Instructions

For each reading assignment, do the following:

1. Read the required reading in full. There will usually be 1 required reading, which should take
around a 1 hour to read deeply and in full. In some cases, there will be 2 required readings;
however, the overall reading time across all readings should be about the same.

2. Briefly consult the supplemental readings. Open up the supplemental readings and orient
yourself to them. If the reading is a research paper, understand the abstract and take a look at
the figures. If it is a short video, watch it. If the reading is a slide deck, skim through it. The
purpose of these readings are not to deeply engage with them, but rather to build up your mental
map of what research and inquiry looks like around this topic. These are some of the papers you
would want to look at in the future (for your research, or the final project) when you want to
understand this topic more deeply.

3. Readings that are marked as “Reference” do not need to be read. These readings are listed
only if you want to do a deeper dive into the topic on your own.

4. Submit written commentary. Write a brief reflection elaborating on what you learned about
designing effective programming environments from readings. The goal of this written
commentary is for you to develop thoughts that will steer your future research and work.
Consider the commentary as a journal entry where you document your evolving understanding
of the design of programming environments with the readings as a provocation.

As a rule of thumb, written commentary should be around 300 words long. If you are not sure
what to write about, consider touching upon one or more of the following topics:

What works really well about a tool, and why?
Does the technology work well in all circumstances (i.e., for all users, for all
programming languages)? If not, how does it fall apart in other circumstances?

e What theory and practices from domains that you are intimately familiar with (i.e., from
HCI, programming languages, education) suggest better ways to design and evaluate
tools like those from the readings?

e Have you tried to use the technology before, or another one like it? If so, what might the
readings be missing about the experience of using the technology?

e Are you convinced by the evidence of usability collected to date? If not, what is not
convincing, and what studies should be run?

e What are some blindspots in this area of research that need attention?

For days that we speak with an invited speaker, the written commentary will consist of 2
questions that you would like to ask a speaker, each approximately 1 paragraph in length to
include sufficient context, and upvoting questions submitted by your peers.

Readings

Unit 1: Inspiration

A dose of inspiration

Victor, Bret. Learnable Programming. http://worrydream.com/LearnableProgramming/.

A feast of demos and critiques
See instructions at https://canvas.upenn.edu/courses/1680358/assignments/10533155.

Unit 2: Literate programming

The present: Jupyter

[Required] Kery, Mary Beth, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers.
"The story in the notebook: Exploratory data science using a literate programming tool." In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1-11.
2018.

Link

[Supplemental] Rule, Adam, Aurélien Tabard, and James D. Hollan. "Exploration and explanation
in computational notebooks." In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, pp. 1-12. 2018. Link

[Supplemental] Perez, Fernando, and Brian E. Granger. "Project Jupyter: Computational
narratives as the engine of collaborative data science." Link

[Supplemental] Wolfram, Stephen. "What is a Computational Essay?" (2017). Link

[Supplemental] I Don't Like Notebooks - Joel Grus - #JupyterCon 2018.
| Don't Like Notebooks - Joel Grus - #JupyterCon 2018 .

[Reference] Lau, Sam, lan Drosos, Julia M. Markel, and Philip J. Guo. "The design space of
computational notebooks: An analysis of 60 systems in academia and industry." In 2020 IEEE

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g3d4f53c8ab_0_17
http://worrydream.com/LearnableProgramming/
https://canvas.upenn.edu/courses/1680358/assignments/10533155
https://dl.acm.org/doi/pdf/10.1145/3173574.3173748
https://dl.acm.org/doi/pdf/10.1145/3173574.3173606
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 1-11. IEEE,
2020. Link.

The past: WEB

[Required] Knuth, Donald Ervin. "Literate programming." The computer journal 27, no. 2 (1984):
97-111. Link.

[Required] Knuth, Donald E. "TEX: the Program.” Reading: Addison-Wesley (1984). Instructions:
Read the preface. Then pick 1 chapter you are interested in and try to get through as much as
you can in 20 minutes. Link.

[Supplemental] Ramsey, Norman. "Literate programming simplified." IEEE software 11, no. 5
(1994): 97-105. Link.

[Special event] Distinguished Lecturer: Sorin Lerner

[Required] Lerner, Sorin. "Projection boxes: On-the-fly reconfigurable visualization for live
programming." In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1-7. 2020. Link.

[Supplemental] Lerner, Sorin. "Focused Live Programming with Loop Seeds." In Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and Technology, pp. 607-613.
2020. Link.

[Supplemental] Ferdowsifard, Kasra, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. "Small-step live programming by example." In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology, pp. 614-626. 2020. Link.

[Supplemental] Ringer, Talia, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. "REPLica:
REPL instrumentation for Coq analysis." In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, pp. 99-113. 2020. Link.

[Reference] Leung, Alan, and Sorin Lerner. "Parsimony: An IDE for example-guided synthesis of
lexers and parsers." In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 815-825. IEEE, 2017. Link.

[Reference] Sarracino, John, Odaris Barrios-Arciga, Jasmine Zhu, Noah Marcus, Sorin Lerner, and
Ben Wiedermann. "User-guided synthesis of interactive diagrams." In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, pp. 195-207. 2017. Link.

[Reference] Foster, Stephen R., Sorin Lerner, and William G. Griswold. "Seamless Integration of
Coding and Gameplay: Writing Code Without Knowing it." In FDG. 2015. Link.

https://ieeexplore.ieee.org/iel7/9124617/9127195/09127201.pdf
http://literateprogramming.com/knuthweb.pdf
https://drive.google.com/file/d/1fkm6SqP3ru1LI878kTakQES6I1CjiWQC/view?usp=sharing
https://ieeexplore.ieee.org/iel1/52/7538/00311070.pdf?casa_token=httLYUGQP0MAAAAA:XU8bB9vvT3fYCNFybguR2SHMqMhh58vlaK_go7D_J_EdHt0XMSveKwZAKaD0r6e9CO8Xfo2z
https://cseweb.ucsd.edu/~lerner/papers/projection-boxes-chi2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/FLiPS-uist2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/SnipPy-uist2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/REPLica.pdf
https://cseweb.ucsd.edu/~lerner/papers/parsimony-ase2017.pdf
https://cseweb.ucsd.edu/~lerner/papers/eddie-chi17.pdf
https://cseweb.ucsd.edu/~lerner/papers/GamesToCode-fdg15.pdf

The present: Tutorials

[Required] Head, Andrew, Jason Jiang, James Smith, Marti A. Hearst, and Bjérn Hartmann.
"Composing flexibly-organized step-by-step tutorials from linked source code, snippets, and
outputs." In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
pp. 1-12. 2020.

[Supplemental] Mysore, Alok, and Philip J. Guo. "Torta: Generating mixed-media gui and
command-line app tutorials using operating-system-wide activity tracing." In Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology, pp. 703-714. 2017.

