

[Public] Flink Delta Source for Flink Steam API

History

Change Description Author Reviewer Date

Draft 1 initial Version Krzysztof Chmielewski Tathagata Das Dec 20th 2021

Delta Partition
Handling

Krzysztof Chmielewski Tathagata Das Dec 31th 2021

Initial Table read in
batches (Design
Decision Matrix)

Krzysztof Chmielewski Tathagata Das​
Scott Sandre

Jan 3rd 2022

Monitoring of Delta
Table Changes

Krzysztof Chmielewski Tathagata Das​
Scott Sandre

Jan 17th 2022

Added Appendix A:
“Flink Exception
Handling”

Krzysztof Chmielewski Tathagata Das​
Scott Sandre

Jan 17th 2022

Added new section
“Performance
Optimizations”

Krzysztof Chmielewski Tathagata Das​
Scott Sandre

Jan 17th 2022

Added Connector
Options

Krzysztof Chmielewski Tathagata Das
Scott Sandre

Jan 31st 2022

History

Motivation

Requirements
Out-of-scope

Proposal sketch
OSS Repo and Maven Central
Main Assumptions
Unified Source Interface
Existing File Source Implementation

Source Checkpointing
Sequence Diagram

SplitEnumerator Creation

SourceReader Creation
Source Start
Source Reader

Flink Delta Source
Reading the initial data
Monitoring of Delta Table Changes

Overview
Handling Updates and Deletes

Partitions
DeltaSourceSplit
Checkpointing

Reader
Split Enumerator

Decision Matrix
Design Decision 1 - Using classes from Flink’s codebase.

Option 1 - Reimplement logic using only needed code from FileSource (Preferred)
Option 2- Reuse existing code 1 to 1.

Design Decision 2 - Manage changes during Work Discovery
Option 1 - using existing DeltaLog API (Preferred)
Option 2a - enhance existing DeltaLog API
Option 2b - enhance existing DeltaLog API

Design Decision 3 - How to handle RemoveFile in VersionLog’s Actions List in case of
Continuous mode

Option 1 - Throw an exception (Preferred)
Option 2 - Log an error and switch into idle mode.

Design Decision 4 - Reading initial data from DeltaTable
Option 2 - Read data in chunks (Preferred but currently not supported by Delta API)
Options to solve order guarantee for Delta scan Interator:

Option 2a - Enhance Delta Standalone
Option 2b - Implement sorting algorithm on the Connector side.

Performance Optimizations
Reading Initial data in chunks

Possible Solution
Optimizing in PartitionFieldExtractor

Possible Solution 1 - Cache
Possible Solution 2 - Contextualization (PREFERED)

Appendix A - Flink Exception Handling

Appendix B - Creating DeltaSource instance

Bounded Mode
Bounded Mode with Partitions
Continuous Mode
Defining Source Additional Options

Appendix C - Configuration Options
Public Configuration Options
Non Public Configuration Options
Hardcoded parameters
The Impact of updateCheckIntervalMillis Option

Motivation
After successful development of Delta Standalone Reader the next step is to build upon it and
implement independent connectors.

Apache Flink with its constantly growing popularity and community as a data processing
framework becomes one of the most natural choices to start with. Additionally it will provide a solid
underlining that Delta Lake is perfectly well suited for both batch and streaming cases.

Requirements
MUST:

●​ Provide independent module in Delta Lake Connectors repository containing Apache Flink
Source with exposed Java API for Apache Flink Delta Source (FDS),

●​ Users can use FDS to create Flink’s DataStreams API sources
○​ Both batch and streaming cases should be supported

●​ Users can use FDS to create Flink’s Table API sources
○​ When having already implemented Flink’s DeltaSource which will allow one to

create sources for DataStreams, then additional classes need to be provided to be
interoperable with Table API.

●​ Flink pipeline can provide end-to-end exactly-once guarantees
○​ checkpoint all processed files to avoid reprocessing them in case of failover
○​ checkpoint all created splits (unassigned and assigned to the readers)

●​ In Batch mode, the entire Delta Table snapshot is read and the connector ignores any
further changes/updates for this table.

●​ In Batch mode, time travel is supported, meaning that the connector can read a single

https://github.com/delta-io/connectors/wiki/Delta-Standalone-Reader
https://github.com/delta-io/connectors

historical Delta Table Version.
●​ In Streaming mode, the whole Delta Table snapshot is read and then incrementally added

files.
●​ In the Streaming mode, the connector will not handle input that is not an append and by

default will throw an exception if any modifications occur on the table being used as a
source.

●​ In the Streaming mode, the connector will provide a functionality of reading historical
changes starting from specified version or timestamp without processing the entire table.

●​ In the Streaming mode, the connector will not support time travel, only reading historical
changes will be supported.

●​ Flink version - 1.13

SHOULD:
●​ N/A

COULD:

●​ N/A

Out-of-scope
●​ Flink TableAPI and Flink SQL support. Those will be captured in a dedicated design

document.

Proposal sketch

OSS Repo and Maven Central
We will implement and add code to the current delta-io/connectors repository in the
flink-connector module. This module will contain code for both, Flink Delta Source and Sink
connectors and will produce one Jar artifact

Main Assumptions
The Delta Flink Source Connector will be builded based on Flink's new Unified Source Interface API
Apache Flink starting from version 1.12 released a new API called “A Unified Source Interface” for
building source connectors. In the future, this new API will fully replace the previous API based on
the RichSourceFunction class and SourceFunction interface. ​
​
Currently the Flink community rewrites bundled Flink connectors to the new API. In Flink 1.14
connectors like Kafka, Hive, File or Pulsar are already based on the new API.​
​
Details about The Flink Improvement Proposal document (FLIP-27) can be found here -
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface​

https://github.com/delta-io/connectors
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface

​
One of the benefits of the new API is that Sources implementing FLIP-27 can be very easily used to
build a connector for TableApi (SQL). However those can be used only as Scan Sources and not
LookupSources. Hence for Flink Lookup Joins, it is needed to implement a new Table Source based
on LookupTableSource interface. This is not a problem in our case since Delta is not meant to fine
grained look up workloads. ​
​
Using Parquet Files as a data source for Flink pipeline is already possible through Flink’s File
Source, hence Flink’s FileSource would be a blueprint for building Flink DeltaSource.

