
The Chrome Storage Service
This Document is Public

Authors: pwnall@chromium.org, rockot@google.com, dmurph@chromium.org

One-page overview

Summary
Chrome’s Web Platform implementation for client-side storage features will be moved
behind a Mojo service. The service will eventually live in a separate process on desktop
versions of Chrome.

Platforms
Mac, Windows, Linux, Chrome OS, Android.

Team
storage-dev@chromium.org

Bug
https://crbug.com/994911

Code affected
//content and the code depending on it, //components/services/storage, //storage

Design

Background
Consequences of moving features individually

●​ Chrome Storage Service State Sharing - Web Platform API Dependencies
●​ Early thoughts on Storage Service and Service Worker

Overview
High-level code map.

https://crbug.com/994911
https://docs.google.com/document/d/1hoFcg8HRdbVmy12ANuIVaUaupu3wPNrGQfe6NNL_KDw/edit
https://docs.google.com/document/d/1fTrHBQnzEis7Hqw-mAFy9cKXG8QtbtDeaggLalYF-O8/edit#

●​ //content/browser/ - Holds storage features that haven’t been moved, and any
logic needed to connect features to the rest of the browser. AppCache’s navigation
interceptor is an example of connecting logic.

●​ //storage/ - Holds building blocks, for features. Examples: LevelDB scopes, our
SQLite abstraction. Unrestricted visibility.

●​ //components/services/storage/public/mojom - Mojo interface exposing
storage service functionality to the browser. Unrestricted visibility.

●​ //components/services/storage/public/cpp - Additional C++ interface
exposing storage service functionality to the browser. Unrestricted visibility.

●​ //components/services/storage/some_feature - Storage feature
implementation. Visibility restricted to //components/services/storage.
Contains its own BUILD.gn that defines source_sets for the feature’s code and tests.

●​ //third_party/blink/public/mojom/some_feature - Feature-specific
interface between the Storage Service and Blink. Should be its own
mojom_component. See dom_storage for an example.

●​ //third_party/blink/renderer/modules/some_feature - Blink-side
implementation. This should have minimal changes.

●​ StorageService - interface between the storage service and the browser
●​ RestrictedStorageService - interface between the storage service and

untrusted code (e.g. renderer) representing an origin

High-level, overly simplified strategy.

1.​ Map out Storage APIs into the following dependency graphs.
○​ Code dependencies. For example, IndexedDB depends on the File API,

because of its ability to store Blobs.
○​ API usage dependencies. Tracked in this document.

2.​ For each feature without code dependencies in //content/browser, the feature
will be moved to //components/services/storage and exposed via
//components/services/storage/public/mojom. Repeat step 2 until all
features are moved. Ordering should be informed by API usage dependencies.

Moving a feature will follow the steps below.

1.​ Remove any code in //storage/common. Post Onion Souping, all the renderer
code for the feature should be in Blink. The removal will generally entail moving
code to //storage/browser and to //third_party/blink.

2.​ Move the browser-side implementation from //content/browser and
//storage/browser to //components/services/storage/some_feature.
This includes creating a BUILD.gn with source sets for the feature’s code and tests
and modifying other BUILD.gn files, clarifying the dependencies between the feature
and the rest of the browser code.

3.​ Move the Mojo interface between the browser process and the renderer process
from //third_party/blink/public/mojom to //storage/public/mojom.

https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_request_handler.h
https://cs.chromium.org/chromium/src/content/browser/appcache/appcache_request_handler.h
https://docs.google.com/document/d/16_igCI15Gfzb6UYqeuJTmJPrzEtawz6Y1tVOKNtYgiU/
https://cs.chromium.org/chromium/src/sql/
https://cs.chromium.org/chromium/src/sql/
https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/dom_storage/BUILD.gn
https://developer.mozilla.org/en-US/docs/Web/API/URL/origin
https://docs.google.com/document/d/15d7GMpTiPVvbp7ikaq7sLKW_sU62Fa9R4LwhhULvPLY/
https://docs.google.com/document/d/1hoFcg8HRdbVmy12ANuIVaUaupu3wPNrGQfe6NNL_KDw/

4.​ Vend the moved interface via the RestrictedStorageService interface, instead
of serving it via RendererInterfaceBinders.

5.​ If necessary, create a Mojo interface between the storage service and the browser in
//storage/public/mojom and transition any direct calls into feature code from
//content/browser to the Mojo interface.

Basic Service Architecture
The service maintains a set of partition objects which are analogous to Content's
StoragePartitionImpl. A partition fully and exclusively encompasses ownership of the
contents of a persistent (in-filesystem) directory or an in-memory database.