[Supplemental] Mirhosseini, Samim, and Chris Parnin. "Docable: evaluating the executability of
software tutorials." In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp.
375-385. 2020.

[Supplemental] Khandwala, Kandarp, and Philip J. Guo. "Codemotion: expanding the design
space of learner interactions with computer programming tutorial videos." In Proceedings of the
Fifth Annual ACM Conference on Learning at Scale, pp. 1-10. 2018.

[Supplemental] Kim, Ada S., and Amy J. Ko. "A pedagogical analysis of online coding tutorials."
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, pp. 321-326. 2017.

[Reference] Jupyter Book. https://jupyterbook.org/en/stable/intro.html.

A feast of demos and critiques
See instructions at https://canvas.upenn.edu/courses/1680358/assignments/10565830.

Reviewing evidence of usability

Special reading response instructions: This week, | want you to focus your reading responses
on what you wish we knew about the usability of literate programming tools (either for authors
or readers) that studies to date have not yet shown us.

[Required] Head, Andrew. Interactive Program Distillation. Ph.D. thesis. Instructions: Read
p21-43 only. In your reading application, highlight passages that describe evaluations of the
proposed tools, and try to synthesize an understanding of what we can generalize on the basis
of this prior evidence. Link.

[Required] Ramsey, Norman and Carla Marceau. “Literate Programming on a Team Project.”
Software—Practice and Experience 21.7 (1991), pp. 677-683. Link.

https://jupyterbook.org/en/stable/intro.html
https://canvas.upenn.edu/courses/1680358/assignments/10565830
https://andrewhead.info/assets/pdf/interactive-program-distillation.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380210703

[Supplemental] Chattopadhyay, Souti, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. "What's wrong with computational notebooks? Pain points, needs, and design
opportunities." In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1-12. 2020. Instructions: pay particular attention to the passages about “Manage

”u

Code,” “Archival,” “Share and Collaborate,” “Reproduce and Reuse.” Link.

[Supplemental] Shum, Stephen and Curtis Cook. “Using Literate Programming to Teach Good
Programming Practices.” Proceedings of the Technical Symposium on Computer Science
Education. ACM, 1994, pp. 66-70. Link.

[Supplemental] Childs, Bart, Deborah Dunn, and William Lively. “Teaching CS/1 Courses in a
Literate Manner.” TUGboat 16.3 (1995), p. 8. Link'.

[Supplemental] Parnin, Chris, Christoph Treude, and Margaret-Anne Storey. "Blogging developer
knowledge: Motivations, challenges, and future directions." In 2013 21st International
Conference on Program Comprehension (ICPC), pp. 211-214. IEEE, 2013. Link.

[Reference] Rule, Adam, Aurélien Tabard, and James D. Hollan. "Exploration and explanation in
computational notebooks." In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, pp. 1-12. 2018. Link

[Reference] Thimbleby, H. “Experiences of ‘Literate Programming’ using cweb (a variant of
Knuth's WEB).” The Computer Journal 29.3 (1986), pp. 201-211. Link.

[Reference] DeLine, Robert, and Danyel Fisher. "Supporting exploratory data analysis with live
programming." In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pp. 111-119. IEEE, 2015. Link.

[Reference] Van Wyk, Christopher J. “Literate programming: An assessment.” Communications
of the ACM 33.3 (1990), pp. 361-363. Link.

[Reference] @ Literate Programming in the Large . Start around 7:00.

Unit 3: Live programming

The past: SmalliTalk

[Required] Kay, Alan C. "The early history of Smalltalk." In History of programming languages-—Il,
pp. 511-598. 1996. Link.

https://www.youtube.com/watch?app=desktop&v=Av0PQDVTP4A
https://dl.acm.org/doi/pdf/10.1145/3313831.3376729
https://dl.acm.org/doi/pdf/10.1145/191029.191059
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.1161&rep=rep1&type=pdf
https://ieeexplore.ieee.org/iel7/6597032/6613823/06613850.pdf
https://dl.acm.org/doi/pdf/10.1145/3173574.3173606
https://academic.oup.com/comjnl/article-pdf/29/3/201/1556530/290201.pdf
https://ieeexplore.ieee.org/iel7/7347691/7356963/07357205.pdf
https://go.gale.com/ps/i.do?id=GALE%7CA8491530&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00010782&p=AONE&sw=w&userGroupName=upenn_alumni
https://dl.acm.org/doi/pdf/10.1145/234286.1057828

[Required] Tanimoto, Steven L. "VIVA: A visual language for image processing." Journal of Visual
Languages & Computing 1, no. 2 (1990): 127-139. Instructions: Read Sections 1 and 2 only,
focusing on the 4 levels of liveness. Link.

[Supplemental] Tanimoto, Steven L. "A perspective on the evolution of live programming." In
2013 1st International Workshop on Live Programming (LIVE), pp. 31-34. IEEE, 2013. Link.

[Reference] @ Alto System Project: Dan Ingalls demonstrates Smalltalk . Highlights: 10:00,
where Dan describes how he got involved in the SmallTalk system. 19:30, where Dan begins
demonstrating the system.

[Reference] Squeak. https://squeak.org/. [Squeak is a modern open-source execution
environment for SmallTalk].

The present: Live coding demos

[Required] Chen, Charles H., and Philip J. Guo. "Improv: Teaching programming at scale via live
coding." In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale, pp. 1-10.
2019. Link.

[Required] Guo, Philip. "Ten Million Users and Ten Years Later: Python Tutor’s Design Guidelines
for Building Scalable and Sustainable Research Software in Academia." In The 34th Annual ACM
Symposium on User Interface Software and Technology, pp. 1235-1251. 2021. Link.
Instructions: Read Sections 3 and 4 only. Link.

[Supplemental] Chen, Yan, Walter S. Lasecki, and Tao Dong. "Towards supporting programming
education at scale via live streaming." Proceedings of the ACM on Human-Computer Interaction
4,no. CSCW3 (2021): 1-19. Link.

[Supplemental] Alaboudi, Abdulaziz, and Thomas D. LaToza. "An exploratory study of
live-streamed programming.” In 2019 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 5-13. IEEE, 2019. Link.

[Reference] Haaranen, Lassi. "Programming as a performance: Live-streaming and its
implications for computer science education." In Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education, pp. 353-358. 2017. Link.

[Reference] Mahoney, Mark. "Storyteller: a tool for creating worked examples." Journal of
Computing Sciences in Colleges 34, no. 1 (2018): 137-144. Link.