Delta Source will participate with Flink checkpoint mechanism described in Flink documentation
under:

1.​ https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/
checkpointing/

2.​ https://nightlies.apache.org/flink/flink-docs-master/docs/learn-flink/fault_tolerance/

Every reference to “checkpoint” in this design dock means Flink’ state checkpoint.

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/checkpointing/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/checkpointing/
https://nightlies.apache.org/flink/flink-docs-master/docs/learn-flink/fault_tolerance/

Unified Source Interface

A Data Source has four core components:

●​ Splits,
●​ SourceReader,
●​ SplitEnumerator,
●​ Source

A Split represents a unit of work that is consumed by a source connector. Split can represent a
variety of things. It can be an entire file, file block or for example Kafka partition, Splits are
granularity by which the source distributes the work and parallelizes the data reading.

The SourceReader requests Splits and processes them for example by reading the file or log
partition represented by the Split. The SourceReader runs in parallel on the Task Manager in the
SourceOperators and produces the parallel stream of events/records.

The SplitEnumerator generates the Splits and assigns them to the SourceReaders. It runs as a single
instance on the Job Manager and is responsible for maintaining the backlog of pending Splits and
assigning them to the readers in a balanced manner.

The Source class is an API entry point that ties the above three components together.

​
​

Existing File Source Implementation
This section describes existing Flink FileSource to provide the point of reference and better
understanding about how Flink handles File sources. In this chapter there are no references to
Delta Lake or Delta Table API. Those can be found in the next section - “Flink Delta Source”.

Flink already supports using Parquet files as a data source for pipeline. It is done through Flink’s
File Source where Parquet is only one of the many file formats that this Source can read. ​
​
The FileSource is able to read files in blocks, where the block is defined by the underlying file
system. For Example for local file system, meaning for local file system of the machine where Flink’s
JVM runs, files will not be split into the blocks. However files sourced from HDFS may be split.
There is also an additional condition that checks whether file format supports splitting, for
example split will not be done for gz files. For DeltaSource we don't need this additional check since
we will be reading only from Parquet files.
​
File source can work in one of two modes, Bounded and in Continuous. The bounded mode reads
data from the file and finishes execution. It does not monitor for any data updates during that time.
In the continuous mode on the other hand the Source’s monitor thread periodically checks whether
there is any new file added to the monitored folder.
​
The SourceSplit implementation for FileSource defines the region of the file represented by the
split. Splits can easily represent the whole file as well.

The split may furthermore have a "reader position", which is the checkpointed position from a
reader previously reading this split. This position is typically null when the split is assigned from the
enumerator to the readers, and it has a non-null value when the readers checkpoint their state in a
file source split.

Source Checkpointing
Source state checkpointing is implemented based on Flink’s checkpoint mechanism.
Flink periodically takes persistent snapshots of all the state in every operator and copies it as state
snapshots somewhere more durable, such as a distributed file system. In the event of the failure,
Flink can restore the complete state of the application and resume processing as though nothing
had gone wrong.

Details about Flink checkpoint mechanism can be found here -
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/check
pointing/ ​

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/checkpointing/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/checkpointing/

The checkpointing for FileSource is done in two places, on the Job Manager Node in
SplitEnumerator and on the Task Manager Node inside SourceReader.

On Job Manager SplitEnumerator checkpoints all unassigned Source Splits and in case of
Continuous mode, a list of already processed paths. In the Continuous mode, where FileSource
periodically checks the monitored folder we need to know which files were already used for split
creation.

On each Task Manager Node, each SourceReader checkpoints only SourceSplits assigned to it.

Details about checkpointing for Delta Source Connector can be found in the Flink Delta Source >
Checkpointing section.

Sequence Diagram

SplitEnumerator Creation​

During this phase, SplitEnumerator creates all splits based on configuration paths.​
In case of recovery from a checkpoint, it also recovers old, unassigned splits.​
If Source is running in Continuous mode, the monitor thread is also started here.

SourceReader Creation
The number of source readers created by Flink is dictated by the parallelism level of source or
entire job.​
Each SourceReader is created by a separate thread.

Source Start
During this phase newly created SourceReaders (each on its own thread) are sending Split
Requests through Flink Core to SplitEnumerator in order to manifest their readiness to process
new data. ​
SplitEnumerator after receiving those requests, assigns new splits to the readers by calling
sourceReaderContext::assignSplit method.​
​
After that split is assigned to the SourceReader by calling SourceReader::addSplits(List<Split>)
method by Flink Core. This last step was not presented on this diagram.

Source Reader
Reading from Source Reader in case there are non “empty” splits available. This operation is
executed for every SourceReader on its own dedicated Source thread.

A Flink task keeps calling pollNext(ReaderOutput) in a loop to poll records from the SourceReader.
The return value of the pollNext(ReaderOutput) method, which is an instance of InputStatus type,
indicates the status of the source reader.

MORE_AVAILABLE - The SourceReader has more records available immediately.
NOTHING_AVAILABLE - The SourceReader does not have more records available at this point, but
may have more records in the future.
END_OF_INPUT - The SourceReader has exhausted all the records and reached the end of data.
This means the SourceReader can be closed.​
​
The exact implementation details where each Status is returned can be found in Flink’s
SourceReaderBase class which is a base class for many Source Readers for Source connectors like
File Source, Kafka Source, Hive Source etc.​
​
The actual code can be found under -
https://github.com/apache/flink/blob/74a43511c714b3cc216f86500ab6bd3f5d1b49ad/flink-connec
tors/flink-connector-base/src/main/java/org/apache/flink/connector/base/source/reader/Source
ReaderBase.java#L280

The InputStatus values are used for managing Flink’s internal task lifecycle. End user or Source
implementation do not have to handle those statuses. However, usually with returning
NOTHING_AVAILABLE status, the reader will also notify SplitSourceEnumerator that it is available
for the next splits. It does it by calling SourceReaderContext.sendSplitRequest() method which will
be propagated to SplitEnumerator::handleSplitRequest method.​

Flink Delta Source

Flink Delta Source will reuse existing File Source components whenever it is suitable without
degrading code quality and benefit to cost ratio will be sufficient. ​
​
For example, low level classes like:

●​ FileSourceReader
●​ FileSplit
●​ FileSplitAssigner
●​ FileSourceSplitSerializer

Will be reused.

