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Problem Statement 
Building structural insight data about an application without changing application behavior 
requires being able to propagate data alongside application flow without explicitly passing it 
through user code. We call this context management. Conceptually how it needs to work is the 
same across all languages, it needs to flow in the same direction that application data and 
execution flows. 
 
How this is implemented across languages is quite different and many don’t include the 
capability at all. We often need to do it ourselves externally which may require significant 
modifications to the runtime or language environment to allow us to pass this data through the 
execution graph externally. 
 
We have created different solutions for different languages and in many cases provide only 
partial solutions with some less common cases left unresolved, for example most languages 
only propagate into calls but not back out, and some languages don’t propagate context over 
threads when work transitions between threads. 

Globals but synchronized to execution 
In a language completely void of asynchrony, context management can simply be stored in 
globals as there is no point at which execution will transition to something else which would 
invalidate that global state. When any level of async scheduling is added it becomes necessary 
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to capture and restore context around any barriers between where a continuation is queued and 
where the resolution then executes it. 
 
Context forms a graph of changes which follows the logical execution flow of the system. If the 
flow of the system is non-linear then it becomes necessary to reroute the edges of the context 
graph to follow the same paths of data and execution flow within the application. 

Layered rearrangement 
Asynchrony is generally not a single-tiered system. It’s useful to think of asynchrony as layers of 
execution rearrangement moving outward from the runtime core, through higher-level constructs 
in libraries, and often into user code. Languages in which asynchrony exists tend to treat 
functions or closures as values which can be stored and run by code at any time, so additional 
layers of execution rearrangement can occur in libraries or even in user code. 
 
For example, the JavaScript runtime has microtasks rearranging execution and those would link 
back to the point at which they are scheduled. A connection pooling library introduces an 
additional layer of execution rearrangement around when connections are acquired and 
released. App code could then be using async/await and especially Promise.all(...) in 
ways which rearrange execution of the application in interesting and user-facing ways. Flexibility 
is required to follow a context path which makes sense through all these layers. 
 
To flow data correctly through an application with many layers of execution rearrangement it is 
essential to have tools to be able to influence how context data flows at each level of execution. 
It’s likely pattern-specific tooling would be required around some of the lower-level systems like 
coroutine syntax such as fibers, generators, or async/await. 

Unidirectional context systems 
Some languages already have context systems of some variety which provide part of the 
solution for what observability products need. The typical design is that context systems flow 
values into calls and sometimes into async scheduled tasks. However it’s not typical for them to 
flow data out of calls. This can be thought of as implicit input arguments and implicit return 
values. Existing systems primarily cover the implicit input argument case but rarely cover the 
case for implicit return values. 
 
The need for the return path is essential when it comes to syntax-assisted async such as 
async/await, generators, or fibers as OpenTelemetry requires that the next task after execution 
merges back needs to include follows-from links to the task which occurred within the prior call. 
At present it is impossible in most languages to follow the OpenTelemetry spec for providing 
follows-from links with auto-instrumentation. 



Branching and merging 
Execution in an async application branches and merges at various points defined by the 
rearrangement of execution described above. The path in which context flows always needs to 
flow outward into calls, and this is what existing unidirectional context systems achieve, 
however it is also often needed to propagate back when branches of execution converge. These 
merge paths, which also generally correspond to returns, are more complex as there can often 
be cases where multiple branches are merging back and so it’s not a clear task of just 
propagating whatever value is held. 
 
Sometimes it requires additional logic on the part of the reader to decide from which path to 
read. But also, because context flow decisions need to be made continuously, as the execution 
graph resolves, those read decisions also often need to occur at the right time for the 
appropriate decision to be made. 
 
If you think of the execution of the application code as a graph, there are two paths worth 
considering, representing the user code and the internals behind calls made in user code. 
Following the internal path includes more detail, but that detail can obscure user intent in some 
cases such as with connection pools where acquiring a connection may appear as a 
continuation of the code which released the connection rather than the code which requested 
the connection. 
 
