
 

Instructions 
For each reading assignment, do the following: 
 
1. Read the required reading in full. There will usually be 1 required reading, which should take 
around a 1 hour to read deeply and in full. In some cases, there will be 2 required readings; 
however, the overall reading time across all readings should be about the same. 
 
2. Briefly consult the supplemental readings. Open up the supplemental readings and orient 
yourself to them. If the reading is a research paper, understand the abstract and take a look at 
the figures. If it is a short video, watch it. If the reading is a slide deck, skim through it. The 
purpose of these readings are not to deeply engage with them, but rather to build up your mental 
map of what research and inquiry looks like around this topic. These are some of the papers you 
would want to look at in the future (for your research, or the final project) when you want to 
understand this topic more deeply. 
 
3. Readings that are marked as “Reference” do not need to be read. These readings are listed 
only if you want to do a deeper dive into the topic on your own. 
 
4. Submit written commentary. Write a brief reflection elaborating on what you learned about 
designing effective programming environments from readings. The goal of this written 
commentary is for you to develop thoughts that will steer your future research and work. 
Consider the commentary as a journal entry where you document your evolving understanding 
of the design of programming environments with the readings as a provocation. 
 
As a rule of thumb, written commentary should be around 300 words long. If you are not sure 
what to write about, consider touching upon one or more of the following topics: 
 

●​ What works really well about a tool, and why? 
●​ Does the technology work well in all circumstances (i.e., for all users, for all 

programming languages)? If not, how does it fall apart in other circumstances? 
●​ What theory and practices from domains that you are intimately familiar with (i.e., from 

HCI, programming languages, education) suggest better ways to design and evaluate 
tools like those from the readings? 

●​ Have you tried to use the technology before, or another one like it? If so, what might the 
readings be missing about the experience of using the technology? 

●​ Are you convinced by the evidence of usability collected to date? If not, what is not 
convincing, and what studies should be run? 

●​ What are some blindspots in this area of research that need attention? 
 



 

For days that we speak with an invited speaker, the written commentary will consist of 2 
questions that you would like to ask a speaker, each approximately 1 paragraph in length to 
include sufficient context, and upvoting questions submitted by your peers. 

Readings 

Unit 1: Inspiration 

A dose of inspiration 
Victor, Bret. Learnable Programming. http://worrydream.com/LearnableProgramming/. 

A feast of demos and critiques 
See instructions at https://canvas.upenn.edu/courses/1680358/assignments/10533155. 

Unit 2: Literate programming 

The present: Jupyter 
[Required] Kery, Mary Beth, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A. Myers. 
"The story in the notebook: Exploratory data science using a literate programming tool." In 
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1-11. 
2018. 
Link 
 
[Supplemental] Rule, Adam, Aurélien Tabard, and James D. Hollan. "Exploration and explanation 
in computational notebooks." In Proceedings of the 2018 CHI Conference on Human Factors in 
Computing Systems, pp. 1-12. 2018. Link 
 
[Supplemental] Perez, Fernando, and Brian E. Granger. "Project Jupyter: Computational 
narratives as the engine of collaborative data science." Link 
 
[Supplemental] Wolfram, Stephen. "What is a Computational Essay?" (2017). Link 
 
[Supplemental] I Don't Like Notebooks - Joel Grus - #JupyterCon 2018. 

. I Don't Like Notebooks - Joel Grus - #JupyterCon 2018
 
[Reference] Lau, Sam, Ian Drosos, Julia M. Markel, and Philip J. Guo. "The design space of 
computational notebooks: An analysis of 60 systems in academia and industry." In 2020 IEEE 

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g3d4f53c8ab_0_17
http://worrydream.com/LearnableProgramming/
https://canvas.upenn.edu/courses/1680358/assignments/10533155
https://dl.acm.org/doi/pdf/10.1145/3173574.3173748
https://dl.acm.org/doi/pdf/10.1145/3173574.3173606
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/


 

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 1-11. IEEE, 
2020. Link. 

The past: WEB 
[Required] Knuth, Donald Ervin. "Literate programming." The computer journal 27, no. 2 (1984): 
97-111. Link. 
  
[Required] Knuth, Donald E. "TEX: the Program." Reading: Addison-Wesley (1984). Instructions: 
Read the preface. Then pick 1 chapter you are interested in and try to get through as much as 
you can in 20 minutes. Link. 
 
[Supplemental] Ramsey, Norman. "Literate programming simplified." IEEE software 11, no. 5 
(1994): 97-105. Link. 

[Special event] Distinguished Lecturer: Sorin Lerner 
[Required] Lerner, Sorin. "Projection boxes: On-the-fly reconfigurable visualization for live 
programming." In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems, pp. 1-7. 2020. Link. 
 
[Supplemental] Lerner, Sorin. "Focused Live Programming with Loop Seeds." In Proceedings of 
the 33rd Annual ACM Symposium on User Interface Software and Technology, pp. 607-613. 
2020. Link. 
 
[Supplemental] Ferdowsifard, Kasra, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia 
Polikarpova. "Small-step live programming by example." In Proceedings of the 33rd Annual ACM 
Symposium on User Interface Software and Technology, pp. 614-626. 2020. Link. 
 
[Supplemental] Ringer, Talia, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. "REPLica: 
REPL instrumentation for Coq analysis." In Proceedings of the 9th ACM SIGPLAN International 
Conference on Certified Programs and Proofs, pp. 99-113. 2020. Link. 
 
[Reference] Leung, Alan, and Sorin Lerner. "Parsimony: An IDE for example-guided synthesis of 
lexers and parsers." In 2017 32nd IEEE/ACM International Conference on Automated Software 
Engineering (ASE), pp. 815-825. IEEE, 2017. Link. 
 
[Reference] Sarracino, John, Odaris Barrios-Arciga, Jasmine Zhu, Noah Marcus, Sorin Lerner, and 
Ben Wiedermann. "User-guided synthesis of interactive diagrams." In Proceedings of the 2017 
CHI Conference on Human Factors in Computing Systems, pp. 195-207. 2017. Link. 
 
[Reference] Foster, Stephen R., Sorin Lerner, and William G. Griswold. "Seamless Integration of 
Coding and Gameplay: Writing Code Without Knowing it." In FDG. 2015. Link. 

https://ieeexplore.ieee.org/iel7/9124617/9127195/09127201.pdf
http://literateprogramming.com/knuthweb.pdf
https://drive.google.com/file/d/1fkm6SqP3ru1LI878kTakQES6I1CjiWQC/view?usp=sharing
https://ieeexplore.ieee.org/iel1/52/7538/00311070.pdf?casa_token=httLYUGQP0MAAAAA:XU8bB9vvT3fYCNFybguR2SHMqMhh58vlaK_go7D_J_EdHt0XMSveKwZAKaD0r6e9CO8Xfo2z
https://cseweb.ucsd.edu/~lerner/papers/projection-boxes-chi2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/FLiPS-uist2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/SnipPy-uist2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/REPLica.pdf
https://cseweb.ucsd.edu/~lerner/papers/parsimony-ase2017.pdf
https://cseweb.ucsd.edu/~lerner/papers/eddie-chi17.pdf
https://cseweb.ucsd.edu/~lerner/papers/GamesToCode-fdg15.pdf


 

The present: Tutorials 
[Required] Head, Andrew, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann. 
"Composing flexibly-organized step-by-step tutorials from linked source code, snippets, and 
outputs." In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 
pp. 1-12. 2020. 
  