[Reference] Chi, Peggy, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa.
"Synthesis-Assisted Video Prototyping From a Document." In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology, pp. 1-10. 2022. Link.

https://www.youtube.com/watch?v=uknEhXyZgsg&ab_channel=ComputerHistoryMuseum
https://www.sciencedirect.com/science/article/abs/pii/S1045926X05800126
https://ieeexplore.ieee.org/iel7/6599030/6617334/06617346.pdf?casa_token=7HaNU2_VcJQAAAAA:GxWNEYB0FyCadq1T8uulLV31oUoVCdu_cNdKWkucwhzGVMi7y0TMPLJxZteQzDLiQd33XL7K
https://squeak.org/
https://dl.acm.org/doi/pdf/10.1145/3330430.3333627
https://dl.acm.org/doi/abs/10.1145/3472749.3474819
https://dl.acm.org/doi/pdf/10.1145/3434168
https://ieeexplore.ieee.org/iel7/8809324/8818679/08818832.pdf?casa_token=zJwd7nJMvjkAAAAA:sIMXTu6yy3a-2sC-LB7joXI1V8R84qxACxX04yyEw5dGxX6YVQJvTxoxhga_tk734aEuOMF2
https://dl.acm.org/doi/pdf/10.1145/3059009.3059035?casa_token=LtgqkHy3XiMAAAAA:QDCqtSRa_UxQ5cATdOAgSiTT9I-goagZv35CIB6VqP6KH6Z7OTd01sBu5Cii3wNAbvfURcbP0h8
https://dl.acm.org/doi/abs/10.5555/3280489.3280511
https://dl.acm.org/doi/pdf/10.1145/3526113.3545676

[Reference] Chi, Pei-Yu, Sen-Po Hu, and Yang Li. "Doppio: Tracking ui flows and code changes for
app development." In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pp. 1-13. 2018. Link.

In-situ visualization

[Required] Hoffswell, Jane, Arvind Satyanarayan, and Jeffrey Heer. "Augmenting code with in
situ visualizations to aid program understanding." In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, pp. 1-12. 2018. Link.

[Required] Kery, Mary Beth, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit
Wongsuphasawat, and Kayur Patel. "mage: Fluid moves between code and graphical work in
computational notebooks." In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology, pp. 140-151. 2020. Link. Instructions: Read only
“Introduction,” “Demonstrating Design Space in Tools” and watch this demo video.
[Supplemental] Kang, Hyeonsu and Philip J. Guo. “Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations.” Proceedings of the
Symposium on User Interface Software and Technology. ACM, 2017, pp. 737-745. Link.

[Supplemental] Omar, Cyrus, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. "Active
code completion." In 2012 34th International Conference on Software Engineering (ICSE), pp.
859-869. IEEE, 2012. Link.

[Supplemental] Lieber, Tom, Joel R. Brandt, and Rob C. Miller. "Addressing misconceptions about
code with always-on programming visualizations." In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2481-2490. 2014. Link.

[Supplemental] Cito, Jiirgen, Philipp Leitner, Martin Rinard, and Harald C. Gall. "Interactive
production performance feedback in the IDE." In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 971-981. IEEE, 2019. Link.

[Supplemental] Sulir, Matus, Michaela Bacikova, Sergej Chodarev, and Jaroslav Poruban. "Visual
augmentation of source code editors: A systematic mapping study." Journal of Visual
Languages & Computing 49 (2018): 46-59. Link.

[Supplemental] “Light Table: the next generation code editor.” http:/lighttable.com/.
Instructions: Skim the feature list on the middle of the page.

[Reference] Lerner, Sorin. "Projection boxes: On-the-fly reconfigurable visualization for live
programming." In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1-7. 2020. Link.

https://dl.acm.org/doi/pdf/10.1145/3173574.3174029
https://dl.acm.org/doi/pdf/10.1145/3173574.3174106
https://dl.acm.org/doi/pdf/10.1145/3379337.3415842
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3379337.3415842&file=ufp4581vf.mp4
https://dl.acm.org/doi/pdf/10.1145/3126594.3126632
https://ieeexplore.ieee.org/iel5/6218989/6227015/06227133.pdf?casa_token=U_uiM4T4isEAAAAA:diQJ7TpRt3DMDJn07DV9V2n3Kfx5aORtPyXYReVmC5ok3Q5V0mSAipZXgSpJYnJxYDUwjCmF
https://dl.acm.org/doi/pdf/10.1145/2556288.2557409?casa_token=dAN6xuZrrQEAAAAA:qZaGL_BDWvkflQrUi-huzRtwk_wHtDbIu4gCiND7xOzV2HtYE1dBJezeCu5G_v3rG85N08wAY1c
https://ieeexplore.ieee.org/iel7/8790403/8811891/08811928.pdf?casa_token=aInlZ4wQ9FkAAAAA:2ze1IBCtv9kAfbq5CIFHIfst8myA6ryJ69vM28CTntvWQF4iJSgjHyJDAt9GVYTX00dFNTAt
https://www.sciencedirect.com/science/article/pii/S1045926X18301861?casa_token=MjNVqAAmkiwAAAAA:axDxbP0ipzXsc92sTO-7MpKbrRBKIk2eHtGi7K2UlNky_1tp756E6m_-oMBPZhVA04FZFvsr
http://lighttable.com/
https://dl.acm.org/doi/pdf/10.1145/3313831.3376494

Additional readings on live programming

Burckhardt, Sebastian, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal Moskal,
Nikolai Tillmann, and Jun Kato. "It's alive! continuous feedback in Ul programming." In
Proceedings of the 34th ACM SIGPLAN conference on Programming language design and
implementation, pp. 95-104. 2013. Link.

[Special event] Guest Lecturer: lan Arawjo

[Required] Arawijo, lan. "To write code: The cultural fabrication of programming notation and
practice." In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
pp. 1-15. 2020. Link. Instructions: This paper is in the style of a cultural critique that has not
come up in our readings before. While | encourage you to read the paper in full, those sections |
would like you to pay particular attention to are “The Culture in Early Programming Notations:
Three visions” and “Embracing Heterogeneity in Programming Practice.”

[Supplemental] Arawjo, lan, Anthony J. DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan
Parikh. "Notational Programming for Notebook Environments: A Case Study with Quantum
Circuits." (2022). Link.

[Supplemental] Arawjo, lan, Cheng-Yao Wang, Andrew C. Myers, Erik Andersen, and Francois
Guimbretiére. "Teaching programming with gamified semantics." In Proceedings of the 2017 CHI
conference on human factors in computing systems, pp. 4911-4923. 2017. Link.

[Reference] Arawjo, lan, and Ariam Mogos. "Intercultural computing education: Toward justice

across difference." ACM Transactions on Computing Education (TOCE) 21, no. 4 (2021): 1-33.
Link.

A feast of demos and critiques

See instructions on Canvas (forthcoming).