In cases such as these it might make sense to always follow the user code path rather than the 
internal path, and indeed it is suggested that the ideal path is to follow the most user-facing 
code path. However, it’s also worth considering that while it sometimes makes sense to reduce 
the graph to the user code path, it can be difficult without proper tools to return to the internal 
graph when the user code path has already been selected. Additionally, it can be a bit unclear 
where user code ends and internals begin with things like user-initiated asynchrony such as 
promise branching and merging tools as Promise.all(...) in Node.js. 
 
When the user code path is followed it will orphan any activity internal to the calls made from 
that user code. However the branch could flow the context normally up until the point where the 
other context would be restored, replacing what had propagated automatically through that 
branch. This does mean that with the right tools the original context before the change can be 
captured and restored or read from after the transition occurs. 

Multiple paths problem 
When dealing with graph branching and merging there’s often two paths which could be taken 
for propagation, a direct path and an internal path. Selecting the correct path depends on what 
level of granularity we want in the insight we gather. 
 
The following example represents the graph of calling fs.readFile(path, callback). 
Internally it makes several lower-level filesystem calls, represented by the dotted line, which 



may be relevant to capture. But by following the user path, represented by the solid line, it will 
orphan the sub-graph of the internal execution. 
 

 
 
There are two different points where path decision could apply: if applying before entering the 
internal code then that code would be run with an empty context, whereas if applying the path 
when the callback is reached the internal graph can actually continue from the context at the 
point the call begins and simply restore to the outer state at the point where the callback begins. 

Design 

Architectural Overview 
Context needs to be stored somewhere separate from the user code to allow systems to access 
the data in the future when it is needed. A user-friendly way to achieve this is with a container 
class where instance references can be used from anywhere as an indirect way to acquire an 



associated value. To allow different products to store different things and for different pieces of 
context data to change at different times in an efficient way it needs multi-tenancy and tools to 
control the context flow both globally and per-store. 
 
The model being proposed is to have a container class which represents a specific value with 
interfaces to get the current value from the container and to adjust the current value. Changing 
of values would be split into two forms: 

-​ Synchronous call windows which form a stack of current values and pop back 
-​ Async continuations which link back to a snapshot taken at the point the initial work was 

scheduled 

Windows 
A window is a block of synchronous execution which is in some way delimited to mark the start 
and end of that execution. The context manager can be given a value to propagate into any 
nested calls run within that window. At this level it is essentially like storing the value globally to 
be read in nested code from the global. It can also be interpreted as implicit call arguments 
passed into any nested call until the value changes. 
 
Asynchronous code would have a scheduling point within a call window where it would capture 
the current context value and store it to be restored when another window around the 
continuation of that async task is executed. 
 
The exact implementation of a window is left undefined; it could be any form of scoping 
mechanism, but should conform to the concept of being a synchronous sequence of logically 
grouped execution. In the case of Node.js this is implemented as the boundary of a function call. 
In other languages there may be other options such as RAII scopes. Each language should 
make their own clear definition of what their relevant windows of synchronous execution are. 
 
Some windows would be determined automatically by the runtime, such as a promise 
continuation having a window around the continuation function which restores the value 
propagated from the point where the task was scheduled. Additionally, new windows could be 
user-provided on a per-store basis either through the interfaces described below or through the 
use of those interfaces via integration with . Universal Diagnostics Channel RFC
 
In the following diagram, blue boxes represent call windows and green boxes represent 
continuation windows. The entry of the application is considered a continuation of the act of 
starting the application. This is a continuation and not a call window because there is no way at 
that point for a context to already be present unless provided external to the runtime, in which 
case it should be considered a continuation of the source of the application starting. For 
example, a parent process may start a sub-process and the entry of that sub-process would be 
considered a continuation of the parent process. 

https://docs.google.com/document/d/1DTZ2C5BKsoVRnU_ihyi93blF3cxXIbqqcIaSYurhBRk/edit?usp=sharing


 

Call Window 
Synchronous calls form a stack, and so context for sync calls also needs to form a stack. It’s 
useful to differentiate sync calls from continuations as async continuations have no immediate 
stack of their own but it may make sense for them to restore the stack as it was when the 
continuation was scheduled. 
 