[Supplemental] Mysore, Alok, and Philip J. Guo. "Torta: Generating mixed-media gui and 
command-line app tutorials using operating-system-wide activity tracing." In Proceedings of the 
30th Annual ACM Symposium on User Interface Software and Technology, pp. 703-714. 2017. 
 
[Supplemental] Mirhosseini, Samim, and Chris Parnin. "Docable: evaluating the executability of 
software tutorials." In Proceedings of the 28th ACM Joint Meeting on European Software 
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 
375-385. 2020. 
 
[Supplemental] Khandwala, Kandarp, and Philip J. Guo. "Codemotion: expanding the design 
space of learner interactions with computer programming tutorial videos." In Proceedings of the 
Fifth Annual ACM Conference on Learning at Scale, pp. 1-10. 2018. 
 
[Supplemental] Kim, Ada S., and Amy J. Ko. "A pedagogical analysis of online coding tutorials." 
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science 
Education, pp. 321-326. 2017. 
 
[Reference] Jupyter Book. https://jupyterbook.org/en/stable/intro.html. 

A feast of demos and critiques 
See instructions at https://canvas.upenn.edu/courses/1680358/assignments/10565830.  

Reviewing evidence of usability 
Special reading response instructions: This week, I want you to focus your reading responses 
on what you wish we knew about the usability of literate programming tools (either for authors 
or readers) that studies to date have not yet shown us. 
 
[Required] Head, Andrew. Interactive Program Distillation. Ph.D. thesis. Instructions: Read 
p21-43 only. In your reading application, highlight passages that describe evaluations of the 
proposed tools, and try to synthesize an understanding of what we can generalize on the basis 
of this prior evidence. Link. 
 
[Required] Ramsey, Norman and Carla Marceau. “Literate Programming on a Team Project.” 
Software—Practice and Experience 21.7 (1991), pp. 677–683. Link. 
 

https://jupyterbook.org/en/stable/intro.html
https://canvas.upenn.edu/courses/1680358/assignments/10565830
https://andrewhead.info/assets/pdf/interactive-program-distillation.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380210703


 

[Supplemental] Chattopadhyay, Souti, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus 
Barik. "What's wrong with computational notebooks? Pain points, needs, and design 
opportunities." In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems, pp. 1-12. 2020. Instructions: pay particular attention to the passages about “Manage 
Code,” “Archival,” “Share and Collaborate,” “Reproduce and Reuse.” Link. 
 
[Supplemental] Shum, Stephen and Curtis Cook. “Using Literate Programming to Teach Good 
Programming Practices.” Proceedings of the Technical Symposium on Computer Science 
Education. ACM, 1994, pp. 66–70. Link. 
 
[Supplemental] Childs, Bart, Deborah Dunn, and William Lively. “Teaching CS/1 Courses in a 
Literate Manner.” TUGboat 16.3 (1995), p. 8. Link’. 
 
[Supplemental] Parnin, Chris, Christoph Treude, and Margaret-Anne Storey. "Blogging developer 
knowledge: Motivations, challenges, and future directions." In 2013 21st International 
Conference on Program Comprehension (ICPC), pp. 211-214. IEEE, 2013. Link. 
 
[Reference] Rule, Adam, Aurélien Tabard, and James D. Hollan. "Exploration and explanation in 
computational notebooks." In Proceedings of the 2018 CHI Conference on Human Factors in 
Computing Systems, pp. 1-12. 2018. Link 
 
[Reference] Thimbleby, H. “Experiences of ‘Literate Programming’ using cweb (a variant of 
Knuth’s WEB).” The Computer Journal 29.3 (1986), pp. 201–211. Link. 
 
[Reference] DeLine, Robert, and Danyel Fisher. "Supporting exploratory data analysis with live 
programming." In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing 
(VL/HCC), pp. 111-119. IEEE, 2015. Link. 
 
[Reference] Van Wyk, Christopher J. “Literate programming: An assessment.” Communications 
of the ACM 33.3 (1990), pp. 361–363. Link. 
  
[Reference] . Start around 7:00. Literate Programming in the Large

Unit 3: Live programming 

The past: SmallTalk 
[Required] Kay, Alan C. "The early history of Smalltalk." In History of programming languages---II, 
pp. 511-598. 1996. Link. 
 

https://www.youtube.com/watch?app=desktop&v=Av0PQDVTP4A
https://dl.acm.org/doi/pdf/10.1145/3313831.3376729
https://dl.acm.org/doi/pdf/10.1145/191029.191059
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.1161&rep=rep1&type=pdf
https://ieeexplore.ieee.org/iel7/6597032/6613823/06613850.pdf
https://dl.acm.org/doi/pdf/10.1145/3173574.3173606
https://academic.oup.com/comjnl/article-pdf/29/3/201/1556530/290201.pdf
https://ieeexplore.ieee.org/iel7/7347691/7356963/07357205.pdf
https://go.gale.com/ps/i.do?id=GALE%7CA8491530&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00010782&p=AONE&sw=w&userGroupName=upenn_alumni
https://dl.acm.org/doi/pdf/10.1145/234286.1057828


 

[Required] Tanimoto, Steven L. "VIVA: A visual language for image processing." Journal of Visual 
Languages & Computing 1, no. 2 (1990): 127-139. Instructions: Read Sections 1 and 2 only, 
focusing on the 4 levels of liveness. Link. 
 
[Supplemental] Tanimoto, Steven L. "A perspective on the evolution of live programming." In 
2013 1st International Workshop on Live Programming (LIVE), pp. 31-34. IEEE, 2013. Link. 
 
[Reference] . Highlights: 10:00, Alto System Project: Dan Ingalls demonstrates Smalltalk
where Dan describes how he got involved in the SmallTalk system. 19:30, where Dan begins 
demonstrating the system. 
 
[Reference] Squeak. https://squeak.org/. [Squeak is a modern open-source execution 
environment for SmallTalk]. 

The present: Live coding demos 
[Required] Chen, Charles H., and Philip J. Guo. "Improv: Teaching programming at scale via live 
coding." In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale, pp. 1-10. 
2019. Link. 
 
[Required] Guo, Philip. "Ten Million Users and Ten Years Later: Python Tutor’s Design Guidelines 
for Building Scalable and Sustainable Research Software in Academia." In The 34th Annual ACM 
Symposium on User Interface Software and Technology, pp. 1235-1251. 2021. Link. 
Instructions: Read Sections 3 and 4 only. Link. 
 
[Supplemental] Chen, Yan, Walter S. Lasecki, and Tao Dong. "Towards supporting programming 
education at scale via live streaming." Proceedings of the ACM on Human-Computer Interaction 
4, no. CSCW3 (2021): 1-19. Link. 
  
[Supplemental] Alaboudi, Abdulaziz, and Thomas D. LaToza. "An exploratory study of 
live-streamed programming." In 2019 IEEE Symposium on Visual Languages and Human-Centric 
Computing (VL/HCC), pp. 5-13. IEEE, 2019. Link. 
  
[Reference] Haaranen, Lassi. "Programming as a performance: Live-streaming and its 
implications for computer science education." In Proceedings of the 2017 ACM Conference on 
Innovation and Technology in Computer Science Education, pp. 353-358. 2017. Link. 
  
[Reference] Mahoney, Mark. "Storyteller: a tool for creating worked examples." Journal of 
Computing Sciences in Colleges 34, no. 1 (2018): 137-144. Link. 
 