Unit 4: Design methods

Advice on designing programming languages, Part |

[Required] Coblenz, Michael, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste
Barnaby, Joshua Sunshine, Jonathan Aldrich, and Brad A. Myers. "PLIERS: a process that
integrates user-centered methods into programming language design." ACM Transactions on
Computer-Human Interaction (TOCHI) 28, no. 4 (2021): 1-53. Link.

https://dl.acm.org/doi/pdf/10.1145/2491956.2462170
https://dl.acm.org/doi/pdf/10.1145/3313831.3376731
http://ianarawjo.therottingcartridge.com/docs/Arawjo-Notational-Programming-UIST-2022.pdf
https://dl.acm.org/doi/pdf/10.1145/3025453.3025711
https://dl.acm.org/doi/pdf/10.1145/3458037
https://dl.acm.org/doi/pdf/10.1145/3452379

[Supplemental] Pane, John F,, and Brad A. Myers. "Studying the language and structure in
non-programmers' solutions to programming problems." International Journal of
Human-Computer Studies 54, no. 2 (2001): 237-264. Link.

[Supplemental] Stefik, Andreas, and Stefan Hanenberg. "Methodological irregularities in
programming-language research." Computer 50, no. 8 (2017): 60-63. Link.

[Supplemental] Stefik, Andreas, and Susanna Siebert. "An empirical investigation into
programming language syntax." ACM Transactions on Computing Education (TOCE) 13, no. 4
(2013): 1-40. Link.

[Supplemental] Karsai, Gabor, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Volkel. "Design Guidelines for Domain Specific Languages." Domain-Specific
Modeling (DSM’09). Link.

[Reference] Kosar, Tomaz, Marjan Mernik, and Jeffrey C. Carver. "Program comprehension of
domain-specific and general-purpose languages: comparison using a family of experiments."
Empirical software engineering 17, no. 3 (2012): 276-304. Link.

[Reference] Jun, Eunice, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, Rene Just,
and Katharina Reinecke. "Tea: A high-level language and runtime system for automating
statistical analysis." In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology, pp. 591-603. 2019. Link.

Advice on designing programming languages, Part Il

[Required] Green, Thomas RG. "Cognitive dimensions of notations." People and computers V
(1989): 443-460. Link.

[Supplemental] Boshernitsan, Marat, Susan L. Graham, and Marti A. Hearst. "Aligning
development tools with the way programmers think about code changes." In Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 567-576. 2007. Link.
Instructions: Skim as usual, and take a close look at the sections “THEORETICAL
FRAMEWORK", “Early Designs”, and “Cognitive Dimensions Evaluation”.

[Supplemental] Satyanarayan, Arvind, Kanit Wongsuphasawat, and Jeffrey Heer. "Declarative
interaction design for data visualization." In Proceedings of the 27th annual ACM symposium on
User interface software and technology, pp. 669-678. 2014. Link. Instructions: Skim as usual,
and take a close look at the section “DISCUSSION: COGNITIVE DIMENSIONS OF NOTATION".

https://d1wqtxts1xzle7.cloudfront.net/51057466/Studying_the_language_and_structure_in_n20161226-4486-m0b1s9-with-cover-page-v2.pdf?Expires=1665521672&Signature=ZCW~-bI-HIy45lv0C0zeD8vIqt53wmc062ykqnIJO11sGbuugl9rKZMFvPpeWhmHKzpakkeZnBYDBt39EfOc2B9vvB954aQtNs7JKLkRHICg5TR7AA25DpmP-e4BmbHvQEHX8xSrfzRHgPXezFD2tbSmPWKzjUnp1BYSbi6RedScderzhhWoLTqTaRPuPRaZQXzSPUaL90nKp62i7jF9FPrtUryuG39kvDHtvITyO3Pt5PZGRDiQ5w8EKE8rzW817OHsRd8ouJaXJChw~tblfHHbcIQ3qOSsZy6dXw6YPjBrhVFtSWG6GlaFCdXgaBeugLG2pAVAmOQzhmNgXZIVOw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7999115
https://dl.acm.org/doi/pdf/10.1145/2534973
https://arxiv.org/pdf/1409.2378
https://link.springer.com/content/pdf/10.1007/s10664-011-9172-x.pdf
https://dl.acm.org/doi/pdf/10.1145/3332165.3347940
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf
https://dl.acm.org/doi/pdf/10.1145/1240624.1240715?casa_token=Y9E3R6jegLIAAAAA:mlLSOsl_ob4VRktSfhXxbjkBpquRzxEfYN6md0afMsVzFAmUMpzqDLTAR2v4mdkLTuMaByRsSXD-1t8
https://dl.acm.org/doi/pdf/10.1145/2642918.2647360?casa_token=3nDDnn0q3I4AAAAA:xSfKAtpLXjiN6kYwH2NKvoPuqn7j-eHAdGpCyEeuopMSJ8opciJ4ZIKWp1-hqXmIajrcuHSqs8lhHII

Advice on designing tools

[Required] Myers, Brad A., Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. "Programmers
are users too: Human-centered methods for improving programming tools." Computer 49, no. 7
(2016): 44-52. Link.

[Required] Norman, Don. The design of everyday things: Revised and expanded edition. Basic
books, 2013. Instructions: Skim Chapter 6 on “Design Thinking” (see excerpt in link). Pay
particular attention to the sections on “Solving the Correct Problem” and “The Double-Diamond
Model of Design”. Then, at some later time after this course, find a copy of this book and give
the whole book a skim. Link

[Supplemental] Houde, Stephanie, and Charles Hill. "What do prototypes prototype?." In
Handbook of human-computer interaction, pp. 367-381. North-Holland, 1997. Link.
[Reference] Beyer, H., & Holtzblatt, K. (1999). Contextual design. interactions, 6(1), 32-42. See
Chapter 3: Principles of Contextual Inquiry. Link.

[Reference] Fogarty, James. "Code and contribution in interactive systems research." In
Workshop HCITools: Strategies and Best Practices for Designing, Evaluating and Sharing

Technical HCI Toolkits at CHI. 2017.

[Reference] Wobbrock, Jacob 0., and Julie A. Kientz. "Research contributions in
human-computer interaction." interactions 23, no. 3 (2016): 38-44.

[Reference] Chasins, Sarah E., Elena L. Glassman, and Joshua Sunshine. "PL and HCI: better
together." Communications of the ACM 64, no. 8 (2021): 98-106. Link.

Unit 5: Evaluation methods

How to assess usability

[Required] Ledo, David, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and
Saul Greenberg. "Evaluation strategies for HCI toolkit research." In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pp. 1-17. 2018. Link.

[Supplemental] Ko, Amy J., Thomas D. LaToza, and Margaret M. Burnett. "A practical guide to
controlled experiments of software engineering tools with human participants." Empirical
Software Engineering 20, no. 1 (2015): 110-141. Link.