These classes handle processing of individual Parquet files along with providing a serialization
facility needed for checkpoint mechanisms on the reader side. They are handling splitting files into
individual data blocks that can be read in parallel. ​

https://github.com/apache/flink/blob/74a43511c714b3cc216f86500ab6bd3f5d1b49ad/flink-connectors/flink-connector-base/src/main/java/org/apache/flink/connector/base/source/reader/SourceReaderBase.java#L280
https://github.com/apache/flink/blob/74a43511c714b3cc216f86500ab6bd3f5d1b49ad/flink-connectors/flink-connector-base/src/main/java/org/apache/flink/connector/base/source/reader/SourceReaderBase.java#L280
https://github.com/apache/flink/blob/74a43511c714b3cc216f86500ab6bd3f5d1b49ad/flink-connectors/flink-connector-base/src/main/java/org/apache/flink/connector/base/source/reader/SourceReaderBase.java#L280

​
On the other side, Delta Source Connector will have to implement its own:

●​ DeltaSource - Implementation of Source interface to “orchestrate” new connector.
●​ FileEumerators for Bounded and Streaming modes.
●​ Enumerator's state object wrapping File Split with Delta Log informations like, list of

changes or list of already processed file paths.
●​ Serialization for Enumerator’s state data.

These classes provide orchestration and what is called “a work discovery” for Source connector. ​
They will leverage DeltaLog features. ​
​
Work Discovery is a term used in FLIP-27 to describe all necessary work needed to determine what
data should be read both in bounded and continuous mode. An example could be a detection of a
DeltaLog table data appended in a continuous source.

Reading the initial data
During initial Flink’s job initialization, if there is no checkpoint to recover from, the logic to initialize
splits from Delta Table will be the same for Bounded and Continuous modes.​
​
The logic can be expressed with below code:

DeltaLog deltaLog = DeltaLog.forTable(new Configuration(),

"file:///path/to/table");

Snapshot snapshot = deltaLog.snapshot();

long startVersion = snapshot.getVersion();

List<AddFile> allFiles = snapshot.getAllFiles();

Collection<FileSourceSplit> createSplits(allFiles);

The Flink Delta Source Connector ideally should read data in chunks since we can have millions of
files per Table. However, currently DeltaStandalone does not provide an API that will guarantee the
Iteration order among returned AddFile iterators. Therefore, as for the first development iteration
we will read the entire data at once.

Monitoring of Delta Table Changes

Overview
After processing the initial data, the connector will periodically check (configurable interval value)
whether there are any new versions for the monitored Delta Table. If there are new versions,​
connector will then process all new AddFile actions and will ignore other actions such as Commit
Metadata, ProtocolInfo etc.​
​
The algorithm for Delta Table Work discovery is presented in code snippet below:

//recreating deltaLog for monitored table

DeltaLog deltaLog = DeltaLog.forTable(new Configuration(), "file:///path/to/table");​

//list of files for which we already created a split.​
List<String> alreadyProcessedFiles = SourceEnumerator::getAlreadyProcessedFiles();

long highestSeenVersion = currentVersion; //Current version will be checkpointed

Iterator<VersionLog> changes = deltaLog.getChanges(currentVersion, true);

while (changes.hasNext()) {

​ VersionLog versionLog = changes.next();

​ long version = versionLog.getVersion(); //get version for this Changes

 // track the highest version number for future use

​ if (highestSeenVersion < version) {

​ ​ highestSeenVersion = version;

​ }

 // create splits only for new versions

​ if (version > currentVersion) {

​ ​ FileSourceSplit newSplits = buildSplitsForNewFiles(versionLog);

​ ​ alreadyProcessedFiles.addAll(extractPaths(newSplits));

​ }

}

//update currentVersion so we will get changes starting from new value next time

currentVersion = highestSeenVersion;

Split creation is done per VersionLog element. It means that we will first check all actions for a
given version before assigning any splits from this version to the Readers. This protects the
connector from emitting any “outdated” data from Delta Table.

Handling Updates and Deletes
In case of RemoveFile action, the connector will do an additional check for the flag “dataChange”. If
this flag is set to true, it would mean that not only appending changes were applied on this table.​
In that case, the connector will stop further processing by throwing an Exception. For details
about Flink exception handling please see Appendix A.​
​
The RemoveFile actions can be ignored if the “RemoveFile ::dataChange” flag is set to false, and can
be ignored. In that case no exception should be thrown. ​
​
The RemoveFile action with “RemoveFile ::dataChange” flag set to true will be ignored when user
specifies one of two connector options:

●​ ignoreDeletes - if “true” and a particular version had only Deletes (no other actions) then do
not throw an exception on RemoveFile regardless of the “RemoveFile ::dataChange” flag.

●​ ignoreChanges - if “true” and a particular version had a combination of deletes and other
actions, then do not throw an exception on RemoveFile regardless of the “RemoveFile
::dataChange” flag.

Generally speaking, the Action can be processed in one of three ways:

●​ Normal processing, for example read data described by AddFile.
●​ Ignore Action - do nothing and continue reading.
●​ Throw an Exception.

The pseudocode covering this part would look as follows:

boolean ignoreChanges = sourceOptions.getValue(IGNORE_CHANGES);

boolean ignoreDeletes = ignoreChanges || sourceOptions.getValue(IGNORE_DELETES);

if (seenRemovedFile) {

​ if (seenFileAdd && !ignoreChanges) {

​ ​ DeltaExceptions.deltaSourceIgnoreChangesError(version);

​ } else if (!seenFileAdd && !ignoreDeletes) {

​ ​ DeltaExceptions.deltaSourceIgnoreDeleteError(version);

​ }

}

boolean seenFileAdd is true when version had at least one AddFileAction with dataChange

flag set to true

boolean seenRemovedFile is true when version had at least one RemoveFileAction with

dataChange flag set to true;

Partitions
Delta’s Protocol specifies that partition column’s values have to be added to produced rows,
and the actual partition values for a file must be read from the transaction log
(https://github.com/delta-io/delta/blob/master/PROTOCOL.md#data-files).