The main service interface can be defined roughly as:

 interface StorageService {​
 BindPartition(mojo_base.mojom.FilePath? path,​
 pending_receiver<Partition> receiver);​
 };

NOTE: Binding with a null path yields an isolated in-memory partition accessible
exclusively to the client making that specific call. Only persistent partitions may be shared
by multiple clients, by providing the exact same path value when calling BindPartition.

Once a Partition is bound, it can be used to bind new origin-scoped endpoints, or origin
contexts:

 interface Partition {​
 BindOriginContext(​
 url.mojom.Origin origin,​
 pending_receiver<OriginContext> receiver);​
 };

Finally, an OriginContext is used to bind endpoints for specific API backends, e.g.:

 interface OriginContext {​
 BindDomStorageContext(​
 pending_receiver<DomStorageContext> receiver);

​
 BindIndexedDbContext(...);​
 // etc...​
 };

Threading and Scheduling
The storage service will attempt to use the modern scheduling infrastructure.

When running in a separate process, there will be no dedicated IO thread. Mojo interfaces
will be bound on the main thread, which will not allow blocking I/O calls. Features that issue
blocking I/O calls will use base::PostTask with the base::MayBlock() trait. Code
embedding third-party libraries, like LevelDB, may still spawn dedicated I/O threads.

Browser Integration
The browser will own a single main StorageService pipe connected to the service, and
each StoragePartitionImpl will own a corresponding Partition pipe. As subsystems
are migrated into the service, implementation will migrate out of StoragePartitionImpl
and/or its dependencies.

Restartability
We want Chrome to survive a Storage Service crash. While we can’t make crashes
non-observable, we can minimize the impact.

Our main reference point is the Network Service, which supports restartability. When the
Network Service crashes, in-flight requests are failed. Existing tabs can fire new network
requests, which will be correctly routed through the newly started Network Service. This
looks like a transient network failure, so it’s reasonable to expect applications to handle the
errors. Given the Network Service’s low crash rate, this approach and level of effort is
sufficient.

DOMStorage maintains caches in renderers. Changes accumulate in these caches, and are
written to disk every few seconds. If the Storage Service crashes, the changes that were not
written to disk must be pushed from renderer-side caches to the restarted Storage Service.
This doesn’t need to be perfect, but we need to expose reasonable semantics to
applications.

●​ Blob URLs will not persist across storage service crashes
●​ Blob URLs will be broken across storage service clients
●​ Quota will move separately from APIs by making QuotaClient a mojo interface
●​ Want to measure reads vs writes for every API, in case we figure out how to

analyze that

https://crash.corp.google.com/browse?q=EXISTS%20(SELECT%201%20FROM%20UNNEST(productdata)%20WHERE%20key%3D%27service-name%27%20AND%20value%3D%27network.mojom.NetworkService%27)#-propertyselector,productname:1000,+productversion:1000,magicsignature:50,magicsignature2:50,stablesignature:50,operatingsystemfamily:100

Sandboxing
Running the Storage Service out-of-process but unsandboxed should still provide ample
stability benefits such that sandboxing is not a blocker to ship. As such, the current plan is
to first experiment with out-of-process Storage Service with sandboxing disabled.

A sandboxed Storage Service process will have no direct privileges to traverse the
filesystem, and will instead need to rely on limited filesystem access through IPC to the
browser process. A naive implementation of such a system may incur performance
regressions, and so sandboxing the process warrants independent experimentation and
analysis from the overall service launch effort.

The bug tracking development of sandboxing support is https://crbug.com/1052045.

Briefly, the sandboxed service process will use our tightest (AKA "utility") sandbox
configuration in Chrome. Upon launch, Chrome will provide the service with a single Mojo
interface which can be used to perform operations on the filesystem using strict relative
paths -- non-absolute paths with no parent references, validated automatically by Mojo
internals. The strict relative paths will be interpreted by the browser as relative to a fixed
location on disk, namely the "user data dir" where all Chrome profiles are stored.

DOM Storage
The DOM Storage implementation has already been partially servicified, in the sense that
its dependencies are reasonably well isolated into //content/browser/dom_storage/.
The interesting dependencies still hanging around are SpecialStoragePolicy -- an
interface used to support Chrome extensions removing browsing data during shutdown;
and the File Service, which was part of an early effort to servicify browser storage.