[Supplemental] Olsen Jr, Dan R. "Evaluating user interface systems research." In Proceedings of
the 20th annual ACM symposium on User interface software and technology, pp. 251-258. 2007.
Link.

https://ieeexplore.ieee.org/iel7/2/7503473/07503516.pdf
https://drive.google.com/file/d/1Dn2qgqWNOYQfA-JWtcs_kWBLjuqTLqgO/view?usp=sharing
http://www.itu.dk/~malmborg/Interaktionsdesign/Kompendie/Houde-Hill-1997.pdf
https://drive.google.com/file/d/1VjhbduKm-Ux6_2OwXmqS4kO_8hXU6Lc5/view?usp=sharing
https://dl.acm.org/doi/pdf/10.1145/3469279
https://dl.acm.org/doi/pdf/10.1145/3173574.3173610
https://link.springer.com/article/10.1007/s10664-013-9279-3
https://dl.acm.org/doi/pdf/10.1145/1294211.1294256

[Reference] Nielsen, Jakob. "How to conduct a heuristic evaluation." Nielsen Norman Group 1,
no. 1 (1995): 8. Link.

How to assess program comprehension

[Required] Pennington, Nancy. "Stimulus structures and mental representations in expert
comprehension of computer programs." Cognitive psychology 19, no. 3 (1987): 295-341. Note:
This paper is a long read; give it a serious effort, particularly in understanding how conclusions
were drawn about programmers’ mental representations on the basis of data. That said, time
box your reading of this paper to about 1 hour. Link.

[Supplemental] Détienne, Frangoise. Software design—cognitive aspects. Springer Science &
Business Media, 2001. Instructions: Skim Chapter 1. Those interested in models of program
comprehension should also skim Chapter 3. Link.

[Supplemental] Head, Andrew. Interactive Program Distillation. Ph.D. thesis. Instructions: Skim
Chapter 2 Section “How do programmers read programs?” and Figure 2.1. Link.

[Supplemental] Crichton, Will, Maneesh Agrawala, and Pat Hanrahan. "The Role of Working
Memory in Program Tracing." In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1-13. 2021. Link.

[Reference] Ko, Amy J., Thomas D. LaToza, and Margaret M. Burnett. "A practical guide to
controlled experiments of software engineering tools with human participants." Empirical
Software Engineering 20, no. 1 (2015): 110-141. Link.

[Reference] Boehm-Davis, Deborah A., Robert W. Holt, and Alan C. Schultz. "The role of program
structure in software maintenance." International Journal of Man-Machine Studies 36, no. 1
(1992): 21-63. Link.

[Reference] Soloway, Elliot, and Kate Ehrlich. "Empirical studies of programming knowledge."
IEEE Transactions on software engineering 5 (1984): 595-609. Link.

[Reference] Crichton, William Perry. "Revisiting Program Slicing with Ownership-based
Information Flow." PhD dissertation., Stanford University, 2022. Link. Instructions: Read Chapter
2 on “Cognition and Programming.”

https://www.ingenieriasimple.com/usabilidad/HeuristicEvaluation.pdf
http://www.cs.kent.edu/~jmaletic/cs69995-PC/papers/pennington87.pdf
https://drive.google.com/file/d/1Zq_EJFqoSrQ0s8TpImAJoPiJsNB2az8I/view?usp=sharing
https://andrewhead.info/assets/pdf/interactive-program-distillation.pdf
https://dl.acm.org/doi/pdf/10.1145/3411764.3445257?casa_token=MTeKV__BJ1gAAAAA:9-OJD3DJ8qVqpImXt0h-9SK-ewsXqkJJSZlt2Szoh9nviwgb8MKg0MejRkvUWTiAzqETo5NCQS8
https://link.springer.com/article/10.1007/s10664-013-9279-3
https://www.sciencedirect.com/science/article/pii/002073739290051L
https://ieeexplore.ieee.org/iel5/32/5010265/05010283.pdf?casa_token=eCh7xu1HfSQAAAAA:EQ_V5HwhiK2dVCFNdIuxZvB9nDHLGHkC0gJkl2MFLamwoIqCX18A8XHXAlPdlf6WbZrbSlIn
https://willcrichton.net/assets/pdf/dissertation.pdf

Unit 6: Advanced live and literate programming techniques

Reviewing evidence of usability of live programming systems

Special instructions: Pick one of the following papers, and mark it with your name to “claim” it
as your paper to present. Each paper should be read by only 1 reader. Follow these instructions
on Canvas on how to reflect on the reading.

1. Wilcox, Eric M., J. William Atwood, Margaret M. Burnett, Jonathan J. Cadiz, and Curtis R.
Cook. "Does continuous visual feedback aid debugging in direct-manipulation programming
systems?." In Proceedings of the ACM SIGCHI Conference on Human factors in computing
systems, pp. 258-265. 1997. Link.

2. Kramer, Jan-Peter, Joachim Kurz, Thorsten Karrer, and Jan Borchers. "How live coding affects
developers' coding behavior." In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 5-8. IEEE, 2014. Link.

3. DeLine, Robert, and Danyel Fisher. "Supporting exploratory data analysis with live
programming." In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 111-119. IEEE, 2015. Link.

4. Hoffswell, Jane, Arvind Satyanarayan, and Jeffrey Heer. "Augmenting code with in situ
visualizations to aid program understanding." In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1-12. 2018. Link.

5. Hartmann, Bjorn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer. "Design as
exploration: creating interface alternatives through parallel authoring and runtime tuning." In
Proceedings of the 21st annual ACM symposium on User interface software and technology, pp.
91-100. 2008. Link.

6. Omar, Cyrus, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. "Active code
completion.” In 2012 34th International Conference on Software Engineering (ICSE), pp.
859-869. IEEE, 2012. Link.

7. Beck, Fabian, Oliver Moseler, Stephan Diehl, and Gilinter Daniel Rey. "In situ understanding of
performance bottlenecks through visually augmented code." In 2013 21st International
Conference on Program Comprehension (ICPC), pp. 63-72. IEEE, 2013. Link.

8. Lieber, Tom, Joel R. Brandt, and Rob C. Miller. "Addressing misconceptions about code with
always-on programming visualizations." In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2481-2490. 2014. Link.

https://canvas.upenn.edu/courses/1680358/assignments/10658595
https://dl.acm.org/doi/pdf/10.1145/258549.258721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6883013
https://ieeexplore.ieee.org/iel7/7347691/7356963/07357205.pdf
https://dl.acm.org/doi/pdf/10.1145/3173574.3174106
https://dl.acm.org/doi/pdf/10.1145/1449715.1449732
https://ieeexplore.ieee.org/iel5/6218989/6227015/06227133.pdf?casa_token=U_uiM4T4isEAAAAA:diQJ7TpRt3DMDJn07DV9V2n3Kfx5aORtPyXYReVmC5ok3Q5V0mSAipZXgSpJYnJxYDUwjCmF
https://ieeexplore.ieee.org/iel7/6597032/6613823/06613834.pdf
https://dl.acm.org/doi/pdf/10.1145/2556288.2557409?casa_token=dAN6xuZrrQEAAAAA:qZaGL_BDWvkflQrUi-huzRtwk_wHtDbIu4gCiND7xOzV2HtYE1dBJezeCu5G_v3rG85N08wAY1c

9. Kang, Hyeonsu and Philip J. Guo. “Omnicode: A Novice-Oriented Live Programming
Environment with Always-On Run-Time Value Visualizations.” Proceedings of the Symposium on
User Interface Software and Technology. ACM, 2017, pp. 737-745. Link.

