should do that and then it should send the results back. From a design
point of view, this is a good place for the MVar request-response pattern. Every time the
simulator thread gets the request, it transforms the request into the State-IO monadic action
and applies that action to the simulation model. The simulator will provide some simple
embedded language for the requests and responses. It's worth it to show the communication
eDSL right now:

data In = StartNetwork
| StopNetwork
| SetGenerator ComponentInstancelIndex ValueGenerator
data Out = Ok | Fail String

type SimulatorPipe = Pipe In Out -- Pipe from request-response pattern

It's really ad-hoc for now. These three actions it contains can't cover all the needs, but we
have to make something minimally viable to be sure that this design approach is good
enough. Later we'll evolve this code in relation to the theme of FRP and GUI.

A typical scenario is shown in figure 5.7:

1. Compile simulation model

SimulationModel Compiler
mmemmememmmmemmameeememmeae—————————
2. Run simulation
Client >
code 3. Start network
»
4. Set value generator Simulator
service

5. Stop network

6. Stop simulation

Figure 5.7: Simple interaction scenario

Let's try to write a test that shapes the minimal interface to the simulator that allows us to
support the scenario. It's fine that machinery doesn't exist yet; following the Test Driven
Development (TDD) philosophy, we'll implement it later. Fortunately, something we already

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 28

have: namely, the compilation subsystem. This piece fits the picture well. Listing 5.12 shows
the code:

Listing 5.12: Simulator test

module SimulatorTest where

import SampleNetwork (networkDef)
import Andromeda.Hardware (Measurement(..), Value(..),
ComponentInstancelIndex)
import Andromeda.Service (sendRequest)
import Andromeda.Simulator
(compileSimModel
, startSimulator
, stopSimulator
, ValueGenerator(..)
, In(..), Out(..))

increaseValue :: Float -> Measurement -> Measurement
increaseValue n (Measurement (FloatValue v))
= Measurement (FloatValue (v + n))

incrementGenerator :: ValueGenerator
incrementGenerator = StepGenerator (increaseValue 1.0)
test = do
let sensorIndex = ("01", "nozzlel-t") :: ComponentInstanceIndex

simulationModel <- compileSimModel networkDef
(simulatorHandle, pipe) <- startSimulator simulationModel
sendRequest pipe (SetGenerator sensorIndex incrementGenerator)
stopSimulator simulatorHandle

The workflow is very straightforward: start, do, stop using a simple interface and no matter
what miles the simulator has to walk to make this real. That's why our interface is good.
However we have to elaborate the internals that are not so simple. The most interesting
function here is the startSimulator one. From code above it's clear that the function
takes the simulation model and returns a pair of some handle and pipe. The handle is an
instance of the special type SimulatorHandle that contains useful information about the
service started:

data SimulatorHandle = SimulatorHandle
{ shSimulationModel :: SimulationModel
, shSensorsHandles :: SensorsHandles
, shStartTime :: UTCTime
, shThreadId :: ThreadId

startSimulator :: SimulationModel -> IO (SimulatorHandle, SimulatorPipe)
startSimulator = undefined

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 29

Clear enough. So this function somehow starts a sensor model (that we know how to do),

gets current time (the UTCTime is the standard type in Haskell), creates the pipe and forks a
thread for the simulator. This is the code:

forkSimulatorWorker :: SimulationModel -> SimulatorPipe -> IO ThreadId
forkSimulatorWorker simModel pipe = undefined
startSimulator :: SimulationModel -> IO (SimulatorHandle, SimulatorPipe)
startSimulator simModel@ (SimulationModel sensorsModel =) = do

pipe <- createPipe :: IO SimulatorPipe

startTime <- getCurrentTime #A

sensorsHandles <- startSensorsSimulation sensorsModel #B
threadId <- forkSimulatorWorker simModel pipe #C

let handle = SimulatorHandle simModel sensorsHandles startTime
threadId
return (handle, pipe)
#A System call from Data.Time.Clock
#B Known part
#C Forking a worker - not implemented yet

Notice that the most parts of this function are assembled from code that is already done. All
we have written before is applied without any modifications. The main gap here is the forking
of a thread. Let's give birth to the stateful impure service that is awaiting for requests from
the pipe. This is the type for its state:

import qualified Control.Monad.Trans.State as S
type SimulatorState a = S.StateT SimulationModel IO a

Fine, we know how that works. Now consider the following listing which describes the core of
the service:

import qualified Control.Monad.Trans.State as S
type SimulatorState = S.StateT SimulationModel IO
-- Actions:

startNetwork :: SimulatorState () #1
startNetwork = undefined

stopNetwork :: SimulatorState ()
stopNetwork = undefined
setGenerator
ComponentInstanceIndex -> ValueGenerator -> SimulatorState ()
setGenerator idx gen = undefined
-—- Core:
process :: In -> SimulatorState Out #2

process StartNetwork = do

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 30

1iftIO $ print "Starting network..."
startNetwork
return Ok

process StopNetwork = do
1iftIO $ print "Stoping network..."
stopNetwork
return Ok

process (SetGenerator idx gen) = do
1iftIO $ print "Seting value generator..."
setGenerator idx gen
return Ok

processor :: SimulatorPipe -> SimulatorState () #3
processor pipe = do

req <- 1iftIO $ getRequest pipe

resp <- process reqg

1iftIO $ sendResponse pipe resp
#1 Impure monadic actions that do something with the simulator state (that is SimulationModel)
#2 Translation of request into monadic action
#3 The processor of requests that spins inside the SimulatorState monad and driven by a separate
thread

By the points:

#1: Think about the startNetwork and stopNetwork functions. They should somehow
affect the simulation model keeping in the state context. By seeing their names you may
guess they should switch every simulated device on or of - wherever it means for a particular
node. Thus they will evaluate some STM transactions, as well as the setGenerator action
that probably should alter a value generator of some sensor node. If you are wondering, see
code samples for this book, but for now let's omit their implementation.