There’s an additional differentiation between sync calls and async continuations though, if a 
sync call produces a span and then another sync call within it produces another span it should 
have an OpenTelemetry child-of relationship to the parent span. Whereas a sync call within a 
continuation should have a follows-from relationship. 

Continuation Window 
A continuation window occurs when an async task is scheduled and it returns to the application 
in some way to execute, possibly consuming a value of some sort. Typical examples are 
callbacks or promise continuations. 
 
When a continuation occurs it should restore the context value captured at the point where it 
was scheduled, but with a slight difference that if a sync call occurs within the continuation it 
should have a OpenTelemetry follows-from relationship to the parent stored in the context rather 
than a child-of relationship. For this reason it is useful to separate the concepts of call windows 
and continuation windows with at least some sort of marker indicating that the context value did 
not originate directly from the currently executing code. 

Propagation through asynchrony 
Synchronous windows are fairly straightforward as the stored value simply remains the same 
until the end of the window where it restores to the value it had before the window began, 
treating it like a stack. Where things get a little more complicated is with asynchronous 
programming. 



 
All async programming has some discrete indicator of the completion of execution of an async 
task, though that indicator may be deeper than is directly expressed. Typically this is a callback 
or a value container such as a Promise or Future. In some cases there are more complicated or 
repeatable windows of execution such as with Go channels where a send results in a 
continuation window of execution related to that send between where it completes the receive to 
where it begins the next receive, or the thread or goroutine using the channel ends. Some more 
advanced forms like Mutex or other low-level locks may be more challenging to express. 
 
Another source of asynchrony which is a common point of confusion are patterns layered over 
other async things. For example, Node.js has event emitters–they are not async themselves but 
become async through use by something else that is async. It is important to differentiate 
between things which are themselves async and things which inherit asynchrony when defining 
where context should be propagated. 
 
Generally speaking the boundaries we want to link automatically are around things which are 
themselves async. Linking other things can result in orphaned branches of execution and 
therefore orphaned sets of spans. This scenario is recoverable with the right tooling, so the 
default path taken is not too important, but for usability in typical cases this is the path we go for. 
Window Channel can also be used to suggest a context change rather than enforcing it. 

Selecting optimal execution graph paths 
It is important when execution branches and then converges that the most appropriate context 
value is selected at the point of convergence. Which path is most relevant could vary on a 
case-by-case basis, and in some cases all branches could have relevant data. For example, 
OpenTelemetry specifies that a span produced after a graph convergence should have 
follows-from links to all the contexts which were part of that convergence. This is particularly 
relevant in situations such as a Promise.all(...) converging any number of concurrent 
promise branches back to one point. 
 
Making the decision at the continuation point is what Node.js does and I suggest this is the 
more suitable place to apply that decision as we can make inner spans linked to the user code 
and add to the trace before escaping their context back to the user code context. We can also 
make the internal path accessible beyond the restore point by capturing the calling context 
before the restore, which we already need to do anyway to restore after completing the 
context-bound callback. 

Calling versus continuation context 
Most context systems conflate context state between where it is set and captured to propagate 
into continuations with where it restores context around continuations but it’s actually helpful to 
consider these windows separately. 
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JavaScript

Let’s consider OpenTelemetry for a moment–when running a sync call within another sync call it 
is considered a child-of relationship while running a call in a callback or other async continuation 
is considered a follows-from relationship. 
 
If you create a span and store it in the context and then within the sync execution of the window 
that context initially applies, another span is created, that span should be considered a child of 
the one currently stored. If a span is created directly in a continuation window from a task 
scheduled within that original call window then it should be considered a follows-from 
relationship to the span stored in the original call window. 
 
It is therefore useful to store the context data in two slightly different ways between the two 
windows of execution. The suggested way is to differentiate internally between “current” context 
and “inherited” context. Anywhere that a “current” context is unavailable, retrieving the value 
could fallback to the “inherited” context, but it should be possible to retrieve the “current” context 
explicitly without fallback to be able to identify when the window setting the context value is 
actively running. 
 
