
Understanding HDMI

HDMI, based on the DVI standard, is made up of a bunch of different protocols. They can be divided as following;

●​ Low speed protocols
○​ I2C - EDID/DDC

■​
○​ CEC

●​ High speed protocols
○​ TMDS

■​ Control Data - 10b2b
■​ Pixel Data - 10b8b
■​ Auxiliary Data - 10b4b
■​ HDCP

○​ Ethernet

Understanding TMDS 8b/10b encoding

Stage 0 - Pixel or Control Data
Control Tokens
Data Island

Stage 1 - Pixel Data Transition Reduction Encoding
XOR Encoding
XNOR Encoding
Choosing the Encoding
Example Pixel Data Encoding

Stage 2 - Inverting to keep DC balance

The DVI and HDMI standards transmit video data using a standard called Transition-Minimized Differential Signaling
(TMDS). One of the most important aspect of this standard is that it encodes the byte (8 bits) of each color channel
data (red, green, blue) into 10 bits and then transmits the information serially at 10x the pixel clock.

The fact that TMDS converts the 8 bits per byte into 10 bits for transmission means the encoding format is frequently
called "8b/10b". However, using this terminology is quite confusing as 8b/10b also refers to a totally different
encoding scheme IBM developed that is used in many other protocols such as PCI Express and DisplayPort! To
reiterate, the 8b/10b encoding scheme used in DVI (and thus also HDMI) is *totally different* to the IBM standard . 1

An important difference is that while both the TMDS and IBM schemes try to keep DC balance, TMDS sacrifices
short term DC balance to reduce the interference between the 3 channels (RGB) that are sent side-by-side.

The TMDS encoding scheme is actually very simple but for some unknown reason described by this almost
incomprehensible diagram found in the DVI specification:

1 The IBM standard is a neat combination of 5b/6b and 3b/4b coding methods. The Wikipedia page is actually a
pretty readable description of how it works.

https://en.wikipedia.org/wiki/8b/10b_encoding

Stage 0 - Pixel or Control Data
TMDS also uses almost two totally different encoding schemes depending on if the pixel data or control data is being
transmitted.

●​ Pixel data has 4 or fewer transitions in the first 8 bits.
●​ Control data has 6 or more transitions in the first 8 bits.

The pixel data contains the actual information which is displayed on the screen. The control data is mainly used for
synchronization and transmitted during the "blanking periods" of the video signal where no pixel data is available. 2

For DVI/HDMI this is You can see how this would look in the following diagram;

This is what the following part of the TMDS diagram is trying to explain . The "DE" stands for "Data Enable" and is 3

signalling that we are sending pixel data.

Some resources for full details of VGA timing are;

●​ OS Dev Wiki - Video Signals and Timing

3 Why this is put in the *middle* of the diagram, rather than as the first decision in the tree is unknown?
2 Blanking periods are left over from old CRT monitors needing to reset the position of the electron beam.

http://wiki.osdev.org/Video_Signals_And_Timing

Control Tokens
There are 4 fixed 10 bit control tokens which are used to transmit two bits of data called c0 and c1 (it could be called
a 10b/2b encoding). These signals are mapped to the VSync and HSync video signals.

Channel

Signals
C0 C1

0 - Blue HSYNC VSYNC

1 - Green CTL0 CTL1
2 - Red CTL2 CTL3

The control tokens are designed to be DC balanced.

Data
bits

Notes
Encoded bits DC

Bias c0 c1 A B C D E F G H X I

0 0 Default token to be sent 0 0 1 0 1 0 1 0 1 1 0

0 1 0 0 1 0 1 0 1 0 1 0 +2

1 0 1 1 0 1 0 1 0 1 0 0 0

1 1 1 1 0 1 0 1 0 1 0 1 -2

 yield ControlToken([0,0,1,0,1,0,1,0,1,1], c0=0, c1=0)
 yield ControlToken([0,0,1,0,1,0,1,0,1,0], c0=0, c1=1)
 yield ControlToken([1,1,0,1,0,1,0,1,0,0], c0=1, c1=0)
 yield ControlToken([1,1,0,1,0,1,0,1,0,1], c0=1, c1=1)

The DVI protocol guarantees that you will get XXX control tokens every YYY pixel tokens. This allows receivers to
use the control tokens to synchronize / deskew each of the pixel channels with the pixel clock.