10. Zhang, Xiong, and Philip J. Guo. "Ds. js: Turn any webpage into an example-centric live
programming environment for learning data science." In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology, pp. 691-702. 2017. Link.

11. Cito, Jiirgen, Philipp Leitner, Martin Rinard, and Harald C. Gall. "Interactive production
performance feedback in the IDE." In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 971-981. IEEE, 2019. Link.

12. Lerner, Sorin. "Projection boxes: On-the-fly reconfigurable visualization for live programming.’
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1-7.
2020. Link.

13. Lerner, Sorin. "Focused Live Programming with Loop Seeds." In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology, pp. 607-613. 2020. Link.

14. Ferdowsifard, Kasra, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova.
"Small-step live programming by example." In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology, pp. 614-626. 2020. Link.

15. DelLine, Robert A. "Glinda: Supporting data science with live programming, GUIs and a
Domain-specific Language." In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1-11. 2021. Link.

Generating documentation

Note: In anticipation for an in-class activity tomorrow (Wed. 11/9), Hao asks that you bring a
code snippet from code you recently wrote consisting of 15 or fewer lines of code. The snippet
can be printed out, handwritten, or on your laptop or smartphone. | encourage you to reach out
to Hao (what@seas.upenn.edu) with any questions.

[Required] Wang, April Yi, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D.
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. "Documentation Matters: Human-Centered Al
System to Assist Data Science Code Documentation in Computational Notebooks." ACM
Transactions on Computer-Human Interaction 29, no. 2 (2022): 1-33. Link.

[Supplemental] Li, Yong, Shoaib Kamil, Alec Jacobson, and Yotam Gingold. "I¥ LA: compilable
markdown for linear algebra." ACM Transactions on Graphics (TOG) 40, no. 6 (2021): 1-14. Link.

https://dl.acm.org/doi/pdf/10.1145/3126594.3126632
https://dl.acm.org/doi/pdf/10.1145/3126594.3126663
https://ieeexplore.ieee.org/iel7/8790403/8811891/08811928.pdf?casa_token=aInlZ4wQ9FkAAAAA:2ze1IBCtv9kAfbq5CIFHIfst8myA6ryJ69vM28CTntvWQF4iJSgjHyJDAt9GVYTX00dFNTAt
https://dl.acm.org/doi/pdf/10.1145/3313831.3376494
https://cseweb.ucsd.edu/~lerner/papers/FLiPS-uist2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/SnipPy-uist2020.pdf
https://dl.acm.org/doi/pdf/10.1145/3411764.3445267
https://dl.acm.org/doi/pdf/10.1145/3489465
https://dl.acm.org/doi/pdf/10.1145/3478513.3480506

[Supplemental] Head, Andrew, Codanda Appachu, Marti A. Hearst, and Bjorn Hartmann.
"Tutorons: Generating context-relevant, on-demand explanations and demonstrations of online
code." In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pp. 3-12. IEEE, 2015. Link.

[Reference] Maalej, Walid, and Martin P. Robillard. "Patterns of knowledge in API reference
documentation." IEEE Transactions on Software Engineering 39, no. 9 (2013): 1264-1282. Link.

[Reference] Liu, Zhongxin, Xin Xia, Meng Yan, and Shanping Li. "Automating just-in-time
comment updating." In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, pp. 585-597. 2020. Link.

[Reference] Shrestha, Nischal, Titus Barik, and Chris Parnin. "It's like python but: Towards
supporting transfer of programming language knowledge." In 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 177-185. IEEE, 2018. Link.

[Reference] Sridhara, Giriprasad, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker.
"Towards automatically generating summary comments for java methods." In Proceedings of
the IEEE/ACM international conference on Automated software engineering, pp. 43-52. 2010.
Link.

[Reference] Hu, Xing, Ge Li, Xin Xia, David Lo, and Zhi Jin. "Deep code comment generation with
hybrid lexical and syntactical information." Empirical Software Engineering 25, no. 3 (2020):
2179-2217. Link.

[Reference] LeClair, Alexander, Sakib Haque, Lingfei Wu, and Collin McMillan. "Improved code
summarization via a graph neural network." In Proceedings of the 28th international conference
on program comprehension, pp. 184-195. 2020. Link.

Flexible views and layouts (with Tudor Girba)

[Required] Girba, Tudor. Moldable Development by Example. Talk. Link. Instructions: Watch the
first 20 minutes; you can skip the Q&A at the end.

[Required] Girba, Tudor. Moldable Development: Guiding Technical Decisions without Reading
Code. InfoQ. 2022. Link.

[Reference] @ Making Systems Explainable — VISSOFT 2022 Keynote
[Reference] Bragdon, Andrew, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William

Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola Jr. "Code
bubbles: a working set-based interface for code understanding and maintenance." In

https://www.youtube.com/watch?v=jJhfTUSDlR0&ab_channel=GlamorousToolkit
https://ieeexplore.ieee.org/iel7/7347691/7356963/07356972.pdf
https://ieeexplore.ieee.org/iel7/32/4359463/06473801.pdf
https://dl.acm.org/doi/pdf/10.1145/3324884.3416581
https://ieeexplore.ieee.org/iel7/8488603/8506479/08506508.pdf
https://dl.acm.org/doi/pdf/10.1145/1858996.1859006
https://link.springer.com/article/10.1007/s10664-019-09730-9
https://dl.acm.org/doi/pdf/10.1145/3387904.3389268
https://www.infoq.com/presentations/moldable-development/
https://www.infoq.com/articles/moldable-development/

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
2503-2512. 2010. Link.

[Reference] DeLine, Robert, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss.
"Debugger canvas: industrial experience with the code bubbles paradigm.” In 2012 34th
International Conference on Software Engineering (ICSE), pp. 1064-1073. IEEE, 2012. Link.

[Reference] Wang, Zijie J., Katie Dai, and W. Keith Edwards. "StickyLand: Breaking the Linear
Presentation of Computational Notebooks." In CHI Conference on Human Factors in Computing
Systems Extended Abstracts, pp. 1-7. 2022. Link.

[Reference] What is Max? [MaxMSP audio dataflow programming environment] Link.

Proofs and proof engineering |

[Required] Pit-Claudel, Clément. "Untangling mechanized proofs." In Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language Engineering, pp. 155-174. 2020.
Link.

[Supplemental] Jackson, Paul B. "Dynamic Proof Presentation." In Mathematical Reasoning: The
History and Impact of the DReaM Group, pp. 63-86. Springer, Cham, 2021. Link.