When propagating, the “current” context would be checked first and then, if absent, the 
“inherited” context would be used. You can also think of “current” context as being a stack on 
top of the “inherited” context at the root of whichever execution window the application is in at 
the time. At the top level of the application there would be an initial root context with no value. In 
this way a context stack can never be “empty” per-se, only that its root at any point may not 
contain a value, but still expresses a clear ownership through the execution graph of the 
application. 

Coroutines are internally synchronized 
In general cases, child-of describes a sync call within another sync call, but it can be more 
helpful to think of it as deterministically flowing execution within the parent in which it is called. 
This corresponds to a syntax which is growing in popularity: async/await. 
 
Each await is a child-of the “current” context when the async function began, while each await 
after the first is a follows-from of any context created within the previous. The reason for this is 
that each of the awaits within the function are essentially synchronous from the perspective of 
the function itself executing. An async function executes in a deterministic order. 
 
By constructing graphs of both child-of relationships and follows-from relationships it is possible 
to analyze the code in both internally linear and global, non-deterministic arrangements while 
presenting linear arrangements in a friendlier, more sync-like manner. 
 

async function process() { 
  while (true) { 
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    // Getting a task is a child-of process(). It's also likely receiving 
distributed 
    // tracing headers with the task to restore a context around its 
continuation of 
    // which the await completion is the logical beginning. 
    const task = await getTask() 
 
    // Processing of the task here is both a follows-from to getting the task 
but also 
    // is a child-of process() as it is, from the perspective of this function 
code, 
    // effectively a determinstic flow. If the exact same code was written 
synchronously 
    // with await keywords removed it would be considered child-of so it should 
also be 
    // considered as child-of here. 
    await processTask(task) 
  } 
} 

 
In the example above, if getTask() internally stores a new span in the context, it needs to be 
possible for it to flow out of the await merging execution back into process() and into the call 
to processTask(task) later. To retrieve this follows-from linkage we make use of the 
“inherited” context while otherwise we would use normal context value to retrieve child-of 
relationships. 

Interfaces & APIs 
Exact naming of these interfaces are less important than the patterns presented, but it’s all built 
around the container class concept. 

ContextVariable 
A ContextVariable from the user perspective behaves like a container which holds a value. 
That held value will change over time as provided windows and propagations swap out that 
internal value. 
 

// The ContextVariable type is a container for a context value. The value it 
represents 



// will change over time as the application switches between executing 
different parts 
// of the code. Within a request it could be used to change the value of the 
current span 
// Within the broader process another store could represent the current root 
span. 
// From user perspective it would seem that each store contains its own data 
and 
// propagates independently, however the ContextVariable is actually only a map 
key into 
// a non-multi-tenant ContextFrame map type. 
// 
// Node.js calls this AsyncLocalStorage, the name is less important than the 
pattern. 
class ContextVariable { 
  // Retreive the current value from the context variable container. As 
ContextVariable 
  // is just a map key into a ContextFrame, what it actually does it get the 
current 
  // ContextFrame and get the value from that. If current frame is not set, get 
from 
  // the inherited context frame. 
  get() { 
    if (ContextFrame.current.has(this)) { 
      return this.getFromActiveContext() 
    } 
    return this.getFromInheritedContext() 
  } 
 
  // Attempt to get a context value only from the active context. This will 
only get 
  // the value while the call window is active executing. This can be acquired 
to 
  // create child-of relationships. 
  getFromActiveContext() { 
    return ContextFrame.current.get(this) 
  } 
 
  // In some cases a static bind may have been applied which a specific store 
may want 
  // to break out of to get the context data from the internals path. To do so, 
the 
  // ContextFrame at the point a bind is run is captured allowing values from 
it to 



  // be accessed. This can be acquired to create follows-from relationships. 
  getFromInheritedContext() { 
    return ContextFrame.inheritedContext.get(this) 
  } 
 