SpecialStoragePolicy
It's not immediately clear what to do about this API. The object's only use for DOM Storage
is to ask synchronous questions during shutdown in order to affect the behavior of
LocalStorageContextMojo.
One possibility is to add a synchronous shutdown API to Partition (which we may need
for other use cases anyway), which the browser uses to send a snapshot of the policy state
it sees at the moment, and we invoke this on shutdown so the partition can propagate it to
any relevant subsystems. We would like to avoid this if possible since (a) sync IPC on
shutdown is risky, and (b) sync IPC in general is a sadness.

Alternatively we may just push configuration state changes down to the Storage service
when they occur, and the service can make a best effort to adhere to last-known policy
settings during shutdown.

https://crbug.com/1052045

File Service Removal
This service is only used to support DOM storage. It runs in the browser process with an
instance per BrowserContext, and each instance is effectively associated with the
corresponding BrowserContext's directory path.

In order for the service to work properly, the browser injects (through global state) a
mapping of Service Manager service "instance group" identity to file path. This is an
unnecessary source of complexity given the limited use.

Part of the implementation work for DOM Storage servicification will thus involve deleting
the File service. Each Partition instance in the Storage service will already have the same
amount of information that the File service had, and the Storage service can access the file
system directly. There is therefore no need for any subsystem's implementation to go
through another service to reach persistent disk storage.

Migration Into Storage Service
The basic strategy for implementation will be to temporarily allow dependencies from
//content/browser onto specific private details of
//components/services/storage as code is migrated with its Content dependencies
stripped away.

Once all relevant implementation is moved into //components/services/storage,
private DOM Storage-specific dependencies will be disallowed in //content/browser
and StoragePartitionImpl will broker access to the DOM Storage subsystem
exclusively through its interface to the Storage service.

Security
The browser-side implementation of both local and session storage do synchronous checks
of ChildProcessSecurityPolicyImpl every time certain origin-bound requests come
in. Namely the calls to SessionStorageNamespace.OpenArea and
StoragePartitionService.OpenLocalStorage both check the security policy of the render
process ID associated with the implementation at interface binding time to ensure that the
renderer should be allowed to access storage for the given origin.

In both cases, no subsequent checks are done for calls on the corresponding StorageArea
once it's bound, and StorageArea endpoints only appear to be purged once the client
(renderer) disconnects from them. As such, it seems the current implementation does not
attempt to protect against e.g. an Evil™ renderer retaining a prior origin's StorageArea
pipe after a navigation away from that origin. Presumably we are OK with this.

https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/dom_storage/session_storage_namespace.mojom?rcl=1f1dc7ad73fee55c0ef803041ffb15f05b7bab37&l=13
https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/dom_storage/storage_partition_service.mojom?rcl=1f1dc7ad73fee55c0ef803041ffb15f05b7bab37&l=16

In any case, we will leave these checks in the browser, so all StorageArea binding
requests from renderers must continue to be brokered through the browser. The Storage
service will likely implement slightly different interfaces from SessionStorageNamespace
and StoragePartitionService given the definition of OriginContext as a scoping
layer.

The service will most likely implement Blink's StorageArea interface as it is currently
defined.

IndexedDB
See Storage Service IndexedDB Tracking Document for the IndexedDB work planning &
progress.

IndexedDB is mostly isolated in the browser. The main complex changes are going to be:

1.​ Content policy checks (using ChildProcessSecurityPolicy), similar to DOMStorage
2.​ Interactions with the Blob Storage system

a.​ Copying blobs to a files on transaction commit
b.​ Creating new blobs for ‘get’ results

Quota
The quota system has three main integration points.

●​ QuotaClient is the interface to quota-managed storage features. Each storage
feature has an implementation of QuotaClient, and a QuotaManager owns one
instance of each implementation.

●​ QuotaManager is the interface to quota users. It is used by sites and browser
features to query the current quota status, and by quota-managed storage features
to report changes in quota usage.

●​ QuotaDispatcherHost is the main interface between the browser process and
renderer processes.

The quota system will be moved to the Storage Service. QuotaManager will become a Mojo
interface, and will be used to communicate between the browser process and the storage
service process. QuotaManagerProxy will be removed, as we can rely on Mojo to do any
thread hopping as needed.

QuotaClient will become a Mojo interface, so we can have storage features that live
outside the storage service. This is a pragmatic decision, as it allows us to move
quota-managed storage features into the Storage Service one by one. In a world where all
the storage features are migrated, we may turn QuotaClient back into a C++ abstract
base class.

https://docs.google.com/document/d/18suNOOzuEJbqgRJF0MB2VqdTyYqS4cvI2PGaCpyPXSw/edit#
https://source.chromium.org/chromium/chromium/src/+/master:storage/browser/quota/quota_client.h?q=QuotaClient
https://source.chromium.org/chromium/chromium/src/+/master:storage/browser/quota/quota_manager.h?q=QuotaManager
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/mojom/quota/quota_dispatcher_host.mojom?q=QuotaDispatcherHost
https://source.chromium.org/chromium/chromium/src/+/master:storage/browser/quota/quota_manager_proxy.h?q=QuotaManagerProxy

QuotaDispatcherHost will be converted to an origin-scoped QuotaHost interface.
Renderers will obtain instances from the OriginContext interface.