Delta’s AddFile Action will contain a map <String, String> where each entry represents a partition
column name and its value. The value of that column must always be taken from AddFile partition
information and not from the actual parquet row.

Flink API already supports such a scenario and can be reused for Delta Partition use cases. Flink’s
ParquetColumnarRowInputFormat class provides an API to define “user defined logic” which will
compute the value for each partition column. ​
It is done via functional interface:

PartitionFieldExtractor<SplitT>
::extract(SplitT split, String fieldName, LogicalType fieldType)​
​
Where “SplitT” is a generic type and must match the split type used in Source connector definition.​
​
The partition column and its type has to be defined in a row format schema. This must be known
upfront because Flinks has to create appropriate Serializers and Deserializes for every row column. ​
This is done at a very early stage of Source creation.

The Partition column-value map will be passed to PartitionFileExtractor through DeltaSource Split
implementation. The same approach for partitions was used for HiveSource in Flink’s bundled
connector.

DeltaSourceSplit
Due to Partition handling use cases, where information about partition value is kept in
AddFile::partitionValues map we need to extend Flink's FileSourceSplit implementation by adding
map with partitionValues. The class that implements this is named DeltaSourceSplit.

Checkpointing
Similar to File Source, DeltaSource will also handle checkpoints on Reader and Enumerator sides. ​

Reader
Reader checkpoints all its assigned Splits. Because we need to extend FileSourceSplit (partition
use case), we need to provide a new (De)Serializer for the DeltaSourceSplit class -
DeltaSourceSplitSerializer.

https://github.com/delta-io/delta/blob/master/PROTOCOL.md#data-files

While checkpointing DeltaSourceSplit on a reader side we will checkpoint:

●​ map of partition values - field added in DeltaSourceSplit,
●​ splitId - comes from FileSourceSplit,
●​ file path for which this split is based on - comes from FileSourceSplit,
●​ position of first byte in the file to process - comes from FileSourceSplit,
●​ Length, which is the number of bytes in the file to process - comes from FileSourceSpit,
●​ number of bytes to process - comes from FileSourceSplit,
●​ readerPosition - comes from FileSourceSplit.

Detailed explanation for each field and entire FileSourceSplit class can be found in Flink Javadoc
https://github.com/apache/flink/blob/master/flink-connectors/flink-connector-files/src/main/jav
a/org/apache/flink/connector/file/src/FileSourceSplit.java
​
The DeltaSourceSplitSerializer will reuse Flink’s FileSourceSplitSerializer for common fields.​

Reader’s checkpoint is done through Flink Coreby calling SourceReader::snapshotState method
and serializing its result.

​
Split Enumerator
Split Enumerator checkpoints its state on a Task Manager node.

Information that is checkpointed by Split Enumerator contains all currently unassigned splits plus
information from DeltaLog that is needed to resume work discovery in continuous mode and path
for Delta Table since we need to recreate DeltaLog instance after recovery from checkpoint.​
​
Recovering from checkpoint in the Continuous mode will always require refreshing the monitored
Delta Table and creating new splits based on received changes.
​
​

​

https://github.com/apache/flink/blob/master/flink-connectors/flink-connector-files/src/main/java/org/apache/flink/connector/file/src/FileSourceSplit.java
https://github.com/apache/flink/blob/master/flink-connectors/flink-connector-files/src/main/java/org/apache/flink/connector/file/src/FileSourceSplit.java

Decision Matrix

Design Decision 1 - Using classes from Flink’s codebase.
Delta Flink Source will be implemented using Unified Source Interface API.​
There is a possibility to reuse already existing classes from File Source connector.​
Problems like reading the Parquet format files, creating file blocks, Split management and
checkpointing are already solved in that implementation. ​

Design assumes reusing FileSourceReader and FileSourceSplit classes along with FileSourceSplit
serializer. Those classes seem to fit our use case without any issues.​

However on the Enumerator side, things are a little bit more complex and they are boiled down to
FileEnumerator implementation, whose job is to create SourceSplits based on given configuration.
​
Problems with existing code for FileEnumerator:

1.​ Inheritance is used heavily, where the good practice is always to favor composition over
inheritance.

2.​ Switching between super and child class with contradictory names during file processing.​
An example for this would be BlockSplittingRecursiveEnumerator and its super type
NonSplittingRecursiveEnumerator, where child class overrides only one method

3.​ Existing implementations contains checks and work pattern that is not needed in our case:
a.​ Checks if the file is splittable - it will always be true in case of Parquet files.
b.​ Expecting multiple source folders rather than one per source.
c.​ Handling nested folders with Table directory.
d.​ Filter unwanted files (since current logic works on a folder level not file level).

Option 1 - Reimplement logic using only needed code from FileSource (Preferred)
Implement Delta-specific implementation for creating SourceSplits. This will allow us to avoid all
problems described in point 2 and 3. The “code duplication” with Flink’s classes will remain on a low
level since the existing implementation of NonSplittingRecursiveEnumerator has around 150 lines of
code. Additionally the effort needed to implement Delta’s version is small.

Pros:

●​ No dead code, unused conditions etc.
●​ Api and interfaces tailored to match our needs

●​ Easy to integrate smaller logical blocks rather than entire classes.

Cons:

●​ Had to duplicate some code from Flink base code

Option 2- Reuse existing code 1 to 1.
There will be pretty much none or very little development needed to achieve this option, however
we will drag along all things described in above points to Delta Source Connector.

Pros:

●​ Very little work needed

Cons:

●​ Dead Code since not use cases from original code are relevant to Delta contex
●​ API not ideally matched to Delta Context
●​ Design chooses that makes code more coupled.

Design Decision 2 - Manage changes during Work Discovery
In Continuous mode, during normal execution or after recovering from checkpoint/savepoint most
likely there will be a need to include changes that were appended to the monitored Delta Table. We
are limiting the scope of supported changes to Appends, which means that only new data was
added and there were no updates or deletes. ​
​
Delta Source has to keep in its state the last processed/discovered version number. This will be
used to get new changes using Delta API.