  // Static bind captures the state of ALL context variables and returns a 
function 
  // which restores all those values before running the given function. 
  // The function should retain the same signature and behaviour. 
  //  
  // In most cases static bind should be used, for example with connection 
pools. 
  // In rare cases, a specific variable may want to skip over some internal 
flows, 
  // so instance-scoped bind is available for those cases. 
  static bind(fn) { 
    return ContextFrame.bind(fn) 
  } 
 
  // Instance bind to restore the current state of this context variable when 
the 
  // function is run. This is sometimes useful when the true calling path 
includes 
  // internals which may not be relevant. Generally static bind is more 
suitable. 
  // Instance bind is mainly for edge-cases where we want a simpler graph. 
  bind(fn) { 
    const value = this.get() 
    return function wrapped(...args) { 
      return this.run(value, fn.bind(this, ...args)) 
    } 
  } 
 
  // Set the value of the context variable for the provided window. This value 
will 
  // propagate into any nested execution, either sync or async, until run(...) 
is 
  // called again on this store within that nested execution or until the end 
of 
  // all branches of nested execution have been reached. 
  run(value, window, ...args) { 
    return ContextFrame.run(this, value, window, ...args) 
  } 
} 
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// Here a variable is created and then its value is set for a window with run() 
const variable = new ContextVariable() 
variable.run('foo', () => { 
  const value = variable.get() // 'foo' 
}) 

 
Some languages like C++ may have RAII concepts which can be used for more 
language-intuitive scoping. 
 

class ContextVariableScope; 
 
template <typename Type> 
class ContextVariable { 
  friend class ContextVariableScope; 
  public: 
 
  // Get the current value stored in the context variable 
  Type get(); 
   
  // Run the given scope function with the current value of the store set to 
the given 
  // value for the duration of the scope function execution. After the function 
completes 
  // it will restore the previous state of the context variable and return the 
value 
  // returned by the scope function. 
  //  
  // We may not want the run(...) function at all in languages with more 
suitable 
  // concepts to express the scope. 
  template <typename Return> 
  Return run(Type value, std::function<Return())> scope); 
 
  protected: 
  // Store a new value in the context variable and return the previous value. 
  Type exchange(Type value); 
} 
 
// Sets a context variable to a given value for a RAII scope 
template <typename Type> 



class ContextVariableScope { 
  public: 
  // When the scope constructs it exchanges the context variable value 
  ContextVariableScope(ContextVariable<Type>& variable, Type value) { 
    previous = variable.exchange(value); 
  } 
 
  // When the scope destructs it restores the prior context variable value 
  ~ContextVariableScope() { 
    variable.exchange(previous); 
  } 
 
  private: 
  Type previous; 
} 
 
// Create a context variable container 
auto variable = new ContextVariable(); 
{ 
  // Set the context variable value until the end of the block 
  ContextVariableScope scope(variable, "foo"); 
 
  variable.get() // "foo" 
} 

 
Other languages may have other more appropriate windowing concepts. The point here is not to 
prescribe a specific way to implement windows but only to define the requirement that there is a 
distinct window of sync execution for which a value can be provided to use as the propagation 
value which will be received by any nested execution, both synchronous and asynchronous 
continuations of tasks scheduled within that window. 
 
For any languages which opt for a function as a scoping mechanism, it is likely also desirable 
for the run function to pass arguments through to the given window function allowing for any 
general function call to be wrapped in a context window without introducing additional closures. 
Node.js does this presently with AsyncLocalStorage, so a call like func(1, 2, 3) can 
become store.run(context, func, 1, 2, 3). 

ContextFrame 
A ContextFrame is the actual storage mechanism behind ContextVariable instances and 
behaves a bit different from how the user-facing surface area of ContextVariable may 
suggest. Rather than each ContextVariable containing its associated value, it actually only 



JavaScript

functions as a map key into the current ContextFrame. The ContextVariable type is 
multi-tenant while only a single ContextFrame will be active at any given time. 
 
By making the ContextVariable a map key into a ContextFrame the most common 
interaction of propagating all the stores becomes a very low-cost reference swap. The other 
interactions of changing and reading the store become slightly more expensive due to the less 
direct interaction, but the trade-off is generally worth it when propagation happens significantly 
more frequently. 
 