Data Island
One way the HDMI standard extends the DVI standard is by allowing yet another type of data tokens be sent. These
are sent during long periods that would have been control tokens. They use yet another encoding scheme called
TERC4 which allows 4 bits of data per channel to be sent (hence it could be called a 10b/4b encoding scheme).

case (D3, D2, D1, D0):
0000: q_out[9:0] = 0b1010011100;
0001: q_out[9:0] = 0b1001100011;
0010: q_out[9:0] = 0b1011100100;
0011: q_out[9:0] = 0b1011100010;
0100: q_out[9:0] = 0b0101110001;
0101: q_out[9:0] = 0b0100011110;
0110: q_out[9:0] = 0b0110001110;
0111: q_out[9:0] = 0b0100111100;
1000: q_out[9:0] = 0b1011001100;
1001: q_out[9:0] = 0b0100111001;
1010: q_out[9:0] = 0b0110011100;
1011: q_out[9:0] = 0b1011000110;
1100: q_out[9:0] = 0b1010001110;
1101: q_out[9:0] = 0b1001110001;
1110: q_out[9:0] = 0b0101100011;
1111: q_out[9:0] = 0b1011000011;
endcase;

Stage 1 - Pixel Data Transition Reduction Encoding
The first thing TMDS does is reduce the number of transitions in the data byte . It does this by choosing between 4

either an XOR or XNOR encoding method.

XOR Encoding
Encoded Bit 0 == Data Bit 0
Encoded Bit 1 == Data Bit 1 XOR Encoded Bit 0
Encoded Bit 2 == Data Bit 2 XOR Encoded Bit 1
Encoded Bit 3 == Data Bit 3 XOR Encoded Bit 2
…

XNOR Encoding
Encoded Bit 0 == Data Bit 0
Encoded Bit 1 == Data Bit 1 XNOR Encoded Bit 0
Encoded Bit 2 == Data Bit 2 XNOR Encoded Bit 1
Encoded Bit 3 == Data Bit 3 XNOR Encoded Bit 2
….

Choosing the Encoding
The encoding method is determined by the number of "ones" (bits set) in the data byte;

●​ If fewer than 4 ones, use XOR
●​ If more than 4 ones, use XNOR
●​ If exactly 4 ones,

○​ If data bit 0 is 1, use XOR
○​ If data bit 0 is 0, use XNOR

The encoding method is entirely determined by the incoming data byte.

A 9th bit is added which describes which encoding method was used. "1" is added if the XOR scheme was used and
a "0" is added if the XNOR scheme was used.

Example Pixel Data Encoding

Data

Data bits Number of
"Ones" in

Data

Chosen Encoding

Encoded bits

a b c d e f g h A B C D E F G H X

0x01 1 0 0 0 0 0 0 0 1 XOR -- ones<4 1 1 1 1 1 1 1 1 1

0x0F 1 1 1 1 0 0 0 0 4 XOR -- ones==4 && data[0]==1 1 0 1 0 0 0 0 0 1

0x1E 0 1 1 1 1 0 0 0 4 XNOR -- ones==4 && data[0]==0 0 0 0 0 0 1 0 1 0

0x1F 1 1 1 1 1 0 0 0 5 XNOR -- ones>4 1 1 1 1 1 0 1 0 0

4 This reduction in transitions is probably why HDMI and DVI need to provide a dedicated pixel clock rather than
allowing the clock to be recovered from the data transmission.

Stage 2 - Inverting to keep DC balance

The encoding scheme however doesn't guarantee that the symbols have an even number of ones and zeros. This
means that the symbols will cause a DC bias.

To solve that problem, TMDS will sometimes choose to invert a symbol. This then requires another bit to determine if
the value was inverted.

Some of the symbols are balanced. For these symbols, we never invert them.

For some reason they don't invert the XOR/XNOR bit?