Option 1 - using existing DeltaLog API (Preferred)
In this option we simply get all changes from previously observed highest version value and create
new splits based on AddAction items for every VersionLog element from Iterator<VersionLog>​
​
We need to track the version numbers along the process to find the highest one.

//recreating deltaLog for monitored table

DeltaLog deltaLog = DeltaLog.forTable(new Configuration(), "file:///path/to/table");​

//list of files for which we already created a split.​
List<String> alreadyProcessedFiles = SourceEnumerator::getAlreadyProcessedFiles();

long highestSeenVersion = currentVersion; //Current version will be checkpointed

Iterator<VersionLog> changes = deltaLog.getChanges(currentVersion, true);

while (changes.hasNext()) {

​ VersionLog versionLog = changes.next();

​ long version = versionLog.getVersion(); //get version for this Changes

 // track the highest version number for future use

​ if (highestSeenVersion < version) {

​ ​ highestSeenVersion = version;

​ }

 // create splits only for new versions

​ if (version > currentVersion) {

​ ​ FileSourceSplit newSplits = buildSplitsForNewFiles(versionLog);

​ ​ alreadyProcessedFiles.addAll(extractPaths(newSplits));

​ }

}

//update currentVersion so we will get changes starting from new value next time

currentVersion = highestSeenVersion;

Pros:

●​ Supported by Delta Standalone API

Cons:

●​ API users have to find out what is the highest version in given changes.
●​ There is no possibility to get changes from range of versions

Option 2a - enhance existing DeltaLog API

** This option doesn’t improve correctness or performance. It suggests a potentially less
error-prone API for the Delta Standalone :: DeltaLog class **

To detect table changes we need to keep track of the last processed table version.​
In option 1 we check each AddFile for version number and check if the version is higher then the one
we previously recorded.​

We need to track the version number manually because in scenario:

oldversion = 5;​
newestVersion = deltaLog.update().getVersion() → 10;

Iterator<VersionLog> changes = deltaLog.getChanges(oldversion , true);

​

The “changes” iterator can have changes from version higher than 10. Since there could have been
changes applied to Delta Table in a short time between calling the deltaLog.update() and
deltaLog.getChanges. ​
​
However, if we could know what is the newest table’s version without needing to check every
VersionLog record and be able to get Delta Table’s changes bound to this upper version, the highest
version check for every record would not be needed anymore.​

The new proposed DeltaLog methods are highlighted in orange.

// recreating deltaLog for monitored table

DeltaLog deltaLog = DeltaLog.forTable(new Configuration(), "file:///path/to/table");​

Snapshot snapshot = deltaLog.update();

long newCurrentVersion = snapshot.getVersion();

Iterator<VersionLog> changes = deltaLog.getChanges(lastSeenVersion, newCurrentVersion,

true);

while (changes.hasNext()) {

​ VersionLog versionLog = changes.next();

​ long version = versionLog.getVersion();

 // create splits only for new versions

​ if (version > newCurrentVersion) {

​ ​ FileSourceSplit newSplits = buildSplitsForANewFiles(versionLog);

​ ​ alreadyProcessedFiles.addAll(extractPaths(newSplits));

​ }

}

//update currentVersion so we will get changes starting from new value next time

lastSeenVersion = newCurrentVersion;

In this solution we are proposing to enhance DeltaLog API with a overloaded method

deltaLog.getChanges(startVersion, endVersion, failOnDataLoss).

This new method will provide changes between two provided versions. The endVersion and
startVersion parameters must be inclusive.

​
Pros:

●​ API user can get changes in for range of versions
●​ API users don’t need to keep the highest version from changes since we have changes for a

requested version range.

Cons:
●​ Work needed on Delta Standalone API
●​ API User has to create a new snapshot to get the current version although the snapshot

object is not used later.

Option 2b - enhance existing DeltaLog API

** This option doesn’t improve correctness or performance. It suggests a potentially less
error-prone API for the Delta Standalone :: DeltaLog class **

The small variation, that might simplify this a little bit more could look like this:

//recreating deltaLog for monitored table

DeltaLog deltaLog = DeltaLog.forTable(new Configuration(), "file:///path/to/table");​

//get the newest version.

long newCurrentVersion = deltaLog.getActuallVersion();

Iterator<VersionLog> changes = deltaLog.getChanges(lastSeenVersion, newCurrentVersion,

true);

while (changes.hasNext()) {

​ VersionLog versionLog = changes.next();

​ long version = versionLog.getVersion();

 // create splits only for new versions

​ if (version > newCurrentVersion) {

​ ​ FileSourceSplit newSplits = buildSplitsForANewFiles(versionLog);

​ ​ alreadyProcessedFiles.addAll(extractPaths(newSplits));

​ }

}

//update currentVersion so we will get changes starting from new value next time

lastSeenVersion = newCurrentVersion;

Pros:

●​ API user can get changes in for range of versions
●​ API users don’t need to keep the highest version from changes since we have changes for a

requested version range.
●​ API users can get the newest version of Delta Table without creating a new snapshot.

Cons:

●​ Work needed on Delta Standalone API

In this option, we do not create (at least not directly) a new snapshot. We simply ask DeltaLog for
the actual version for the monitored table and we use it to get changes between previous and
current versions.​
​
Maybe getting the current version for Delta Table would not require creating a new snapshot even
under the hood, which would be even more beneficial.

Design Decision 3 - How to handle RemoveFile in VersionLog’s
Actions List in case of Continuous mode​

The VersionLog object returned inside of the iterator from DeltaLog::getChanges contains a list of
actions that happened for this table starting from a particular version. This list can contain various
Action types. Connector will process the AddFile actions and will ignore Commit and Metadata
actions.​
​
In case of RemoveFile action, the connector will do an additional check for the flag “dataChange”. If
this flag is set to true, it would mean that we do not have only appending changes on this table.​
In that case we need to stop further processing. RemoveFile actions with flag “dataChange” set to
false, can be ignored.