Service Worker
The Service Worker integration with the Storage Service is described in this document.

Metrics

Success metrics
Landing the refactorings proposed here is a code health improvement, and a success in
itself.

When running with an out-of-process Storage Service, the browser process crash rate
should be reduced.

Regression metrics
The code refactoring needed for the in-process Storage Service will rely on the perf bot
infrastructure to catch performance regressions. The out-of-process Storage Service will be
rolled out via Finch, and we’ll check for no significant regressions in speed launch metrics
as well as various performance metrics specific to any affected storage subsystems.

For specific subsystems there are two potential sources of regression: increased latency
from additional IPC hops, which should be minimal; and increased latency from sandboxed
file I/O. For some web APIs, such regressions could have user-visible impact such as jank,
slower page loads, or diminished storage consistency.

DOM Storage Metrics
LocalStorage.MojoTimeToPrime measures how long it takes for a renderer to
synchronously populate its Local Storage cache from the service's backend. Because this
process involves substantial IPC and file I/O from within the service, the metric serves as a
good indicator of end-to-end, user-visible DOM Storage performance.

TODO: Add something tracking commit failures. Should this be tracked at the service level?

IndexedDB Metrics
TODO

Service Worker Metrics
TODO

https://source.chromium.org/chromium/chromium/src/+/master:components/services/storage/public/mojom/origin_context.mojom?q=OriginContext
https://docs.google.com/document/d/1hO0WEuoEOgEBlf5nDE3fDjuQY2bV_d5hLtk25iBo0LM/
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit

PageLoad.Clients.ServiceWorker2.PaintTiming.NavigationToFirstContentfu
lPaint tracks the First Contentful Paint (FCP) of pages that are controlled by service
workers. This is a primary metric for service worker performance analysis. Service worker
controlled navigations require storage access to retrieve registrations.
ServiceWorker.StartWorker.Time measures time to start a service worker. Starting a
service worker needs registration information and may access storage (if these aren't on
in-memory cache). Service worker startup is a critical path for cold navigation to pages that
are controlled by service workers.

TODO: LevelDB write errors, open failures.

Quota Metrics
TODO
Quota.EvictedOriginsPerHour, Quota.EvictionRoundsPerHour - Ensure that
evictions run at the same rate, without any performance problems.

Quota.TimeDeltaOfEvictionRounds - Ensure that evictions run at the same speed,
without any performance problems.

Quota.UsageByOrigin - Ensure that storage usage doesn’t drop.

TODO: Add metrics for I/O errors, database open time.

Cache Storage Metrics
TODO
Make sure to include metrics about performance, open / warmup time.

WebLocks Metrics
TODO

Rollout plan
The in-process Storage Service will be rolled out via waterfall, as it is essentially an
incremental refactoring of the existing system.

The out-of-process Storage Service will ship on desktop only. It warrants going through the
full Chrome feature launch process and will be rolled out via a Finch experiment.

https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint

Two separate feature flags have been introduced to Chrome already:
StorageServiceOutOfProcess and StorageServiceSandbox. The latter only has
meaning when the former is enabled, and both are disabled by default.

Testing
Extra browser_tests and content_browsertests steps will be initially added to FYI
bots with both unsandboxed and sandboxed out-of-process Storage Service enabled.

Unsandboxed out-of-process Storage Service is expected to be continuously functioning
and stable ASAP, so it will be moved to the main waterfall once the FYI tests remain green
for a while.

On the other hand, the additional challenges of sandboxing mean that sandboxed tests are
expected to break frequently during ongoing feature development. Once all high-priority
features are ported to the service and testing has stabilized, the sandboxed tests can also
move to the main waterfall.

Finch Experiment
The Finch experiment for out-of-process Storage Service will initially define a single
experiment group that enables the unsandboxed service process. Per the best practices
guidelines, the proposed rollout will use an experiment group population of 1% on Stable
and 25% on Canary, Dev, and Beta.

The experiment group is expected to see a reduction in browser crash rates, and the
primary purpose of the experiment is to analyze performance impact across the various
affected storage subsystems.