This means that the full symbol can be thought of as;

10 bit Symbol
Encoded Data

8 bits
Encoding format

1 bit
Inverted Symbol

1 bit
A B C D E F G H X I

Encoded 9 bits DC Bias
A B C D E F G H X
1 1 1 1 1 1 1 1 1 +8

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 -6

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1

0 0 0 0 1 1 1 1

VGA Signaling

http://labs.domipheus.com/blog/wp-content/uploads/2016/04/vga_800x600x60.png

 // $ xrandr --newmode "1280x1024_60.00" 109.00 1280 1368 1496 1712 1024 1027 1034 1063 -hsync +vsync
 // Based on code from http://cgit.freedesktop.org/xorg/app/xrandr/tree/xrandr.c#n3101

​ /*
​ -------------------> Time ------------->
​
​ +-------------------+
​ Video | Blanking | Video
 | |
​ ----(a)--------->|<-------(b)------->|
​ | |
​ | +-------+ |
​ | | Sync | |
​ | | | |
​ |<-(c)->|<-(d)->| |
​ | | | |
​ ----(1)--------->| | | |
​ ----(2)----------------->| | |
​ ----(3)------------------------->| |
​ ----(4)----------------------------->|

http://labs.domipheus.com/blog/wp-content/uploads/2016/04/vga_800x600x60.png

​ | | | |

​ -----------------\ /--------
​ | |
​ \-------\ /---/
​ | |
​ \-------/
 (a) - h_active
 (b) - h_blanking
 (c) - h_sync_offset
 (d) - h_sync_width
 (1) - HDisp / width
 (2) - HSyncStart
 (3) - HSyncEnd
 (4) - HTotal
​ */

​ assert(hTotal > hSyncEnd);
​ assert(hSyncEnd > hSyncStart);
​ assert(hSyncStart > width);
​ assert(vTotal > vSyncEnd);
​ assert(vSyncEnd > vSyncStart);
​ assert(vSyncStart > height);

​ mode->pixel_clock = dotClock / 1e3;
​ // 640x480 @ 75Hz (VESA) hsync: 37.5kHz
​ // Modeline "String des" Dot-Clock HDisp HSyncStart HSyncEnd HTotal VDisp VSyncStart VSyncEnd VTotal
[options]
​ // ModeLine "640x480" 31.5 640 656 720 840 480 481 484 500
​ // 16 64 <200 1 3 <20
​ mode->h_active = width;
​ mode->h_blanking = hTotal - width;
​ mode->h_sync_offset = hSyncStart - hTotal;
​ mode->h_sync_width = hSyncEnd - hSyncStart;
​
​ mode->v_active = height;
​ mode->v_blanking = vTotal - height;
​ mode->v_sync_offset = vSyncStart - height;
​ mode->v_sync_width = vSyncEnd - vSyncStart;

Refactoring Doc - https://docs.google.com/document/d/1L8lz7u2uj6MrzSQv4b1Vk6Rmic26okyRklOju5IWLYA/edit

Mapping to Spartan 6
Input
 Generating the bit clock

IDDR
ISERDES
IDELAY + phase detector

BitSlip

Symbol decoding
 - proper decoding
 - lookup table
 - 10 bit LUT == 2 * 5 bit LUT per out bit

Output
 OSERDES
 Hamsters crazy 1080p - http://hamsterworks.co.nz/mediawiki/index.php/Spartan_6_1080p

https://docs.google.com/document/d/1L8lz7u2uj6MrzSQv4b1Vk6Rmic26okyRklOju5IWLYA/edit
http://hamsterworks.co.nz/mediawiki/index.php/Spartan_6_1080p

	Understanding HDMI
	Understanding TMDS 8b/10b encoding
	Stage 0 - Pixel or Control Data
	Control Tokens
	Data Island

	
	Stage 1 - Pixel Data Transition Reduction Encoding
	XOR Encoding
	XNOR Encoding
	Choosing the Encoding
	Example Pixel Data Encoding

	
	
	Stage 2 - Inverting to keep DC balance

	VGA Signaling