#2: The process function translates the ADT language to the real monadic action. It
also may do something impure, for example, writing a log. The 1iftIO function allows
impure calls inside the State-IO monad.

#3: The processor function. It's a worker function for the thread. It's supposed to be
run continuously while the Simulator service is alive. When it receives a request, it calls the
#2 process, and then the request is addressed to the simulation model being converted into
some action.

The final step is forkSimulatorWorker:

forkSimulatorWorker :: SimulationModel -> SimulatorPipe -> IO ThreadId
forkSimulatorWorker simModel pipe = do
let simulatorState = forever $ processor pipe

forkIO $ void $ S.execStateT simulatorState simModel
You may feel that all these things are similar to you; that's right, we have learned every
single combinator you see here; but there is one significant idea that may be not so easy to
see. Remember the state of the simulation model compiler. You run it like so:
(CompilerState ss cs ts) <- S.execStateT compiler state

Or even remember how you run stateful factorial calculation:

let result = execState (factorialStateful 10) 1

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 31

For all these occurrences of the State monad, you run your stateful computation to get the
result right now. The state lives exactly the time needed to execute a computation, not less,
not more. When the result is ready, the monadic state context will be destroyed. But the
case with the SimulatorState is not so. This state continues to live even after the
s.execStateT function is finished! Woa, magic is here!

There is no magic, actually. The s.execStateT function will never finish. The thread we
have forked tries very hard to complete this monadic action but the following string makes
the action proceed over and over again with the same state context inside:

let simulatorState = forever $ processor pipe

So Achilles will never overtake the tortoise. But it's normal: if you decide to finish him, you
may just kill him:

stopSimulator :: SimulatorHandle -> IO ()

stopSimulator (SimulatorHandle _ sensorsHandles _ threadId) = do
stopSensorsSimulation sensorsHandles
killThread threadId

This is why we saved handles for sensors and the Simulator's thread identifier.

I believe this core of the simulator is tiny and understandable. You don't need weird
libraries to establish your own service, you don't need any explicit synchronization. Still, STM
prevents the simulation model from entering into invalid states. I tell you a secret: the
State-IO monad here serves one more interesting design solution that is not visible from the
code presented. Did you have a question about what happened with the languages from
Logic Control and why we don't proceed with them in this chapter? In reality, the
SimulatorState monad makes it easy to incorporate script evaluation over the simulation
model. It means, all the developments, the free eDSLs we have made in previous chapters,
start working! It requires only a little effort to add some new simulator API calls. I hope it
sounds intriguing to hook your motivation to go further with the book.

5.4 Summary

In this chapter, you have learned a few (but not all) approaches to state in functional
programs. You also improved your understanding of monads. The examples of the State, I0
and STM monads you see here commit to the idea that this universal concept - monads -
solves many problems in a handy way. This is why the book pays so much attention giving
you a practical view of monads instead of explaining a theory how they really work. At this
moment it should be clear that monads are a much more useful thing for design of code than
the community of functional programmers was thinking before.

Indeed, designing with monads requires you to atomize pieces of code to smaller and
smaller functions that have only a single responsibility. If that weren't so, then the
composition surely was impossible. If there are two functions: £ and g that you need to
combine, you can't do this while g has two or more responsibilities. It's more likely the £
function doesn't return a value that is useful for all parts of the g function. The £ function is
simply unaware about the internals of the g, and this is completely right. As a consequence,
you have to follow the SRP principle in FP. Again, as a consequence, you immediately gain a
huge reusability and correctness of code. Even in a multithreaded environment.

So what concepts did you get from this chapter?

= The State monad is revisited. Although you can do stateful functional applications
without any monads, the State monad is able to save lines of code along with time
needed to write, understand, debug and test a code. The State monad has many

Alexander Granin / Functional Design and Architecture / Draft 0.9.0 32

useful applications in every functional program.

= Pure state is good, but for some circumstances, you might want the IORef concept
that provides you with impure mutable references that are a full analogue of
imperative variables. But of course you should be aware of the problems the
imperative nature of IORef drags. At least you don't want to use it with threads.

= The STM monad comes to the scene when you do need an impure state in a
multithreaded environment. STM has many transactional data structures such as
TVar, TMVar, TQueue and others that can be adopted in modeling of concurrent data
structures. You also might be interested in learning STM deeper, because this only
concept is so many-sided and powerful that it deserves a separate chapter or even a
book. But now you should have an idea when to go this way in your code.

The practices you have learned from the first five chapters are enough for building real-world
applications of good quality. However, there are more techniques and ideas to study. Keep

going!