A ContextFrame is also immutable. Any time a store would change a new ContextFrame is 
created which copies the values from the current frame, setting the changed values only in the 
constructor for the new frame. This is what allows context propagation to be nothing more than 
a pointer copy to the current frame. 
 
Note that the ContextFrame internal architecture is meant to be an optimization suggestion. 
Some languages which need to propagate over async barriers a lot less frequently may prefer 
more direct storage of values in ContextVariable instances. However, I believe in most 
cases that the frame-based approach has the best balance of performance and flexibility. 
 

// A context frame is a map of stores to their corresponding values. A map is 
immutable, 
// replacing itself any time it would be modified. 
class ContextFrame extends Map { 
  // There is always only a single context frame active 
  static current: ContextFrame 
 
  // Keep track of what context we were in before we transitioned to 
  // this one. This allows breaking out of context binds, if necessary. 
  // Stores a blank frame by default to represent the application root. 
  static inheritedContext: ContextFrame = new ContextFrame() 
 
  // A new ContextFrame is created ONLY when a ContextVariable would change. 
  // This allows the most common case of propagation of context data to only 
  // need to copy a single ContextFrame reference rather than needing to deal 
  // with the multi-tenancy or copy the state of all stores on every 
propagation. 
  static run(store, value, window) { 
    return this.runAll([[store, value]], window) 
  } 
 
  // Window Channel integration may need to update many bound stores at once. 



  // Rather than producing a new frame for each change we can bulk-apply 
changes 
  // with only one new ContextFrame created. 
  static runAll(pairs, window) { 
    const frame = new ContextFrame(pairs) 
    return frame.run(window) 
  } 
 
  // Captures the current frame and wraps the given function to re-enter the 
frame 
  // whenever the function is called. This is how propagation happens 
internally. 
  // Likely languages/runtimes will have their own internal way to do this more 
  // optimally, but this is essentially all propagation needs to be--storing 
the 
  // pointer to the frame and applying it later, which is what run(...) does 
  // around a function. 
  static bind(fn) { 
    const frame = ContextFrame.current 
    return (...args) => frame.inherit(fn, ...args) 
  } 
 
  // When a new ContextFrame is constructed it copies all entries from the 
current 
  // ContextFrame into the new frame, then it sets any values which have 
changed. 
  constructor(changes) { 
    super(ContextFrame.current) 
    for (let [store, value] of changes) { 
      this.set(store, value) 
    } 
  } 
 
  // When the context frame runs, it swaps itself in as the current frame and 
then 
  // restores the prior frame after running the scope. This produces the 
synchronous 
  // call window stack behaviour. 
  run(window, ...args) { 
    // Swap to this frame as the active frame. 
    const priorContext = ContextFrame.current 
    ContextFrame.current = this 
    try { 
      return window(...args) 
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    } finally { 
      // After the given scope function ends, restore the prior context frame. 
      ContextFrame.current = priorContext 
    } 
  } 
 
  // When a continuation window runs the context frame should be inherited. 
  // This sets this context frame as the inherited frame to differentiate from 
  // actively running context windows so child-of and follows-from 
relationships 
  // can be identified. It functions something like a stack root so at no point 
  // should the context ever have no frame at all. 
  inherit(window, ...args) { 
    // Set this frame as the inherited frame. 
    ContextFrame.inheritedContext = this 
    try { 
      return window(...args) 
    } finally { 
      // After the given scope function ends, clear inherited context frame. 
      ContextFrame.inheritedContext = undefined 
    } 
  } 
} 

 
Similar to ContextVariable, some languages will likely prefer different patterns from function 
scopes for managing the current ContextFrame value. For example, a RAII scope for C++ 
might look like this: 
 

// Activate a context frame for a RAII scope 
template <typename Type> 
class ContextFrameScope { 
  public: 
  // When the scope constructs it exchanges the context frame 
  ContextFrameScope(ContextFrame<Type>* frame) { 
    previous = ContextFrame.current; 
    ContextFrame.current = frame; 
  } 
 
  // When the scope destructs it restores the prior context frame 
  ~ContextFrameScope() { 