The question is, how Source Connector should react in case there were other actions than just
AddFile. In that case we would not be able to guarantee that we are not processing already
processed data.​

Option 1 - Throw an exception (Preferred)
In case the RemoveFile action was present, the connector can throw an exception because we
cannot guarantee that we are not processing already processed data.​
​
However in case of exception, with default settings the flink job will be restarted and will try to
reprocess data. This will result in the same issue. “For details about Restart Strategy please go to
“Flink Exception Handling” section of this document.

Pros:

●​ No Extra development other than throw an Exception is needed

Cons:

●​ Depending on the Restart Strategy, Job may loop up to the Restart Limit since after each
restart we will get the same issue.

Option 2 - Log an error and switch into idle mode.
Source connector could log appropriate error messages to system logs and put itself in Idle state,
meaning it will stop processing new records and shutting down work discovery as well. ​
​
This will prevent cluster from restarting the job many times, up to therrestart limit of used Restart
Strategy. For Restart Strategy details please go to the “Flink Exception Handling” section. ​
​
The con of this solution would be the “visibility” meaning that the user might not be aware initially
that something went wrong for a particular source. Since the state of the Source Task from the
Flink point of view would be still “Running”. To mitigate this, we could implement a custom metric
for Source Connector that would manifest the internal state of the Source allowing the end user to
configure the alarm if Source is in Idle State.​
​
Pros:

●​ System will stop producing errors in case of Restart Strategy with high Restart Limit

Cons:

●​ Need extra development Work
●​ Had to implement messaging schema between SplitEnumerator and Readers
●​ Would Have to extend existing FileReader to handle IDLE signal
●​ Would have to add a monitoring metric to the DeltaSource that will indicate Idle state.​

Design Decision 4 - Reading initial data from DeltaTable
The DeltaTable can have millions of parquet files underneath hence the array returned from
snapshot.getAllFiles(); can be too big to process it at once due to memory limits.
​
Preferable way would be to consume Delta’s AddFile Iterator in batches.​
This could be achieved by using snapshot.scan().getFiles() which returns an
Iterator<AddFile>​

This will run in a monitor thread in SplitSourceEnumerator providing new batches and skipping
already processed data.​
​
However, the current iterator that is returned from snapshot.scan().getFiles() does not have
any guarantees for iteration order which is crucial for scenarios when we will be recovering from a
checkpoint and we would need to skip already processed files.​

Option 1 - Read all data at once (Chosen for now)
This can be already achieved using the existing Delta API without any extra work needed.​
Flink Delta Source will use List<AddFile> allFiles = snapshot.getAllFiles(); to get fill table content

and will read it at once. All AddFile items will be converted to DeltaSourceSplit objects and passed
to File Readers per reader request. ​
​
Pros:

1.​ Easy to implement on the Flink Connector side.
2.​ API exists on the DeltaLog side.

Cons:

1.​ Not suitable for large tables. This will create OOM very quickly for bigger tables.

Option 2 - Read data in chunks (Preferred but currently not supported by Delta API)
Use Delta API based on Delta API snapshot.scan.getFiles() which returns an Iterator<AddFile>. During
checkpoint recovery we will skip N already processed files which would be faster than looking up N
AddFile path in SET with already processed files. The number N will be checkpointed in Enumerator
state.​
​
To make this work, the Interator has to guarantee the same order across every iteration and every
Iterator instance. ​
​
Prerequisite:
Delta API guarantees order of files for snapshot.scan.getFiles() or for snapshot.scan.getFiles()​
​
Pros:

1.​ Allows to use more efficient index base skip instead path based lookup skip for already
processed files.

2.​ We do not need to maintain a SET of already processed files in the memory.
3.​ Will not cause OOM for large tables.
4.​ Suitable both for large and small tables.

Cons:

1.​ Current Delta API does not have the order guarantee for Iterator.
2.​ Slightly more complex than reading everything at once

Options to solve order guarantee for Delta scan Interator:​

Option 2a - Enhance Delta Standalone
Iterator order guarantee is provided by Delta Standalone. ​
​
Pros:

1.​ Can use Delta internal API/mechanism that are not exposed in the public API.
2.​ Can be used by other projects that will work with large tables through Delta Standalone.

Cons:

1.​ Requires changes on Delta Standalone and new version.

Option 2b - Implement sorting algorithm on the Connector side.
In this option, Delta Connector will sort entries while iterating through them.
We would need to assess if this is possible with currently available data provided by AddFile object
fields, and Table MetaData information. It still may turn out that some changes on Delta would be
required. The sorting algorithm would have to have a hard limit on used memory to prevent OOM.
This means that we would not be able to keep all items in the memory, hence some sort of
temporary filessolution and serialization/deserialization would have to be implemented.

Pros:

●​ No need to change Delta Standalone implementation

Cons:

●​ Created solution for sorting would not be available for other projects.
●​ Cannot use delta internal API, only exposed API which may not be sufficient to make this

algorithm optimized.

Performance Optimizations
In this chapter we describe possible performance optimizations to the Flink Delta Source
connector that could be implemented in future iterations. The Development effort is estimated
using “T-shirt size” estimates: S, M, L, XL.

Reading Initial data in chunks

Motivation:​
As described in “Reading the Initial Data” chapter, we ideally would like to read initial table data in
chunks, since size of List<AddFile> returned from snapshot.getAllFilles() method can easily create
OOM Error (Out Of Memory) due to fact that we Delta Table can have millions of files underneath. ​

Possible Solution
Currently non available due the fact that the current iterator that is returned from
snapshot.scan().getFiles() does not have any guarantees for iteration order which is crucial for
scenarios when we will be recovering from a checkpoint and we would need to skip already
processed files. (Design Decision 5).

Development Effort on Connector side​
Development Effort - M
Need to wrap already existing logic for reading initial data into “chunking” decorator. ​
Keep track of processed paths (index based instead file path based). Change SplitEnumerator state
to track index instead of Set of processed paths.