[Reference] Chi, Peggy, Tao Dong, Christian Frueh, Brian Colonna, Vivek Kwatra, and Irfan Essa. 
"Synthesis-Assisted Video Prototyping From a Document." In Proceedings of the 35th Annual 
ACM Symposium on User Interface Software and Technology, pp. 1-10. 2022. Link. 

https://www.youtube.com/watch?v=uknEhXyZgsg&ab_channel=ComputerHistoryMuseum
https://www.sciencedirect.com/science/article/abs/pii/S1045926X05800126
https://ieeexplore.ieee.org/iel7/6599030/6617334/06617346.pdf?casa_token=7HaNU2_VcJQAAAAA:GxWNEYB0FyCadq1T8uulLV31oUoVCdu_cNdKWkucwhzGVMi7y0TMPLJxZteQzDLiQd33XL7K
https://squeak.org/
https://dl.acm.org/doi/pdf/10.1145/3330430.3333627
https://dl.acm.org/doi/abs/10.1145/3472749.3474819
https://dl.acm.org/doi/pdf/10.1145/3434168
https://ieeexplore.ieee.org/iel7/8809324/8818679/08818832.pdf?casa_token=zJwd7nJMvjkAAAAA:sIMXTu6yy3a-2sC-LB7joXI1V8R84qxACxX04yyEw5dGxX6YVQJvTxoxhga_tk734aEuOMF2
https://dl.acm.org/doi/pdf/10.1145/3059009.3059035?casa_token=LtgqkHy3XiMAAAAA:QDCqtSRa_UxQ5cATdOAgSiTT9I-goagZv35CIB6VqP6KH6Z7OTd01sBu5Cii3wNAbvfURcbP0h8
https://dl.acm.org/doi/abs/10.5555/3280489.3280511
https://dl.acm.org/doi/pdf/10.1145/3526113.3545676


 

 
[Reference] Chi, Pei-Yu, Sen-Po Hu, and Yang Li. "Doppio: Tracking ui flows and code changes for 
app development." In Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems, pp. 1-13. 2018. Link. 

In-situ visualization 
[Required] Hoffswell, Jane, Arvind Satyanarayan, and Jeffrey Heer. "Augmenting code with in 
situ visualizations to aid program understanding." In Proceedings of the 2018 CHI Conference 
on Human Factors in Computing Systems, pp. 1-12. 2018. Link. 
 
[Required] Kery, Mary Beth, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit 
Wongsuphasawat, and Kayur Patel. "mage: Fluid moves between code and graphical work in 
computational notebooks." In Proceedings of the 33rd Annual ACM Symposium on User 
Interface Software and Technology, pp. 140-151. 2020. Link.  Instructions: Read only 
“Introduction,” “Demonstrating Design Space in Tools” and watch this demo video. 
 
[Supplemental] Kang, Hyeonsu and Philip J. Guo. “Omnicode: A Novice-Oriented Live 
Programming Environment with Always-On Run-Time Value Visualizations.” Proceedings of the 
Symposium on User Interface Software and Technology. ACM, 2017, pp. 737–745. Link. 
 
[Supplemental] Omar, Cyrus, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. "Active 
code completion." In 2012 34th International Conference on Software Engineering (ICSE), pp. 
859-869. IEEE, 2012. Link. 
 
[Supplemental] Lieber, Tom, Joel R. Brandt, and Rob C. Miller. "Addressing misconceptions about 
code with always-on programming visualizations." In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, pp. 2481-2490. 2014. Link. 
 
[Supplemental] Cito, Jürgen, Philipp Leitner, Martin Rinard, and Harald C. Gall. "Interactive 
production performance feedback in the IDE." In 2019 IEEE/ACM 41st International Conference 
on Software Engineering (ICSE), pp. 971-981. IEEE, 2019. Link. 
 
[Supplemental] Sulír, Matúš, Michaela Bačíková, Sergej Chodarev, and Jaroslav Porubän. "Visual 
augmentation of source code editors: A systematic mapping study." Journal of Visual 
Languages & Computing 49 (2018): 46-59. Link. 
 
[Supplemental] “Light Table: the next generation code editor.” http://lighttable.com/. 
Instructions: Skim the feature list on the middle of the page. 
 
[Reference] Lerner, Sorin. "Projection boxes: On-the-fly reconfigurable visualization for live 
programming." In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems, pp. 1-7. 2020. Link. 

https://dl.acm.org/doi/pdf/10.1145/3173574.3174029
https://dl.acm.org/doi/pdf/10.1145/3173574.3174106
https://dl.acm.org/doi/pdf/10.1145/3379337.3415842
https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3379337.3415842&file=ufp4581vf.mp4
https://dl.acm.org/doi/pdf/10.1145/3126594.3126632
https://ieeexplore.ieee.org/iel5/6218989/6227015/06227133.pdf?casa_token=U_uiM4T4isEAAAAA:diQJ7TpRt3DMDJn07DV9V2n3Kfx5aORtPyXYReVmC5ok3Q5V0mSAipZXgSpJYnJxYDUwjCmF
https://dl.acm.org/doi/pdf/10.1145/2556288.2557409?casa_token=dAN6xuZrrQEAAAAA:qZaGL_BDWvkflQrUi-huzRtwk_wHtDbIu4gCiND7xOzV2HtYE1dBJezeCu5G_v3rG85N08wAY1c
https://ieeexplore.ieee.org/iel7/8790403/8811891/08811928.pdf?casa_token=aInlZ4wQ9FkAAAAA:2ze1IBCtv9kAfbq5CIFHIfst8myA6ryJ69vM28CTntvWQF4iJSgjHyJDAt9GVYTX00dFNTAt
https://www.sciencedirect.com/science/article/pii/S1045926X18301861?casa_token=MjNVqAAmkiwAAAAA:axDxbP0ipzXsc92sTO-7MpKbrRBKIk2eHtGi7K2UlNky_1tp756E6m_-oMBPZhVA04FZFvsr
http://lighttable.com/
https://dl.acm.org/doi/pdf/10.1145/3313831.3376494


 

Additional readings on live programming 
Burckhardt, Sebastian, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal Moskal, 
Nikolai Tillmann, and Jun Kato. "It's alive! continuous feedback in UI programming." In 
Proceedings of the 34th ACM SIGPLAN conference on Programming language design and 
implementation, pp. 95-104. 2013. Link. 

[Special event] Guest Lecturer: Ian Arawjo 
[Required] Arawjo, Ian. "To write code: The cultural fabrication of programming notation and 
practice." In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 
pp. 1-15. 2020. Link. Instructions: This paper is in the style of a cultural critique that has not 
come up in our readings before. While I encourage you to read the paper in full, those sections I 
would like you to pay particular attention to are “The Culture in Early Programming Notations: 
Three visions” and “Embracing Heterogeneity in Programming Practice.” 
 
[Supplemental] Arawjo, Ian, Anthony J. DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan 
Parikh. "Notational Programming for Notebook Environments: A Case Study with Quantum 
Circuits." (2022). Link. 
 
[Supplemental] Arawjo, Ian, Cheng-Yao Wang, Andrew C. Myers, Erik Andersen, and François 
Guimbretière. "Teaching programming with gamified semantics." In Proceedings of the 2017 CHI 
conference on human factors in computing systems, pp. 4911-4923. 2017. Link. 
 
[Reference] Arawjo, Ian, and Ariam Mogos. "Intercultural computing education: Toward justice 
across difference." ACM Transactions on Computing Education (TOCE) 21, no. 4 (2021): 1-33. 
Link. 

A feast of demos and critiques 
See instructions on Canvas (forthcoming). 