[Supplemental] Melcer, Daniel, and Stephen Chang. "ProofViz: An Interactive Visual Proof
Explorer." In International Symposium on Trends in Functional Programming, pp. 116-135.
Springer, Cham, 2021. Link.

[Reference] @ [CogPL'22] Coq meets literate programming: tools for documenting, preserving...

[Reference] For those not familiar with proof assistants, | encourage you to watch these videos
demonstrating two widely-used modern proof assistants.

e O nfinitude of primes — a Lean theorem prover demo

e © |ntroduction to the Coq Proof Assistant - Andrew Appel

Proofs and proof engineering Il

[Required] Ayers, Edward. "A Tool for Producing Verified, Explainable Proofs." PhD dissertation,
University of Cambridge, 2022. Link. Instructions: Read the abstract, and Sections 1.1, 1.3, and
Chapters 5. Skim Chapter 6 and Appendix B.

[Reference] @ Lean Together 2021: Widgets: interactive output in VSCode

https://www.youtube.com/watch?v=xAYlYmE-1dU
https://www.youtube.com/watch?v=b59fpAJ8Mfs&ab_channel=leanprovercommunity
https://youtu.be/3WBUHEVr56c?t=17
https://www.youtube.com/watch?v=8NUBQEZYuis
https://dl.acm.org/doi/pdf/10.1145/1753326.1753706
https://ieeexplore.ieee.org/iel5/6218989/6227015/06227113.pdf
https://dl.acm.org/doi/pdf/10.1145/3491101.3519653
https://cycling74.com/products/max
https://dl.acm.org/doi/pdf/10.1145/3426425.3426940
https://link.springer.com/chapter/10.1007/978-3-030-77879-8_4
https://link.springer.com/chapter/10.1007/978-3-030-83978-9_6
https://www.edayers.com/ayers_thesis_final.pdf

Notation comprehension aids

[Required] Crichton, Will. A New Medium for Communicating Research on Programming
Languages. HATRA @ SPLASH. 2021. Link. Instructions: Read the full article, including the
embedded research article on program slicing. Try your best to understand the research article.
Pay close attention to the degree to which the tool helps you understand the notation, and the
extent to which it does not.

[Supplemental] Head, Andrew, Amber Xie, and Marti A. Hearst. "Math Augmentation: How
Authors Enhance the Readability of Formulas using Novel Visual Design Practices." In CHI
Conference on Human Factors in Computing Systems, pp. 1-18. 2022. Link.

[Reference] Head, Andrew, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S.
Weld, and Marti A. Hearst. "Augmenting scientific papers with just-in-time, position-sensitive
definitions of terms and symbols." In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pp. 1-18. 2021. Link. (Also see an online Wizard-of-Oz'd demo of
the interaction here).

[Reference] Sanchez-Lengeling, Benjamin, Emily Reif, Adam Pearce, and Alexander B. Wiltschko.
"A gentle introduction to graph neural networks." Distill 6, no. 9 (2021): e33. Link.

[Reference] Wolfram, Stephen. Logic, Explainability and the Future of Understanding. (2018).
Link.

[Reference] Alcock, Lara, and Nicola Wilkinson. "e-Proofs: Design of a resource to support proof
comprehension in mathematics." (2011). Link.

[Reference] Hogben, Lancelot Thomas. Mathematics in the Making. Garden City, NY: Doubleday,
1960. In print.

[Reference] Cajori, Florian. A history of mathematical notations. Vol. 1. Courier Corporation,
1993. In print.

[Reference] GitHub - k-qy/notation: Collection of quotes on notation design & how it affects
thought.

[Reference] Gobert, Camille, and Michel Beaudouin-Lafon. "i-LaTeX: Manipulating Transitional
Representations between LaTeX Code and Generated Documents." In CHI Conference on
Human Factors in Computing Systems, pp. 1-16. 2022. Link.

[Reference] Wadler, Philip. "Call-by-value is dual to call-by-name." In Proceedings of the eighth
ACM SIGPLAN international conference on Functional programming, pp. 189-201. 2003.

https://willcrichton.net/nota/
https://andrewhead.info/assets/pdf/augmented-formulas.pdf
https://dl.acm.org/doi/fullHtml/10.1145/3411764.3445648
https://andrewhead.info/assets/pdf/augmenting-scientific-papers.pdf
https://distill.pub/2021/gnn-intro/
https://writings.stephenwolfram.com/2018/11/logic-explainability-and-the-future-of-understanding/
https://core.ac.uk/download/pdf/288383887.pdf
https://github.com/k-qy/notation
https://github.com/k-qy/notation
https://dl.acm.org/doi/pdf/10.1145/3491102.3517494

[Reference] Ahmed, Amal. "Verified compilers for a multi-language world." In 1st Summit on
Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

Holes are Errers TODOs (with David Moon)

[Required] Moon, David, Andrew Blinn, and Cyrus Omar. "tylr: a tiny tile-based structure editor." In
Proceedings of the 7th ACM SIGPLAN International Workshop on Type-Driven Development, pp.
28-37.2022. Link.

[Required] David Moon'’s Twitter thread demo'ing tylr. Link.

[Supplemental] Omar, Cyrus, lan Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues,
Jonathan Aldrich, and Matthew A. Hammer. "Toward semantic foundations for program editors."
arXiv preprint arXiv:1703.08694 (2017). Link.

[Reference] Omar, Cyrus, David Moon, Andrew Blinn, lan Voysey, Nick Collins, and Ravi Chugh.
"Filling typed holes with live GUIs." In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, pp. 511-525. 2021. Link.

[Reference] Omar, Cyrus, lan Voysey, Ravi Chugh, and Matthew A. Hammer. "Live functional
programming with typed holes." Proceedings of the ACM on Programming Languages 3, no.
POPL (2019): 1-32. Link.

[Reference] Zhang, Tesla. REPLs with Typed Holes. Blog post. Link.
[Reference] HaskellWiki contributors, "GHC/Typed holes," HaskellWiki. Link.

[Reference] Quick Guide to Editing, Type Checking and Compiling Agda Code. Link.

Prototyping tools for data scientists (with Philip Guo)

Note: Your questions for Philip may be the required readings, or about any of the other papers
that we have read from Philip’s group in the rest of this semester (you have already had two of
his papers as required papers, and half a dozen others as supplemental readings).

[Required] Guo, Philip J., and Dawson Engler. "Towards practical incremental recomputation for
scientists." In Workshop on the Theory and Practice of Provenance. 2010. Link. (Also see this
link to the accepted paper: Link).