Optimizing in PartitionFieldExtractor
As described in the “Partitions” chapter, the custom logic for extraction value for each partition
column can be defined using the “PartitionFieldExtractor” functional interface.​
This function is executed for every partition column and every row.​
This is not the most efficient way, since values for each partition separately in scope of one Split
(one AddFile) will remain the same, hence there is no need to calculate
​
The logic for extracting partition value for Delta partitions has two steps:

●​ Lookup the partition String value from the Partition Map that is added to DeltaSplit.
●​ Convert it to desired, output type

Possible Solution 1 - Cache
Add Cache for converted value instead of converting the value again every time.This would require
to make PartitionFieldExtractor stateful, since its instance would have to maintain the converted
value cache. As a result we would still need to do a HashMap lookup. The type conversion lookup
would be done once for every split, since each split (AddFIle) can have different values for
partitions. ​
​
Pros:

●​ Possible performance gain by limiting number of type conversions
Cons:

●​
●​ Need to recalculate the value for every new AddFile since each AddFile may have different

partition values..

Development Effort on Connector side​
Development Effort - S
Need to implement cache in “PartitionFieldExtractor” and consider parametrizing its properties.

Possible Solution 2 - Contextualization (PREFERED)
We could use some sort of contextualization for “PartitionFieldExtractor”. We know that in the
scope of one Split (one AddFile) that every partition column will have its own, constant individual
value for every record that is described by this AddFile (Split) and we know how many partition
columns there will be, since those are specified by end user during source definition. With this,
instead of having one “PartitionFieldExtractor” for all partitions, we could have one
“PartitionFieldExtractor” for every partition column. The “PartitionFieldExtractor” will keep the
calculated partition value as “PartitionFieldExtractor” inner field and recalculate it whenever there
is a new split processed. ​
​
This solution is theoretically possible but it would require implementing our own
ParquetColumnarRowInputFormat’s static createPartitionedFormat method in order to be able to
create “PartitionFieldExtractor '' for every partition column.

Development Effort on Connector side​
Development Effort - L
Need to implement a custom factory method for creating a Partitioned Format that will provide a
new Instance of “PartitionFieldExtractor” for each partition column. The “PartitionFieldExtractor”
would have to “reset” its value for every new Split Id.

Pros:
●​ Possibly better performance gain than Solution 1.
●​ No HashMap Lookup but only one String comparison instead (comparing split ID)

Cons:

●​ Needs more effort to implement than Solution 1.
●​ Theoretically possible, but need more investigation and PoC.
●​ Recalculate the contextualized value for every new AddFile/Split

Appendix A - Flink Exception Handling
Any uncaught exception thrown from user code (custom operator, connector 3rd library) will cause
a task failure in response to which Flink needs to restart the failed task and other affected tasks to
recover the job to a normal state. Restart strategies and failover strategies are used to control the
task restarting. Restart strategies decide whether and when the failed/affected tasks can be
restarted. Failover strategies decide which tasks should be restarted to recover the job. ​
​
The cluster can be started with a default restart strategy which is always used when no job specific
restart strategy has been defined. In case that the job is submitted with a restart strategy, its
strategy overrides the cluster’s default setting.

By default, if checkpointing is not enabled, the “no restart” strategy is used. If checkpointing is
activated and the restart strategy has not been configured, the fixed-delay strategy is used with
Integer.MAX_VALUE restart attempts.​
​
With this strategy, Flink will restart job N times, reprocessing all data from the previous
checkpoint. In case of code errors, such as bugs, unexpected input data or any other exceptions,
Job will be restarted over and over again.​
​
The common pattern in such situations is making sure that every exception is caught in the user
code and handling it programatically, according to business requirements, for example sending a
custom alert message to dedicated Sink.​
​
Details about Flink’s Restart Strategies can be found here -
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/dev/execution/task_failure_recove
ry/

Appendix B - Creating DeltaSource instance

Bounded Mode
DeltaSource<RowData> deltaSource = DeltaSourceBuilder.builder()

 .tablePath(Path.fromLocalFile(new File(nonPartitionedTablePath)))

 .columnNames(new String[]{"name", "surname", "age"})

 .columnTypes(new LogicalType[]{new CharType(), new CharType(), ​
 new IntType()})

 .configuration(DeltaTestUtils.getHadoopConf())

 .build();

Bounded Mode with Partitions
DeltaSource<RowData> deltaSource = DeltaSourceBuilder.builder()

 .tablePath(Path.fromLocalFile(new File(partitionedTablePath)))

 .columnNames(new String[]{"name", "surname", "age", "col2"})

 .columnTypes(

 new LogicalType[]{new CharType(), new CharType(), new IntType(), new

CharType()})

 .configuration(DeltaTestUtils.getHadoopConf())

 .partitions(Arrays.asList("col1", "col2"))

 .build();

Continuous Mode
 DeltaSource<RowData> deltaSource = DeltaSourceBuilder.builder()

 .tablePath(Path.fromLocalFile(new File(nonPartitionedTablePath)))

 .columnNames(new String[]{"name", "surname", "age"})

 .columnTypes(new LogicalType[]{new CharType(), new CharType(), ​
 new IntType()})

 .configuration(DeltaTestUtils.getHadoopConf())

 .continuous()

 .build();

Defining Source Additional Options
 DeltaSource<RowData> deltaSource = DeltaSourceBuilder.builder()

 .tablePath(Path.fromLocalFile(new File(nonPartitionedTablePath)))

 .columnNames(new String[]{"name", "surname", "age"})

 .columnTypes(new LogicalType[]{new CharType(), new CharType(), new

IntType()})

 .hadoopConfiguration(DeltaTestUtils.getHadoopConf())

 .option("parquetBatchSize", 1024)

 .option("ignoreChanges", true)

 .build();

Appendix C - Configuration Options
Configuration options can be set through Delta Source Builder API for StreamApi use case.

Additionally, values for those parameters can be provided as Application/Job parameters -
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/application_parameter
s/#handling-application-parameters

Public Configuration Options
Below table presents a public configuration options that will be publicly documented and can be
changed by the user during source creation.

Config option (tbd) Description Default Value Mode

versionAsOf Read snapshot for
specified version. ​
​
Will throw an
exception if provided
value is outside the
range of available
versions.

This option is mutually
exclusive with the
timestampAsOf
option.
​

No default value. If the
option is not
specified, then the
connector will read
the head version of
Delta Table.

Bounded mode only-
default value or
specified by the user.

timestampAsOf Travel back to the
latest snapshot that
was generated at or
before the given
timestamp.

