UNIVERSITY OF CALIFORNIA, BERKELEY
Department of Electrical Engineering and Computer Sciences
Computer Science Division

CS10 Spring 2025 TA: Victoria

e

Discussion 5: Recursion + Nested Lists
Instructions:
e If you're attending this section in-person, please log into iClicker!

e |f you missed this discussion, fill out this entire worksheet, and upload it to the
Gradescope assignment titled “Discussion 5” by next Discussion.

® Please open up snap.berkeley.edu/run on your computer.

e For the worksheet, you can either explain the process in words, show a
screenshot, or draw the block/process.

Group Activity / Question of the Day

e In groups of four ask, have you ever pulled an all-nighter to study for an exam or
finish a project / homework? On average, how many hours do you sleep?

https://snap.berkeley.edu/snap/snap.html

Required (Pages 2 - 4):

Assigned Reading

Do you think most people are aware of how much data they generate and share daily?
Why or why not? Can you think of an example where someone’s digital footprint (e.g.,
an old post, email, or metadata) had / might have serious consequences? Should

governments or companies be allowed to track and collect metadata from individuals?

Why or why not?

Section | - Linear Recursion

1. Recursively add all numbers from 1 to “n”, where “n” is based on the input. It

should work like the following:

15
iterative: sum from 1 to n: "')

2. Recursively implement the following versions of the function glorpify.

a. ARG will be a word — return the word, but with each character appearing
twice in place. For example, if ARG is “Hello!”, return “HHeelllloo!!. Hint: You
need to use the “all but first letter” and “join” functions. You will need to

download the “words, sentences” library.

Glorpify ({ ARG

b. ARG will be a list of booleans — return False if at least one of its items is False,
and True otherwise.

Glorpify ;{ ARG

3. Recursively find the number of occurrences of a value in a list. In other words,
return the number of times a value appears in a list. It should work like the
following:

2
count occurrences of value: f] in list ' list (]] H B ["’)

Hint: You will find the ‘all but first of _” function helpful.

Section Il - Nested Lists

1. Create a sum function that takes in a nested list and outputs the sum of all the
values. It should function like this:

script variables values

NN

set values | to! list list 1115’ [list [3 |9 list 216’ list

report " sum values in list: . values

2. Create a function that adds a new column. The new element should be the sum
of that particular row. It should function like this:

script variables ("values

\

set values | to! list (= [list [3]]9] list 2|6

4

‘h w N = N
~N N w2
A~ o0 o W

report fﬁradd T T e values

Since row 1 contains: 1, 5. The new row contains: 1, 5, 6 (where 6 is the sum of 1
and 5).

Optional Section (Extra Practice):

Optional Section I - Linear Recursion

1. Recursively report a new list that filters out any odd numbers. The list returned
should only return even numbers in the list. It should work like the following:

keep only evens in list: "list

2. Report true if a word is a palindrome. A palindrome is spelled the same
backwards as it is forwards.Examples: RACECAR, LEVEL, RADAR, CIVIC, A, B, C, ...
It should function like the following:

is word: a palindrome "l_)

Hint: You will need to download a library in Snap! Called “words, sentences”. You
will need “all but first letter of” and “all but last letter of”

3. Write a procedure that takes in a list LIST, a positive integer K, and a positive
integer INDEX. It should return a new list containing every K-th element of LIST
starting at (but not including) INDEX. It should function like the following:

@ length:2
Every F] th Element of list J A 03 Starting at [J B

PN
Every F] th Element of list [J] Starting at []

Fill out the blocks labeled 'ANSWER=-X' in the skeleton code:

Every K th Element of ' LIST Starting at INDEX

if EEE < K

report
append

st | 2 |
Every th Element of ENEEEE starting at [N

Optional Section Il - Nested Lists

1. Create a function that finds the maximum number in the nested list using
iteration. It should function like this:

script variables (values wy

set values | to ! list ([5- 118514 list 13497 list 121618

report ' find max num in list: values

2. Do the same function, but find a solution only using HOFs!

script variables values

set values | to! list ([iz- [list [3 |9 list [2 [6 |8

report | ..find max num in listz: §'GLUIES