Unit 4: Design methods 

Advice on designing programming languages, Part I 
[Required] Coblenz, Michael, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste 
Barnaby, Joshua Sunshine, Jonathan Aldrich, and Brad A. Myers. "PLIERS: a process that 
integrates user-centered methods into programming language design." ACM Transactions on 
Computer-Human Interaction (TOCHI) 28, no. 4 (2021): 1-53. Link. 
 

https://dl.acm.org/doi/pdf/10.1145/2491956.2462170
https://dl.acm.org/doi/pdf/10.1145/3313831.3376731
http://ianarawjo.therottingcartridge.com/docs/Arawjo-Notational-Programming-UIST-2022.pdf
https://dl.acm.org/doi/pdf/10.1145/3025453.3025711
https://dl.acm.org/doi/pdf/10.1145/3458037
https://dl.acm.org/doi/pdf/10.1145/3452379


 

[Supplemental] Pane, John F., and Brad A. Myers. "Studying the language and structure in 
non-programmers' solutions to programming problems." International Journal of 
Human-Computer Studies 54, no. 2 (2001): 237-264. Link. 
 
[Supplemental] Stefik, Andreas, and Stefan Hanenberg. "Methodological irregularities in 
programming-language research." Computer 50, no. 8 (2017): 60-63. Link. 
 
[Supplemental] Stefik, Andreas, and Susanna Siebert. "An empirical investigation into 
programming language syntax." ACM Transactions on Computing Education (TOCE) 13, no. 4 
(2013): 1-40. Link. 
 
[Supplemental] Karsai, Gabor, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, 
and Steven Völkel. "Design Guidelines for Domain Specific Languages." Domain-Specific 
Modeling (DSM’09). Link. 
 
[Reference] Kosar, Tomaž, Marjan Mernik, and Jeffrey C. Carver. "Program comprehension of 
domain-specific and general-purpose languages: comparison using a family of experiments." 
Empirical software engineering 17, no. 3 (2012): 276-304. Link. 
 
[Reference] Jun, Eunice, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, Rene Just, 
and Katharina Reinecke. "Tea: A high-level language and runtime system for automating 
statistical analysis." In Proceedings of the 32nd Annual ACM Symposium on User Interface 
Software and Technology, pp. 591-603. 2019. Link. 

Advice on designing programming languages, Part II 
[Required] Green, Thomas RG. "Cognitive dimensions of notations." People and computers V 
(1989): 443-460. Link. 
 
[Supplemental] Boshernitsan, Marat, Susan L. Graham, and Marti A. Hearst. "Aligning 
development tools with the way programmers think about code changes." In Proceedings of the 
SIGCHI conference on Human factors in computing systems, pp. 567-576. 2007. Link. 
Instructions: Skim as usual, and take a close look at the sections “THEORETICAL 
FRAMEWORK”, “Early Designs”, and “Cognitive Dimensions Evaluation”. 
 
[Supplemental] Satyanarayan, Arvind, Kanit Wongsuphasawat, and Jeffrey Heer. "Declarative 
interaction design for data visualization." In Proceedings of the 27th annual ACM symposium on 
User interface software and technology, pp. 669-678. 2014. Link. Instructions: Skim as usual, 
and take a close look at the section “DISCUSSION: COGNITIVE DIMENSIONS OF NOTATION”. 

https://d1wqtxts1xzle7.cloudfront.net/51057466/Studying_the_language_and_structure_in_n20161226-4486-m0b1s9-with-cover-page-v2.pdf?Expires=1665521672&Signature=ZCW~-bI-HIy45lv0C0zeD8vIqt53wmc062ykqnIJO11sGbuugl9rKZMFvPpeWhmHKzpakkeZnBYDBt39EfOc2B9vvB954aQtNs7JKLkRHICg5TR7AA25DpmP-e4BmbHvQEHX8xSrfzRHgPXezFD2tbSmPWKzjUnp1BYSbi6RedScderzhhWoLTqTaRPuPRaZQXzSPUaL90nKp62i7jF9FPrtUryuG39kvDHtvITyO3Pt5PZGRDiQ5w8EKE8rzW817OHsRd8ouJaXJChw~tblfHHbcIQ3qOSsZy6dXw6YPjBrhVFtSWG6GlaFCdXgaBeugLG2pAVAmOQzhmNgXZIVOw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7999115
https://dl.acm.org/doi/pdf/10.1145/2534973
https://arxiv.org/pdf/1409.2378
https://link.springer.com/content/pdf/10.1007/s10664-011-9172-x.pdf
https://dl.acm.org/doi/pdf/10.1145/3332165.3347940
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf
https://dl.acm.org/doi/pdf/10.1145/1240624.1240715?casa_token=Y9E3R6jegLIAAAAA:mlLSOsl_ob4VRktSfhXxbjkBpquRzxEfYN6md0afMsVzFAmUMpzqDLTAR2v4mdkLTuMaByRsSXD-1t8
https://dl.acm.org/doi/pdf/10.1145/2642918.2647360?casa_token=3nDDnn0q3I4AAAAA:xSfKAtpLXjiN6kYwH2NKvoPuqn7j-eHAdGpCyEeuopMSJ8opciJ4ZIKWp1-hqXmIajrcuHSqs8lhHII


 

Advice on designing tools 
[Required] Myers, Brad A., Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. "Programmers 
are users too: Human-centered methods for improving programming tools." Computer 49, no. 7 
(2016): 44-52. Link. 
 
[Required] Norman, Don. The design of everyday things: Revised and expanded edition. Basic 
books, 2013. Instructions: Skim Chapter 6 on “Design Thinking” (see excerpt in link). Pay 
particular attention to the sections on “Solving the Correct Problem” and “The Double-Diamond 
Model of Design”. Then, at some later time after this course, find a copy of this book and give 
the whole book a skim. Link 
 
[Supplemental] Houde, Stephanie, and Charles Hill. "What do prototypes prototype?." In 
Handbook of human-computer interaction, pp. 367-381. North-Holland, 1997. Link. 
[Reference] Beyer, H., & Holtzblatt, K. (1999). Contextual design. interactions, 6(1), 32-42. See 
Chapter 3: Principles of Contextual Inquiry. Link. 
 
[Reference] Fogarty, James. "Code and contribution in interactive systems research." In 
Workshop HCITools: Strategies and Best Practices for Designing, Evaluating and Sharing 
Technical HCI Toolkits at CHI. 2017. 
 
[Reference] Wobbrock, Jacob O., and Julie A. Kientz. "Research contributions in 
human-computer interaction." interactions 23, no. 3 (2016): 38-44. 
 
[Reference] Chasins, Sarah E., Elena L. Glassman, and Joshua Sunshine. "PL and HCI: better 
together." Communications of the ACM 64, no. 8 (2021): 98-106. Link. 

Unit 5: Evaluation methods 

How to assess usability 
[Required] Ledo, David, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and 
Saul Greenberg. "Evaluation strategies for HCI toolkit research." In Proceedings of the 2018 CHI 
Conference on Human Factors in Computing Systems, pp. 1-17. 2018. Link. 
 
[Supplemental] Ko, Amy J., Thomas D. LaToza, and Margaret M. Burnett. "A practical guide to 
controlled experiments of software engineering tools with human participants." Empirical 
Software Engineering 20, no. 1 (2015): 110-141. Link. 
 