This option is mutually
exclusive with the
versionAsOf option.

No default value. If the
option is not
specified, the
connector will read
the head version of
Delta Table.

Bounded mode only -
specified by the user.

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/application_parameters/#handling-application-parameters
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/application_parameters/#handling-application-parameters

startingVersion The Delta Lake
version to start from.
All table changes
starting from this
version (inclusive) will
be read by the
streaming source.​
​
To return only the
latest changes,
specify “latest”

This option is mutually
exclusive with the
startingTimestamp
option.

No default value.​
​
If the option is not
specified, the
connector will read
the entire head
version of Delta Table
and will start
monitoring for
changes.

Continuous mode
only.

startingTimestamp The timestamp to
start from. All table
changes committed at
or after the
timestamp (inclusive)
will be read by the
streaming source.

A timestamp string.
For example,
"2019-01-01T00:00:00.
000Z".​
​
A date string. For
example, "2019-01-01".

This option is mutually
exclusive with the
startingVersion
option.

No default value.​
​
If the option is not
specified, the
connector will read
the entire head
version of Delta Table
and will start
monitoring for
changes.

Continuous mode
only.

updateCheckInterval
Millis

A time interval value
used for periodical

5000 Continuous mode
only.

table update checks.
Value in milliseconds.

ignoreDeletes If “true” and a
particular version had
only Deletes (no other
actions) then do not
throw an exception on
RemoveFile.
regardless of the
“RemoveFile
::dataChange” flag.

false Continuous mode
only.

ignoreChanges if “true” and a
particular version had
a combination of
deletes and other
actions, then do not
throw an exception on
RemoveFile
regardless of the
“RemoveFile
::dataChange” flag.

false Continuous mode
only.

Non Public Configuration Options
Below table presents configuration options that are not hard coded and can be changed during
Source creation. Those options however are not publicly documented. ​
​

Config Option Name Description Default Value Mode

parquetBatchSize Number of rows read
per batch by Parquet
Reader from Parquet
file.

2048 Bounded and
Continuous modes.

updateCheckDelayMill
is

Delay time in
milliseconds for first
table change check.

1000 Continuous mode
only.

The parquetBatchSize option has an impact on performance. This value describes how many rows
are put into one vector. Vectors are used internally in Flink for performance reasons to enable
faster execution on batches. Too big value however can cause OOM errors.​
​
The updateCheckDelayMillis option might be useful whenever there is a need to delay the first Table
check due to various reasons such as initialization of external systems or connections.

Hardcoded parameters
Parameter Name Description Hardcoded Value Mode

parquetCaseSensitive Denotes whether to
use case sensitive
Map the field/column
names from parquet
and match them to
columns in Flink.

true Bounded and
Continuous modes.

parquetUtcTimestam
p

Denotes whether
timestamps should be
represented as SQL
UTC timestamps.

true Bounded and
Continuous modes.

The Impact of updateCheckIntervalMillis Option
The goal here is to show what would be the implications of using an extreme
updateCheckIntervalMillis value.​
​
The rule of thumb for this option is to favoure lower values for Tables with high rate of changes,
where longer intervals will usually work well for Tables with lower rate of changes.
​
updateCheckIntervalMillis = 1s​
Pros:

●​ Changes are visible/consumed very quickly.
●​ Flink’s Source Coordinator thread has to convert a smaller number of versions to splits per

cycle meaning it will not be blocked for a long time. Blocking this thread can lead to
checkpoint delay.

Cons:

●​ Potential congestion on Delta Table or other resources caused by calling
deltaLog.getChanges(...) very often. (Listing cost)

​

​
updateCheckIntervalMillis = 1h
Pros:

●​ Limited potential congestion on Delta Table from calling deltaLog.getChanges(...) not
often.

Cons:

●​ Changes from Delta Table will be visible after a longer time, not suitable for tables with high
change rate.

●​ Can cause OOM if there were a lot of changes during the last interval check.

	[Public] Flink Delta Source for Flink Steam API
	History
	
	
	Motivation
	Requirements
	Out-of-scope

	Proposal sketch
	OSS Repo and Maven Central
	Main Assumptions
	
	Unified Source Interface
	Existing File Source Implementation
	Source Checkpointing
	Sequence Diagram
	SplitEnumerator Creation​
	
	SourceReader Creation
	Source Start
	Source Reader

	Flink Delta Source
	
	Reading the initial data
	
	Monitoring of Delta Table Changes
	Overview

	
	
	Handling Updates and Deletes

	Partitions
	DeltaSourceSplit
	Checkpointing
	Reader
	​Split Enumerator

	Decision Matrix
	Design Decision 1 - Using classes from Flink’s codebase.
	Option 1 - Reimplement logic using only needed code from FileSource (Preferred)
	Option 2- Reuse existing code 1 to 1.

	Design Decision 2 - Manage changes during Work Discovery
	Option 1 - using existing DeltaLog API (Preferred)
	
	
	Option 2a - enhance existing DeltaLog API
	Option 2b - enhance existing DeltaLog API

	Design Decision 3 - How to handle RemoveFile in VersionLog’s Actions List in case of Continuous mode​
	Option 1 - Throw an exception (Preferred)
	Option 2 - Log an error and switch into idle mode.

	Design Decision 4 - Reading initial data from DeltaTable
	Option 2 - Read data in chunks (Preferred but currently not supported by Delta API)
	
	Options to solve order guarantee for Delta scan Interator:​
	Option 2a - Enhance Delta Standalone
	Option 2b - Implement sorting algorithm on the Connector side.

	
	Performance Optimizations
	Reading Initial data in chunks
	Possible Solution

	
	Optimizing in PartitionFieldExtractor
	Possible Solution 1 - Cache
	Possible Solution 2 - Contextualization (PREFERED)

	
	Appendix A - Flink Exception Handling
	

	
	Appendix B - Creating DeltaSource instance
	Bounded Mode
	Bounded Mode with Partitions
	Continuous Mode
	Defining Source Additional Options

	Appendix C - Configuration Options
	Public Configuration Options
	Non Public Configuration Options
	Hardcoded parameters
	

	The Impact of updateCheckIntervalMillis Option