    ContextFrame.current = previous; 
  } 
 
  private: 
  ContextFrame<Type>* previous; 
} 
 
// Create a context frame for a context variable change. 
//  
// Any time the user or runtime wants to capture the current state of every 
context 
// variable they can simply store ContextFrame.current and restore it later 
with 
// ContextFrameScope. 
auto variable = new ContextVariable(); 
auto frame = new ContextFrame(variable, "foo"); 
 
callAfterTimeout([frame]() { 
  // Set the context frame until the end of the block 
  ContextFrameScope scope(frame); 
 
  variable.get() // "foo" 
}, 1000); 

Deployment 
Ideally this context pattern should be implemented as part of the languages or runtimes. We will 
likely need some languages to maintain it separately due to the time and challenge it will take to 
contribute upstream and get versions with the feature adopted by users. We should aim 
long-term at language and runtime adoption eventually though as implementation at that level 
can have much tighter integration and therefore much better performance potential. 

Scalability 
The key points which need business logic are: when a variable is changed, when a variable is 
extracted, and when a value should propagate. In most cases propagation will happen many, 
many times more frequently (1000x+) than extraction which is itself typically more than 
changing. 
 
If the storage model follows the AsyncContextFrame pattern then the most frequent action of 
propagation should have very little cost as it only needs a reference copy. Extraction is also 
fairly low-cost as it’s only a map read. 
 



Only changing becomes more costly due to needing to do the map clone, but any alternative 
which allows multi-tenancy also requires a map clone at one of these levels. 

Reliability 
With separate store instances which can run and bind scopes separately the flow can follow a 
consistent default and additional paths through the execution graph can be drawn on a 
case-by-case basis. This allows enough control that any issues in context propagation can 
generally be worked around. 

Security 
By using a ContextVariable instance as a map key into a ContextFrame, associated data 
is only accessible if the store is accessible, so access can be secured effectively by limiting 
access to the ContextVariable instance. As long as ContextFrame is not exposed, the 
data it contains can not be retrieved. This prevents different projects from accidentally using or 
altering each other's data and causing data leaks. 

Testing 
Testing is fairly straightforward for the most part. Changing of the ContextVariable value 
needs checks before and after each transition to verify the correct change occurred and at the 
correct timing. There would be some more complex tests required around any automatic 
propagation flows we have the languages or runtimes make. For example, Node.js propagates 
into the callback or Promise continuation of any async task. This requires some more 
complicated async programming, but most propagation testing should be straightforward. 

Key Milestones 
The first step would be just providing the ContextVariable types in isolation. From there we 
can begin integrating that with any needed automatic propagation points. 

Success Metrics 
The core purpose of this RFC is to unify on a pattern and hopefully naming conventions, as 
much as possible. So the success criteria would be for a developer to be able to work with any 
of our supported languages and be able to propagate their context data without needing to learn 
new or significantly different mechanisms for doing this. 



Open Questions 
The proposal as it is presently is predicated on the idea that there is a specifically scoped 
window of execution for which we want propagation to occur. This may not be the case with 
some of the more exotic patterns used in some languages. We could alternatively consider only 
the transition point into a context if we ensure that all execution in the language will always 
adjust the scope so a transition can’t leak into unrelated execution. For example transitioning to 
a new context within a function call might persist after the function completes and some other 
execution begins. 

Alternative options 

AsyncLocalStorage 
Node.js at present includes an interface called AsyncLocalStorage which mostly matches the 
behavior described here, with a few omissions I would like to deal with. As it is constructed 
presently, it depends on some relatively expensive internal APIs and lacks much of the 
structural optimization described here along with some features such as calling context retrieval 
to build follows-from graphs and differentiation between current and inherited context. 

AsyncContext 
TC39 is preparing a proposal for context management in the JavaScript language. The present 
design has many open questions remaining about what is the most “correct” path to take as the 
current design does not allow supporting multiple paths. It also lacks the ability to control 
propagation at a per-store level. 
 

https://nodejs.org/api/async_context.html#class-asynclocalstorage
https://github.com/tc39/proposal-async-context
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