[Supplemental] Guo, Philip J., and Dawson Engler. "Using automatic persistent memoization to
facilitate data analysis scripting.” In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pp. 287-297. 2011. Link.

https://drive.google.com/file/d/1ATXLoqMa0zdYJGei9R8Zqrp2ibhtFGEu/view?usp=share_link
https://twitter.com/dm_0ney/status/1414742742530498566?s=20&t=HdT8MHUnDHK2lWlYYWssRA
https://arxiv.org/pdf/1703.08694
https://dl.acm.org/doi/pdf/10.1145/3453483.3454059
https://dl.acm.org/doi/pdf/10.1145/3290327
https://ice1000.org/2020/05-04-ReplWithGoals.html
https://wiki.haskell.org/index.php?title=GHC/Typed_holes&oldid=58717
https://agda.readthedocs.io/en/v2.5.4/getting-started/quick-guide.html
https://www.usenix.org/legacy/events/tapp10/tech/slides/guo.pdf
https://pg.ucsd.edu/publications/IncPy-memoization-in-Python-interpreter-preliminary_TaPP-2010.pdf
https://pg.ucsd.edu/publications/IncPy-memoization-in-Python-interpreter_ISSTA-2011.pdf

Also see Philip Guo's papers from prior weeks.

Collaboration (with April Wang)

[Required] Wang, April Yi, Zihan Wu, Christopher Brooks, and Steve Oney. "Callisto: Capturing
the" Why" by Connecting Conversations with Computational Narratives." In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, pp. 1-13. 2020. Link.

[Supplemental] Wang, April Yi, Anant Mittal, Christopher Brooks, and Steve Oney. "How data
scientists use computational notebooks for real-time collaboration." Proceedings of the ACM on
Human-Computer Interaction 3, no. CSCW (2019): 1-30. Link.

[Reference] Epperson, Will, April Yi Wang, Robert DeLine, and Steven M. Drucker. "Strategies for
Reuse and Sharing among Data Scientists in Software Teams." (2022). Link.

[Reference] Oney, Steve, Christopher Brooks, and Paul Resnick. "Creating guided code
explanations with chat. codes." Proceedings of the ACM on Human-Computer Interaction 2, no.
CSCW (2018): 1-20.

[Reference] Adeli, Marjan, Nicholas Nelson, Souti Chattopadhyay, Hayden Coffey, Austin Henley,
and Anita Sarma. "Supporting code comprehension via annotations: Right information at the
right time and place." In 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 1-10. IEEE, 2020.

Natural language as code

[Required] Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded Copilot: How
Programmers Interact with Code-Generating Models." arXiv preprint arXiv:2206.15000 (2022).
Link.

[Supplemental] Little, Greg, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser
Kandogan. "Koala: capture, share, automate, personalize business processes on the web." In
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 943-946.
2007. Link.

[Supplemental] Weisz, Justin D., Michael Muller, Stephanie Houde, John Richards, Steven I. Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. "Perfection not required?
Human-Al partnerships in code translation." In 26th International Conference on Intelligent User
Interfaces, pp. 402-412. 2021. Link.

[Reference] Vaithilingam, Priyan, Tianyi Zhang, and Elena L. Glassman. "Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language

https://dl.acm.org/doi/pdf/10.1145/3313831.3376740
https://dl.acm.org/doi/pdf/10.1145/3359141
https://willepperson.com/papers/reuse-sharing-DS-icse22.pdf
https://arxiv.org/pdf/2206.15000
https://dl.acm.org/doi/pdf/10.1145/1240624.1240767
https://dl.acm.org/doi/pdf/10.1145/3397481.3450656

Models." In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pp.
1-7.2022. Link.

[Reference] Miller, Robert C., Victoria H. Chou, Michael Bernstein, Greg Little, Max Van Kleek,
David Karger, and M. C. Schraefel. "Inky: a sloppy command line for the web with rich visual
feedback." In Proceedings of the 21st annual ACM symposium on User interface software and
technology, pp. 131-140. 2008. Link.

[Reference] Little, Greg, and Robert C. Miller. "Translating keyword commands into executable
code." In Proceedings of the 19th annual ACM symposium on User interface software and
technology, pp. 135-144. 2006. Link.

Further reading

What follows is a small selection of readings that relate to the goal of producing beautiful,
understandable programs that we did not have time to get to during this course.

Verifiable documentation

Mehrpour, Sahar, Thomas D. LaToza, and Hamed Sarvari. "RulePad: interactive authoring of
checkable design rules." In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp.
386-397. 2020. Link.

Lee, Seonah, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang. "Automatic detection and
update suggestion for outdated API names in documentation." IEEE Transactions on Software
Engineering 47, no. 4 (2019): 653-675. Link.

Documentation engineering

Oman, Paul W. and Curtis R. Cook. “Typographic Style is More than Cosmetic.” Communications
of the ACM 33.5 (1990), pp. 506—-520. Link.

Dagenais, Barthélémy, and Martin P. Robillard. "Creating and evolving developer documentation:
understanding the decisions of open source contributors." In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering, pp. 127-136.
2010. Link.

Explorable explanations

Lau, Sam, and Philip J. Guo. "Data Theater: A live programming environment for prototyping
data-driven explorable explanations." In Workshop on Live Programming (LIVE). 2020. Link.

Victor, Bret. "Explorable explanations.” Bret Victor 10 (2011). Link.

https://dl.acm.org/doi/pdf/10.1145/3491101.3519665
https://dl.acm.org/doi/pdf/10.1145/1449715.1449737
http://people.csail.mit.edu/glittle/Papers/Keyword%20Commands%20UIST%202006.pdf
https://dl.acm.org/doi/pdf/10.1145/3368089.3409751
https://ieeexplore.ieee.org/iel7/32/9405984/08651318.pdf
https://dl.acm.org/doi/pdf/10.1145/78607.78611
https://dl.acm.org/doi/pdf/10.1145/1882291.1882312
https://par.nsf.gov/servlets/purl/10210727
http://worrydream.com/ExplorableExplanations/

	Instructions
	Readings
	Unit 1: Inspiration
	A dose of inspiration
	A feast of demos and critiques

	Unit 2: Literate programming
	The present: Jupyter
	The past: WEB
	[Special event] Distinguished Lecturer: Sorin Lerner
	The present: Tutorials
	A feast of demos and critiques
	Reviewing evidence of usability

	Unit 3: Live programming
	The past: SmallTalk
	The present: Live coding demos
	In-situ visualization
	Additional readings on live programming
	[Special event] Guest Lecturer: Ian Arawjo
	A feast of demos and critiques

	Unit 4: Design methods
	Advice on designing programming languages, Part I
	Advice on designing programming languages, Part II
	Advice on designing tools

	Unit 5: Evaluation methods
	How to assess usability
	How to assess program comprehension

	Unit 6: Advanced live and literate programming techniques
	Reviewing evidence of usability of live programming systems
	Generating documentation
	Flexible views and layouts (with Tudor Gîrba)
	Proofs and proof engineering I
	Proofs and proof engineering II
	Notation comprehension aids
	Holes are Errors TODOs (with David Moon)
	Prototyping tools for data scientists (with Philip Guo)
	Collaboration (with April Wang)
	Natural language as code

	Further reading
	Verifiable documentation
	Documentation engineering
	Explorable explanations