[Supplemental] Olsen Jr, Dan R. "Evaluating user interface systems research." In Proceedings of 
the 20th annual ACM symposium on User interface software and technology, pp. 251-258. 2007. 
Link. 
 

https://ieeexplore.ieee.org/iel7/2/7503473/07503516.pdf
https://drive.google.com/file/d/1Dn2qgqWNOYQfA-JWtcs_kWBLjuqTLqgO/view?usp=sharing
http://www.itu.dk/~malmborg/Interaktionsdesign/Kompendie/Houde-Hill-1997.pdf
https://drive.google.com/file/d/1VjhbduKm-Ux6_2OwXmqS4kO_8hXU6Lc5/view?usp=sharing
https://dl.acm.org/doi/pdf/10.1145/3469279
https://dl.acm.org/doi/pdf/10.1145/3173574.3173610
https://link.springer.com/article/10.1007/s10664-013-9279-3
https://dl.acm.org/doi/pdf/10.1145/1294211.1294256


 

[Reference] Nielsen, Jakob. "How to conduct a heuristic evaluation." Nielsen Norman Group 1, 
no. 1 (1995): 8. Link. 

How to assess program comprehension 
[Required] Pennington, Nancy. "Stimulus structures and mental representations in expert 
comprehension of computer programs." Cognitive psychology 19, no. 3 (1987): 295-341. Note: 
This paper is a long read; give it a serious effort, particularly in understanding how conclusions 
were drawn about programmers’ mental representations on the basis of data. That said, time 
box your reading of this paper to about 1 hour. Link. 
 
[Supplemental] Détienne, Françoise. Software design–cognitive aspects. Springer Science & 
Business Media, 2001. Instructions: Skim Chapter 1. Those interested in models of program 
comprehension should also skim Chapter 3. Link. 
 
[Supplemental] Head, Andrew. Interactive Program Distillation. Ph.D. thesis. Instructions: Skim 
Chapter 2 Section “How do programmers read programs?” and Figure 2.1. Link. 
 
[Supplemental] Crichton, Will, Maneesh Agrawala, and Pat Hanrahan. "The Role of Working 
Memory in Program Tracing." In Proceedings of the 2021 CHI Conference on Human Factors in 
Computing Systems, pp. 1-13. 2021. Link. 
 
[Reference] Ko, Amy J., Thomas D. LaToza, and Margaret M. Burnett. "A practical guide to 
controlled experiments of software engineering tools with human participants." Empirical 
Software Engineering 20, no. 1 (2015): 110-141. Link. 
 
[Reference] Boehm-Davis, Deborah A., Robert W. Holt, and Alan C. Schultz. "The role of program 
structure in software maintenance." International Journal of Man-Machine Studies 36, no. 1 
(1992): 21-63. Link. 
 
[Reference] Soloway, Elliot, and Kate Ehrlich. "Empirical studies of programming knowledge." 
IEEE Transactions on software engineering 5 (1984): 595-609. Link. 
 
[Reference] Crichton, William Perry. "Revisiting Program Slicing with Ownership-based 
Information Flow." PhD dissertation., Stanford University, 2022. Link. Instructions: Read Chapter 
2 on “Cognition and Programming.” 

https://www.ingenieriasimple.com/usabilidad/HeuristicEvaluation.pdf
http://www.cs.kent.edu/~jmaletic/cs69995-PC/papers/pennington87.pdf
https://drive.google.com/file/d/1Zq_EJFqoSrQ0s8TpImAJoPiJsNB2az8I/view?usp=sharing
https://andrewhead.info/assets/pdf/interactive-program-distillation.pdf
https://dl.acm.org/doi/pdf/10.1145/3411764.3445257?casa_token=MTeKV__BJ1gAAAAA:9-OJD3DJ8qVqpImXt0h-9SK-ewsXqkJJSZlt2Szoh9nviwgb8MKg0MejRkvUWTiAzqETo5NCQS8
https://link.springer.com/article/10.1007/s10664-013-9279-3
https://www.sciencedirect.com/science/article/pii/002073739290051L
https://ieeexplore.ieee.org/iel5/32/5010265/05010283.pdf?casa_token=eCh7xu1HfSQAAAAA:EQ_V5HwhiK2dVCFNdIuxZvB9nDHLGHkC0gJkl2MFLamwoIqCX18A8XHXAlPdlf6WbZrbSlIn
https://willcrichton.net/assets/pdf/dissertation.pdf


 

Unit 6: Advanced live and literate programming techniques 

Reviewing evidence of usability of live programming systems 
Special instructions: Pick one of the following papers, and mark it with your name to “claim” it 
as your paper to present. Each paper should be read by only 1 reader. Follow these instructions 
on Canvas on how to reflect on the reading.  
 
1. Wilcox, Eric M., J. William Atwood, Margaret M. Burnett, Jonathan J. Cadiz, and Curtis R. 
Cook. "Does continuous visual feedback aid debugging in direct-manipulation programming 
systems?." In Proceedings of the ACM SIGCHI Conference on Human factors in computing 
systems, pp. 258-265. 1997. Link. 
 
2. Kramer, Jan-Peter, Joachim Kurz, Thorsten Karrer, and Jan Borchers. "How live coding affects 
developers' coding behavior." In 2014 IEEE Symposium on Visual Languages and Human-Centric 
Computing (VL/HCC), pp. 5-8. IEEE, 2014. Link. 
 
3. DeLine, Robert, and Danyel Fisher. "Supporting exploratory data analysis with live 
programming." In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing 
(VL/HCC), pp. 111-119. IEEE, 2015. Link. 
 
4. Hoffswell, Jane, Arvind Satyanarayan, and Jeffrey Heer. "Augmenting code with in situ 
visualizations to aid program understanding." In Proceedings of the 2018 CHI Conference on 
Human Factors in Computing Systems, pp. 1-12. 2018. Link. 
 
5. Hartmann, Björn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer. "Design as 
exploration: creating interface alternatives through parallel authoring and runtime tuning." In 
Proceedings of the 21st annual ACM symposium on User interface software and technology, pp. 
91-100. 2008. Link. 
 
6. Omar, Cyrus, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. "Active code 
completion." In 2012 34th International Conference on Software Engineering (ICSE), pp. 
859-869. IEEE, 2012. Link. 
 
7. Beck, Fabian, Oliver Moseler, Stephan Diehl, and Günter Daniel Rey. "In situ understanding of 
performance bottlenecks through visually augmented code." In 2013 21st International 
Conference on Program Comprehension (ICPC), pp. 63-72. IEEE, 2013. Link. 
 
8. Lieber, Tom, Joel R. Brandt, and Rob C. Miller. "Addressing misconceptions about code with 
always-on programming visualizations." In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, pp. 2481-2490. 2014. Link. 
 

https://canvas.upenn.edu/courses/1680358/assignments/10658595
https://dl.acm.org/doi/pdf/10.1145/258549.258721
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6883013
https://ieeexplore.ieee.org/iel7/7347691/7356963/07357205.pdf
https://dl.acm.org/doi/pdf/10.1145/3173574.3174106
https://dl.acm.org/doi/pdf/10.1145/1449715.1449732
https://ieeexplore.ieee.org/iel5/6218989/6227015/06227133.pdf?casa_token=U_uiM4T4isEAAAAA:diQJ7TpRt3DMDJn07DV9V2n3Kfx5aORtPyXYReVmC5ok3Q5V0mSAipZXgSpJYnJxYDUwjCmF
https://ieeexplore.ieee.org/iel7/6597032/6613823/06613834.pdf
https://dl.acm.org/doi/pdf/10.1145/2556288.2557409?casa_token=dAN6xuZrrQEAAAAA:qZaGL_BDWvkflQrUi-huzRtwk_wHtDbIu4gCiND7xOzV2HtYE1dBJezeCu5G_v3rG85N08wAY1c


 

9. Kang, Hyeonsu and Philip J. Guo. “Omnicode: A Novice-Oriented Live Programming 
Environment with Always-On Run-Time Value Visualizations.” Proceedings of the Symposium on 
User Interface Software and Technology. ACM, 2017, pp. 737–745. Link. 
 
