Tarantool Server Gateway Interface

Rationale
Unifying the function handler for HTTP Requests has the following benefits:

1. Decoupling Web Servers from HTTP Routers.
This will allow us to switch between Web Servers in existing application without the
need to rewrite the HTTP Router source code.

2. Enable HTTP Middleware reuse between HTTP Routers.
See https://wsqi.readthedocs.io/en/latest/libraries.html for examples.

Inspiration

The specification is almost entirely based on Ruby Rack specification. Which in turn is
almost entirely based on WSGI.

Short Example

function handle(env)
local method = env.REQUEST_METHOD
local content_type = env.HEADER_CONTENT_TYPE
local body = env['tsgi.input’]:read()

local response = {

status = 200,

body = '{name = "John Doe"}',

headers = {['Content-Type'] = 'application/json'}
b

return response
end

Request Handler

HTTP request handling function must take one argument of table type: env.

CGl-like Keys

env Key Value Description

HTTP_ Variables string Variables corresponding to

https://wsgi.readthedocs.io/en/latest/libraries.html

the client-supplied HTTP
request headers (i.e.,
variables whose names
begin with HTTP_). The
presence or absence of
these variables should
correspond with the
presence or absence of the
appropriate HTTP header
in the request. See
RFC3875 section 4.1.18
for specific behavior.

REQUEST_METHOD

string

The HTTP request method,
such as "GET" or "POST".
This cannot ever be an
empty string, and so is
always required.

SCRIPT_NAME

string

RESERVED.

PATH_INFO

string

The remainder of the
request URL's “path”,
designating the virtual
“location” of the request's
target within the
application. This may be
an empty string, if the
request URL targets the
application root and does
not have a trailing slash.
This value may be
percent-encoded when
originating from a URL.

QUERY_STRING

string

The portion of the request
URL that follows the ?, if
any. May be empty, but is
always required!

SERVER_NAME,
SERVER_PORT

string

When combined with
SCRIPT_NAME and
PATH_INFO, these
variables can be used to
complete the URL. Note,
however, that
HTTP_HOST, if present,
should be used in
preference to
SERVER_NAME for

https://tools.ietf.org/html/rfc3875#section-4.1.18

reconstructing the request
URL. SERVER_NAME and
SERVER PORT can never
be empty strings, and so
are always required.

TSGI Specific Keys

See Input Stream Interface
below.

env Key Value Description
tsgi.version string TSGI version that Web
Server supports.
tsgi.url_scheme string “http” or “https”.
tsgi.input table Used for reading request

body.

tsgi.errors

table

RESERVED.

tsgi.hijack

nil or function

See Hijacking below.

If present, allows “stealing”
TCP connection.

Input Stream Interface

Lua-table input_stream implements Input Stream Interface, if it has the methods

described below.

Used for reading HTTP Request Body.

o str

input_stream:read(n)

str = input_stream:read()

Returns at most n bytes from stream.
If n is not specified, returns all bytes.

n must be non-negative or nil.

input_stream:rewind()

Rewinds the input stream back to the beggining.

Hijacking

Let hijack = env['tsgi.hijack’].

If hijack is nil, Web Server doesn’t support Upgrading.

Otherwise, when invoked hijack() must close the current HTTP connection, and return its’
(still open) raw TCP connection object.

Used for upgrading from HTTP to other procotols.

Response

Request handling function must return a table with the following keys:

Key Type Description
status number HTTP status.
headers stateless iterable HTTP headers.

Must behave as table with
string keys (header names)
and strings or array of
strings values (header
values)

body string or Wrapped lterator HTTP response body.

See Wrapped lterator below.

Wrapped lterator Interface

Lua-table stateful_iterable implements Wrapped Iterator Interface if it has the fields
below.

Used for transfering HTTP Response Body incrementally.

o stateful_iterable.gen

Iterator function.
Function taking (state, param) and producing new param.

o stateful_iterable.state

State of iterator.
Variable of any type.

o stateful_iterable.param

Initial value for Lua iterator.
Variable of any type.

Middleware

TSGI middleware consists of TSGI-compliant functions.

Every TSGI-compliant middleware will work with any TSGI-compliant Web Server and other
TSGIl-compliant middleware (that is it doesn’t depend on HTTP Router e.g.).

Examples of middleware may be: request preprocessors (session managing middleware,

route dispatching), response postprocessors.
Artificial example of a session managing module:
tsgi_session_middleware.lua (implementation):

session_mt = {
-- e.g. save() for saving the session,
-- renew() for updating the expiration time,

by

local function session_from_space(cookie)
local session_tuple = ...
local session = ...
return setmetatable(session, session_mt)
end

local function wrapper_call(self, env)
local cookie = env.HEADER_COOKIE

env.session = session_object_from_space(cookie)

local res = self.handle(env)

res.headers['Set-Cookie’] = res.headers['Set-Cookie’] ..

env.session:setcookie_header()
return res
end

local wrapper_mt = {
__index ={
__call = wrapper_call
}I
b

local function wrap(handler)
local new_handler = {handler = handler}
return setmetatable(new_handler, wrapper_mt)
end

return {wrap = wrap}
application.lua (usage):

local session_middleware = require(‘tsgi_session_middleware’)

local function handler(env)

-- we will magically have a session object at our disposal if we chain the
handler with session middleware (like below)

session = env.session

end

-- TSGI allows for chaining handlers
local main_handler = session_middleware.wrap(handler)

Closed Questions

Duplicate HTTP Headers

HTTP/1.1 allows sending multiple headers with same name.
We can support setting Lua table as a header value in response to facilitate the case.

It must be noted that this is not necessary by the standard, as one can provide multiple
values for the header by constructing a comma-separated combination of them. This is
equivalent by the standard https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2:

Multiple message-header fields with the same field-name MAY be present in a
message if and only if the entire field-value for that header field is defined as a
comma-separated list [i.e., #(values)]. It MUST be possible to combine the multiple
header fields into one "field-name: field-value" pair, without changing the semantics
of the message, by appending each subsequent field-value to the first, each
separated by a comma. The order in which header fields with the same field-name
are received is therefore significant to the interpretation of the combined field value,
and thus a proxy MUST NOT change the order of these field values when a message
is forwarded

On the other hand from https://tools.ietf.org/html/rfc6265#section-3:

https://tools.ietf.org/html/rfc6265#section-3

Origin servers SHOULD NOT fold multiple Set-Cookie header fields into
a single header field. The usual mechanism for folding HTTP headers
fields (i.e., as defined in [REC2616]) might change the semantics of

the Set-Cookie header field because the %x2C (",") character is used
by Set-Cookie in a way that conflicts with such folding.

Solution

To resolve the issue, we allow setting array of strings to specific key (header name) in
response.headers table, in this case corresponding header values are duplicated in
HTTP response.

TODO (not fixed by specification yet)

e Describe TCP Connection Interface returned by env["~ tsgi.hijack "]()
e Describe Case Sensitivity and Hyphen conversion issues in Open Issues.

https://tools.ietf.org/html/rfc2616

	Tarantool Server Gateway Interface
	Rationale
	Inspiration
	Short Example
	Request Handler
	CGI-like Keys
	TSGI Specific Keys
	Input Stream Interface
	Hijacking

	Response
	Wrapped Iterator Interface

	Middleware
	Closed Questions
	Duplicate HTTP Headers
	Solution

	TODO (not fixed by specification yet)