Once the service's feature set has stabilized and there is sufficient waterfall coverage of the
sandboxed service, the experiment will be reset with two experiment groups: one for the
unsandboxed service process (same behavior as the initial experiment group) and one for
the sandboxed process. Both groups will use the same population numbers as above (1%
Stable, 25% C/D/B).

Once enabled, the new sandboxed experiment group is expected to see a similar reduction
in browser crash rates, and again the primary purpose of introducing this group is to
analyze relative performance among all three scenarios: in-process, out-of-process
unsandboxed, and out-of-process sandboxed.

Performance will be analyzed primarily through the collection of new or existing UMA
metrics as described in the Regression Metrics section above.

https://g3doc.corp.google.com/analysis/uma/g3doc/finch/best-practices.md

Launch
Once metrics appear satisfactory for the unsandboxed Storage Service and all other launch
requirements are met, out-of-process mode will be switched on by default for all desktop
platforms. At this point, separate waterfall steps can be removed for the unsandboxed
version, as it will have full CQ coverage.

A similar process will be applied to launch the sandboxed service once all features are
properly adapted to a sandbox environment and any outstanding performance regressions
are addressed.

Core principle considerations

Speed
The in-process Storage Service is not expected to have a significantly different performance
profile from today’s code.

The out-of-process Storage Service will introduce extra process hops in establishing Mojo
connections from the renderer processes to the implementation of Web Platform storage
features. We don’t expect this to result in a material regression on the speed launch
metrics.

Most importantly, once the initial Mojo connection is established, the renderer-side
implementation of storage features will talk directly to the Storage Service process. This
results in the same number of IPC messages as the current architecture, where storage
feature backends live in the browser process.

The concern for IPC overhead ruled out an alternative design where the Storage Service
would expose low-level primitives such as a File service, a LevelDB service, and a SQLite
service.

Security
The in-process Storage Service model does not bring any meaningful security changes.

In the out-of-process Storage Service, the browser process will start the Storage Service
and connect to it, then broker all requests from renderers to Storage interfaces. This
enforces Site Isolation. Other processes (network, GPU, utility) should not need to connect
to the Storage Service.

The out-of-process Storage Service has the security benefit of moving the implementation
of some complex features, like IndexedDB, outside the browser process. A successfully
exploited vulnerability in storage code will not immediately translate into full browser
process control. The browser will not trust the Storage Service process any more than it
trusts other sandboxed service processes. Any requests for resources or operations
performed on the service's behalf must be validated appropriately by the browser.

At the same time, security bugs in storage code will still have High impact, because taking
control of the Storage Service process allows the attacker access to user data from other
origins, such as google.com.

Chrome would have better resilience to storage code vulnerabilities if the bulk of the
implementation of Web Platform features would move to Blink, and run inside the renderer
process. A vulnerability in Blink code would only expose the data stored by the origins that
the exploited renderer process can access. In particular, on platforms where full Site
Isolation is deployed, an origin would not be able to access other origins’ data. While this
project does not aim to move code to the renderer, the work here is a step forward in that
process, because it entails untangling storage features from the rest of
//content/browser.

Privacy considerations
None. No functional changes are planned.

Testing plan
Chrome’s Web Platform features have extensive integration tests, in the form of browser
tests and Blink web-tests. We will create a separate suite that runs these tests with an
out-of-process Storage Service.

Followup work
The current plan does not require any follow-up work, such as code cleanup.

This project does not aim to move storage feature code to the renderer process, as
discussed in the section on security considerations. Moving code to the renderer is a great
potential follow-up project.

Related Documents
Chrome Storage Service State Sharing - Web Platform API Dependencies

https://docs.google.com/document/d/1hoFcg8HRdbVmy12ANuIVaUaupu3wPNrGQfe6NNL_KDw/

	The Chrome Storage Service
	One-page overview
	Summary
	Platforms
	Team
	Bug
	Code affected

	Design
	Background
	Overview
	Basic Service Architecture
	Threading and Scheduling
	Browser Integration
	Restartability
	Sandboxing
	DOM Storage
	SpecialStoragePolicy
	File Service Removal
	Migration Into Storage Service
	Security

	IndexedDB
	Quota
	Service Worker

	Metrics
	Success metrics
	Regression metrics
	DOM Storage Metrics
	IndexedDB Metrics
	Service Worker Metrics
	Quota Metrics
	Cache Storage Metrics
	WebLocks Metrics

	Rollout plan
	Testing
	Finch Experiment
	Launch

	Core principle considerations
	Speed
	Security

	Privacy considerations
	Testing plan
	Followup work
	Related Documents