10. Zhang, Xiong, and Philip J. Guo. "Ds. js: Turn any webpage into an example-centric live 
programming environment for learning data science." In Proceedings of the 30th Annual ACM 
Symposium on User Interface Software and Technology, pp. 691-702. 2017. Link. 
 
11. Cito, Jürgen, Philipp Leitner, Martin Rinard, and Harald C. Gall. "Interactive production 
performance feedback in the IDE." In 2019 IEEE/ACM 41st International Conference on Software 
Engineering (ICSE), pp. 971-981. IEEE, 2019. Link. 
 
12. Lerner, Sorin. "Projection boxes: On-the-fly reconfigurable visualization for live programming." 
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1-7. 
2020. Link. 
 
13. Lerner, Sorin. "Focused Live Programming with Loop Seeds." In Proceedings of the 33rd 
Annual ACM Symposium on User Interface Software and Technology, pp. 607-613. 2020. Link. 
 
14.  Ferdowsifard, Kasra, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 
"Small-step live programming by example." In Proceedings of the 33rd Annual ACM Symposium 
on User Interface Software and Technology, pp. 614-626. 2020. Link. 
 
15. DeLine, Robert A. "Glinda: Supporting data science with live programming, GUIs and a 
Domain-specific Language." In Proceedings of the 2021 CHI Conference on Human Factors in 
Computing Systems, pp. 1-11. 2021. Link. 

Generating documentation 
Note: In anticipation for an in-class activity tomorrow (Wed. 11/9), Hao asks that you bring a 
code snippet from code you recently wrote consisting of 15 or fewer lines of code. The snippet 
can be printed out, handwritten, or on your laptop or smartphone. I encourage you to reach out 
to Hao (what@seas.upenn.edu) with any questions. 
 
[Required] Wang, April Yi, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D. 
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. "Documentation Matters: Human-Centered AI 
System to Assist Data Science Code Documentation in Computational Notebooks." ACM 
Transactions on Computer-Human Interaction 29, no. 2 (2022): 1-33. Link. 
 
[Supplemental] Li, Yong, Shoaib Kamil, Alec Jacobson, and Yotam Gingold. "I♥ LA: compilable 
markdown for linear algebra." ACM Transactions on Graphics (TOG) 40, no. 6 (2021): 1-14. Link. 
 

https://dl.acm.org/doi/pdf/10.1145/3126594.3126632
https://dl.acm.org/doi/pdf/10.1145/3126594.3126663
https://ieeexplore.ieee.org/iel7/8790403/8811891/08811928.pdf?casa_token=aInlZ4wQ9FkAAAAA:2ze1IBCtv9kAfbq5CIFHIfst8myA6ryJ69vM28CTntvWQF4iJSgjHyJDAt9GVYTX00dFNTAt
https://dl.acm.org/doi/pdf/10.1145/3313831.3376494
https://cseweb.ucsd.edu/~lerner/papers/FLiPS-uist2020.pdf
https://cseweb.ucsd.edu/~lerner/papers/SnipPy-uist2020.pdf
https://dl.acm.org/doi/pdf/10.1145/3411764.3445267
https://dl.acm.org/doi/pdf/10.1145/3489465
https://dl.acm.org/doi/pdf/10.1145/3478513.3480506


 

[Supplemental] Head, Andrew, Codanda Appachu, Marti A. Hearst, and Björn Hartmann. 
"Tutorons: Generating context-relevant, on-demand explanations and demonstrations of online 
code." In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 
pp. 3-12. IEEE, 2015. Link. 
 
[Reference] Maalej, Walid, and Martin P. Robillard. "Patterns of knowledge in API reference 
documentation." IEEE Transactions on Software Engineering 39, no. 9 (2013): 1264-1282. Link. 
 
[Reference] Liu, Zhongxin, Xin Xia, Meng Yan, and Shanping Li. "Automating just-in-time 
comment updating." In Proceedings of the 35th IEEE/ACM International Conference on 
Automated Software Engineering, pp. 585-597. 2020. Link. 
 
[Reference] Shrestha, Nischal, Titus Barik, and Chris Parnin. "It's like python but: Towards 
supporting transfer of programming language knowledge." In 2018 IEEE Symposium on Visual 
Languages and Human-Centric Computing (VL/HCC), pp. 177-185. IEEE, 2018. Link. 
 
[Reference] Sridhara, Giriprasad, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker. 
"Towards automatically generating summary comments for java methods." In Proceedings of 
the IEEE/ACM international conference on Automated software engineering, pp. 43-52. 2010. 
Link. 
 
[Reference] Hu, Xing, Ge Li, Xin Xia, David Lo, and Zhi Jin. "Deep code comment generation with 
hybrid lexical and syntactical information." Empirical Software Engineering 25, no. 3 (2020): 
2179-2217. Link. 
 
[Reference] LeClair, Alexander, Sakib Haque, Lingfei Wu, and Collin McMillan. "Improved code 
summarization via a graph neural network." In Proceedings of the 28th international conference 
on program comprehension, pp. 184-195. 2020. Link. 

Flexible views and layouts (with Tudor Gîrba) 
[Required] Gîrba, Tudor. Moldable Development by Example. Talk. Link. Instructions: Watch the 
first 20 minutes; you can skip the Q&A at the end. 
 
[Required] Gîrba, Tudor. Moldable Development: Guiding Technical Decisions without Reading 
Code. InfoQ. 2022. Link. 
 
[Reference]  Making Systems Explainable — VISSOFT 2022 Keynote
 
[Reference] Bragdon, Andrew, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William 
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola Jr. "Code 
bubbles: a working set-based interface for code understanding and maintenance." In 

https://www.youtube.com/watch?v=jJhfTUSDlR0&ab_channel=GlamorousToolkit
https://ieeexplore.ieee.org/iel7/7347691/7356963/07356972.pdf
https://ieeexplore.ieee.org/iel7/32/4359463/06473801.pdf
https://dl.acm.org/doi/pdf/10.1145/3324884.3416581
https://ieeexplore.ieee.org/iel7/8488603/8506479/08506508.pdf
https://dl.acm.org/doi/pdf/10.1145/1858996.1859006
https://link.springer.com/article/10.1007/s10664-019-09730-9
https://dl.acm.org/doi/pdf/10.1145/3387904.3389268
https://www.infoq.com/presentations/moldable-development/
https://www.infoq.com/articles/moldable-development/


 

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 
2503-2512. 2010. Link. 
 
[Reference] DeLine, Robert, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss. 
"Debugger canvas: industrial experience with the code bubbles paradigm." In 2012 34th 
International Conference on Software Engineering (ICSE), pp. 1064-1073. IEEE, 2012. Link. 
 
[Reference] Wang, Zijie J., Katie Dai, and W. Keith Edwards. "StickyLand: Breaking the Linear 
Presentation of Computational Notebooks." In CHI Conference on Human Factors in Computing 
Systems Extended Abstracts, pp. 1-7. 2022. Link. 
 
[Reference] What is Max? [MaxMSP audio dataflow programming environment] Link. 

Proofs and proof engineering I 
[Required] Pit-Claudel, Clément. "Untangling mechanized proofs." In Proceedings of the 13th 
ACM SIGPLAN International Conference on Software Language Engineering, pp. 155-174. 2020. 
Link. 
 
[Supplemental] Jackson, Paul B. "Dynamic Proof Presentation." In Mathematical Reasoning: The 
History and Impact of the DReaM Group, pp. 63-86. Springer, Cham, 2021. Link. 
 
[Supplemental] Melcer, Daniel, and Stephen Chang. "ProofViz: An Interactive Visual Proof 
Explorer." In International Symposium on Trends in Functional Programming, pp. 116-135. 
Springer, Cham, 2021. Link. 
 
[Reference]  [CoqPL'22] Coq meets literate programming: tools for documenting, preserving…
 
[Reference] For those not familiar with proof assistants, I encourage you to watch these videos 
demonstrating two widely-used modern proof assistants. 

●​   Infinitude of primes --- a Lean theorem prover demo
●​   Introduction to the Coq Proof Assistant -  Andrew Appel

Proofs and proof engineering II 
[Required] Ayers, Edward. "A Tool for Producing Verified, Explainable Proofs." PhD dissertation, 
University of Cambridge, 2022. Link. Instructions: Read the abstract, and Sections 1.1, 1.3, and 
Chapters 5. Skim Chapter 6 and Appendix B. 
 
[Reference]  Lean Together 2021: Widgets: interactive output in VSCode

https://www.youtube.com/watch?v=xAYlYmE-1dU
https://www.youtube.com/watch?v=b59fpAJ8Mfs&ab_channel=leanprovercommunity
https://youtu.be/3WBUHEVr56c?t=17
https://www.youtube.com/watch?v=8NUBQEZYuis
https://dl.acm.org/doi/pdf/10.1145/1753326.1753706
https://ieeexplore.ieee.org/iel5/6218989/6227015/06227113.pdf
https://dl.acm.org/doi/pdf/10.1145/3491101.3519653
https://cycling74.com/products/max
https://dl.acm.org/doi/pdf/10.1145/3426425.3426940
https://link.springer.com/chapter/10.1007/978-3-030-77879-8_4
https://link.springer.com/chapter/10.1007/978-3-030-83978-9_6
https://www.edayers.com/ayers_thesis_final.pdf


 

Notation comprehension aids 
[Required] Crichton, Will. A New Medium for Communicating Research on Programming 
Languages. HATRA @ SPLASH. 2021. Link. Instructions: Read the full article, including the 
embedded research article on program slicing. Try your best to understand the research article. 
Pay close attention to the degree to which the tool helps you understand the notation, and the 
extent to which it does not. 
 
[Supplemental] Head, Andrew, Amber Xie, and Marti A. Hearst. "Math Augmentation: How 
Authors Enhance the Readability of Formulas using Novel Visual Design Practices." In CHI 
Conference on Human Factors in Computing Systems, pp. 1-18. 2022. Link. 
 
[Reference] Head, Andrew, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S. 
Weld, and Marti A. Hearst. "Augmenting scientific papers with just-in-time, position-sensitive 
definitions of terms and symbols." In Proceedings of the 2021 CHI Conference on Human 
Factors in Computing Systems, pp. 1-18. 2021. Link. (Also see an online Wizard-of-Oz’d demo of 
the interaction here). 
 
[Reference] Sanchez-Lengeling, Benjamin, Emily Reif, Adam Pearce, and Alexander B. Wiltschko. 
"A gentle introduction to graph neural networks." Distill 6, no. 9 (2021): e33. Link. 
 
[Reference] Wolfram, Stephen. Logic, Explainability and the Future of Understanding. (2018). 
Link. 
 
[Reference] Alcock, Lara, and Nicola Wilkinson. "e-Proofs: Design of a resource to support proof 
comprehension in mathematics." (2011). Link. 
 
[Reference] Hogben, Lancelot Thomas. Mathematics in the Making. Garden City, NY: Doubleday, 
1960. In print. 
 
[Reference] Cajori, Florian. A history of mathematical notations. Vol. 1. Courier Corporation, 
1993. In print. 
 
[Reference] GitHub - k-qy/notation: Collection of quotes on notation design & how it affects 
thought. 
 
[Reference] Gobert, Camille, and Michel Beaudouin-Lafon. "i-LaTeX: Manipulating Transitional 
Representations between LaTeX Code and Generated Documents." In CHI Conference on 
Human Factors in Computing Systems, pp. 1-16. 2022. Link. 
 
[Reference] Wadler, Philip. "Call-by-value is dual to call-by-name." In Proceedings of the eighth 
ACM SIGPLAN international conference on Functional programming, pp. 189-201. 2003. 
 

https://willcrichton.net/nota/
https://andrewhead.info/assets/pdf/augmented-formulas.pdf
https://dl.acm.org/doi/fullHtml/10.1145/3411764.3445648
https://andrewhead.info/assets/pdf/augmenting-scientific-papers.pdf
https://distill.pub/2021/gnn-intro/
https://writings.stephenwolfram.com/2018/11/logic-explainability-and-the-future-of-understanding/
https://core.ac.uk/download/pdf/288383887.pdf
https://github.com/k-qy/notation
https://github.com/k-qy/notation
https://dl.acm.org/doi/pdf/10.1145/3491102.3517494


 

[Reference] Ahmed, Amal. "Verified compilers for a multi-language world." In 1st Summit on 
Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer 
Informatik, 2015. 

Holes are Errors TODOs (with David Moon) 
[Required] Moon, David, Andrew Blinn, and Cyrus Omar. "tylr: a tiny tile-based structure editor." In 
Proceedings of the 7th ACM SIGPLAN International Workshop on Type-Driven Development, pp. 
28-37. 2022. Link. 
 
[Required] David Moon’s Twitter thread demo’ing tylr. Link. 
 
[Supplemental] Omar, Cyrus, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, 
Jonathan Aldrich, and Matthew A. Hammer. "Toward semantic foundations for program editors." 
arXiv preprint arXiv:1703.08694 (2017). Link. 
 
[Reference] Omar, Cyrus, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh. 
"Filling typed holes with live GUIs." In Proceedings of the 42nd ACM SIGPLAN International 
Conference on Programming Language Design and Implementation, pp. 511-525. 2021. Link. 
 
[Reference] Omar, Cyrus, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. "Live functional 
programming with typed holes." Proceedings of the ACM on Programming Languages 3, no. 
POPL (2019): 1-32. Link. 
 
[Reference] Zhang, Tesla. REPLs with Typed Holes. Blog post. Link. 
 
[Reference] HaskellWiki contributors, "GHC/Typed holes," HaskellWiki. Link. 
 
[Reference] Quick Guide to Editing, Type Checking and Compiling Agda Code. Link. 

Prototyping tools for data scientists (with Philip Guo) 
Note: Your questions for Philip may be the required readings, or about any of the other papers 
that we have read from Philip’s group in the rest of this semester (you have already had two of 
his papers as required papers, and half a dozen others as supplemental readings). 
 
[Required] Guo, Philip J., and Dawson Engler. "Towards practical incremental recomputation for 
scientists." In Workshop on the Theory and Practice of Provenance. 2010. Link. (Also see this 
link to the accepted paper: Link). 
 
[Supplemental] Guo, Philip J., and Dawson Engler. "Using automatic persistent memoization to 
facilitate data analysis scripting." In Proceedings of the 2011 International Symposium on 
Software Testing and Analysis, pp. 287-297. 2011. Link. 

https://drive.google.com/file/d/1ATXLoqMa0zdYJGei9R8Zqrp2ibhtFGEu/view?usp=share_link
https://twitter.com/dm_0ney/status/1414742742530498566?s=20&t=HdT8MHUnDHK2lWlYYWssRA
https://arxiv.org/pdf/1703.08694
https://dl.acm.org/doi/pdf/10.1145/3453483.3454059
https://dl.acm.org/doi/pdf/10.1145/3290327
https://ice1000.org/2020/05-04-ReplWithGoals.html
https://wiki.haskell.org/index.php?title=GHC/Typed_holes&oldid=58717
https://agda.readthedocs.io/en/v2.5.4/getting-started/quick-guide.html
https://www.usenix.org/legacy/events/tapp10/tech/slides/guo.pdf
https://pg.ucsd.edu/publications/IncPy-memoization-in-Python-interpreter-preliminary_TaPP-2010.pdf
https://pg.ucsd.edu/publications/IncPy-memoization-in-Python-interpreter_ISSTA-2011.pdf


 

 
Also see Philip Guo’s papers from prior weeks. 

Collaboration (with April Wang) 
[Required] Wang, April Yi, Zihan Wu, Christopher Brooks, and Steve Oney. "Callisto: Capturing 
the" Why" by Connecting Conversations with Computational Narratives." In Proceedings of the 
2020 CHI Conference on Human Factors in Computing Systems, pp. 1-13. 2020. Link. 
 
[Supplemental] Wang, April Yi, Anant Mittal, Christopher Brooks, and Steve Oney. "How data 
scientists use computational notebooks for real-time collaboration." Proceedings of the ACM on 
Human-Computer Interaction 3, no. CSCW (2019): 1-30. Link. 
 
[Reference] Epperson, Will, April Yi Wang, Robert DeLine, and Steven M. Drucker. "Strategies for 
Reuse and Sharing among Data Scientists in Software Teams." (2022). Link. 
 
[Reference] Oney, Steve, Christopher Brooks, and Paul Resnick. "Creating guided code 
explanations with chat. codes." Proceedings of the ACM on Human-Computer Interaction 2, no. 
CSCW (2018): 1-20. 
 
[Reference] Adeli, Marjan, Nicholas Nelson, Souti Chattopadhyay, Hayden Coffey, Austin Henley, 
and Anita Sarma. "Supporting code comprehension via annotations: Right information at the 
right time and place." In 2020 IEEE Symposium on Visual Languages and Human-Centric 
Computing (VL/HCC), pp. 1-10. IEEE, 2020. 

Natural language as code 
[Required] Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded Copilot: How 
Programmers Interact with Code-Generating Models." arXiv preprint arXiv:2206.15000 (2022). 
Link. 
 
[Supplemental] Little, Greg, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser 
Kandogan. "Koala: capture, share, automate, personalize business processes on the web." In 
Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 943-946. 
2007. Link. 
 
[Supplemental] Weisz, Justin D., Michael Muller, Stephanie Houde, John Richards, Steven I. Ross, 
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. "Perfection not required? 
Human-AI partnerships in code translation." In 26th International Conference on Intelligent User 
Interfaces, pp. 402-412. 2021. Link. 
 
[Reference] Vaithilingam, Priyan, Tianyi Zhang, and Elena L. Glassman. "Expectation vs. 
Experience: Evaluating the Usability of Code Generation Tools Powered by Large Language 

https://dl.acm.org/doi/pdf/10.1145/3313831.3376740
https://dl.acm.org/doi/pdf/10.1145/3359141
https://willepperson.com/papers/reuse-sharing-DS-icse22.pdf
https://arxiv.org/pdf/2206.15000
https://dl.acm.org/doi/pdf/10.1145/1240624.1240767
https://dl.acm.org/doi/pdf/10.1145/3397481.3450656


 

Models." In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pp. 
1-7. 2022. Link. 
 
[Reference] Miller, Robert C., Victoria H. Chou, Michael Bernstein, Greg Little, Max Van Kleek, 
David Karger, and M. C. Schraefel. "Inky: a sloppy command line for the web with rich visual 
feedback." In Proceedings of the 21st annual ACM symposium on User interface software and 
technology, pp. 131-140. 2008. Link. 
 
[Reference] Little, Greg, and Robert C. Miller. "Translating keyword commands into executable 
code." In Proceedings of the 19th annual ACM symposium on User interface software and 
technology, pp. 135-144. 2006. Link. 

Further reading 
What follows is a small selection of readings that relate to the goal of producing beautiful, 
understandable programs that we did not have time to get to during this course. 

Verifiable documentation 
Mehrpour, Sahar, Thomas D. LaToza, and Hamed Sarvari. "RulePad: interactive authoring of 
checkable design rules." In Proceedings of the 28th ACM Joint Meeting on European Software 
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 
386-397. 2020. Link. 
 
Lee, Seonah, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang. "Automatic detection and 
update suggestion for outdated API names in documentation." IEEE Transactions on Software 
Engineering 47, no. 4 (2019): 653-675. Link. 

Documentation engineering 
Oman, Paul W. and Curtis R. Cook. “Typographic Style is More than Cosmetic.” Communications 
of the ACM 33.5 (1990), pp. 506–520. Link. 
 
Dagenais, Barthélémy, and Martin P. Robillard. "Creating and evolving developer documentation: 
understanding the decisions of open source contributors." In Proceedings of the eighteenth 
ACM SIGSOFT international symposium on Foundations of software engineering, pp. 127-136. 
2010. Link. 

Explorable explanations 
Lau, Sam, and Philip J. Guo. "Data Theater: A live programming environment for prototyping 
data-driven explorable explanations." In Workshop on Live Programming (LIVE). 2020. Link. 
 
Victor, Bret. "Explorable explanations." Bret Victor 10 (2011). Link. 

https://dl.acm.org/doi/pdf/10.1145/3491101.3519665
https://dl.acm.org/doi/pdf/10.1145/1449715.1449737
http://people.csail.mit.edu/glittle/Papers/Keyword%20Commands%20UIST%202006.pdf
https://dl.acm.org/doi/pdf/10.1145/3368089.3409751
https://ieeexplore.ieee.org/iel7/32/9405984/08651318.pdf
https://dl.acm.org/doi/pdf/10.1145/78607.78611
https://dl.acm.org/doi/pdf/10.1145/1882291.1882312
https://par.nsf.gov/servlets/purl/10210727
http://worrydream.com/ExplorableExplanations/

	Instructions 
	Readings 
	Unit 1: Inspiration 
	A dose of inspiration 
	A feast of demos and critiques 

	Unit 2: Literate programming 
	The present: Jupyter 
	The past: WEB 
	[Special event] Distinguished Lecturer: Sorin Lerner 
	The present: Tutorials 
	A feast of demos and critiques 
	Reviewing evidence of usability 

	Unit 3: Live programming 
	The past: SmallTalk 
	The present: Live coding demos 
	In-situ visualization 
	Additional readings on live programming 
	[Special event] Guest Lecturer: Ian Arawjo 
	A feast of demos and critiques 

	Unit 4: Design methods 
	Advice on designing programming languages, Part I 
	Advice on designing programming languages, Part II 
	Advice on designing tools 

	Unit 5: Evaluation methods 
	How to assess usability 
	How to assess program comprehension 

	Unit 6: Advanced live and literate programming techniques 
	Reviewing evidence of usability of live programming systems 
	Generating documentation 
	Flexible views and layouts (with Tudor Gîrba) 
	Proofs and proof engineering I 
	Proofs and proof engineering II 
	Notation comprehension aids 
	Holes are Errors TODOs (with David Moon) 
	Prototyping tools for data scientists (with Philip Guo) 
	Collaboration (with April Wang) 
	Natural language as code 

	Further reading 
	Verifiable documentation 
	Documentation engineering 
	Explorable explanations 



