
Token Engineering 101
PPT

TE Framework

●​ Discovery Phase

○​ Defining the System Goals

○​ Defining the System Requirements

○​ Stakeholder Definition and Analysis

○​ Definition of Interactions and Value Transfers

○​ Metrics Definition and Analysis

○​ Causal Relationships and Systems Thinking

○​ Identification of Stocks and Flows in the System

●​ Design Phase

○​ State system representation in mathematical equations and variables

Summary

●​ Idea Validation

○​ What problem is this protocol solving?

○​ Design Goals Identification

○​ Business Goals Validation

○​ Technical Feasibility of the Product

●​ Market Analysis

○​ Competitors of Product

○​ Neishe strategies

○​ User Base

○​ Partnerships, integration opportunities

●​ Mechanism Design (Implementation Theory)

https://docs.google.com/presentation/d/13jTezYT7Qw6z-t7s3vmlfD7g4mP58bgHBwXCtOZ9DK8/edit#slide=id.g13b0de46162_1_0
https://docs.google.com/presentation/d/13jTezYT7Qw6z-t7s3vmlfD7g4mP58bgHBwXCtOZ9DK8/edit#slide=id.g13b0de46162_1_0

○​ Technical Architecture and Product Workflow

■​ Dominant Strategies

■​ Behavior Mechanics

●​ Agent Based Modeling

■​ Operational Mechanics

●​ DAO, Jury, Appeal Board, Dispute Resolution etc.

■​ Game mechanics

●​ Non financial incentives (Reputations, Weights, Voting

Power, Categorization of Agents etc.)

○​ Network growth / adoption strategies

■​ TVL growth strategy

■​ Will the utility increase with time / adoption?

■​ Demand and Growth Drivers

■​ Future Development opportunities

■​ Holder incentives

■​ Early Adopters Incentives

●​ Economic model

○​ Financial model

■​ Initial Supply

■​ Max Supply

■​ Different ways how Tokens enter and exit network

○​ Reward Distribution

○​ Token Distribution

■​ Emission Schedule

■​ Vesting Schedule

●​ Linear, Growing, Shrinking, Dynamic

○​ Fee structure

○​ Staking, Lockups

○​ Deflationary Model

■​ Buybacks and Burns

■​ Prohibited on demand token minting

■​ More “Ins” than “outs”

○​ Inflationary Model

■​ Inflation schedule (Initial preset rate, Adjusting(time period)

■​ Inflation rate

■​ Approximate inflow into circulating supply

●​ Aspects of Game theory

○​ Incentive, Disincentive and Slashing Mechanisms

○​ How do incentives of actors of a system align with protocol

incentives?

○​ Incentivizing desired behaviors

○​ Disincentivizing unwanted behaviors

○​ Slashing Culprits

○​ Incentives to ensure long enough token hold time

○​ Slashing upon quick withdrawal

○​ Alignment of user behaviors with Protocol Goals through economic

incentives and disincentives

●​ Marketing strategies

●​ Compliance and regulatory Requirements / challenges

Idea Validation

Design Goals Identification

Requirement Gathering

○​ Verbal idea explanation

○​ Documentation (if available)

○​ Similar Protocols review

Questionnaire

○​ Main use cases and functionality of the token

○​ Economic goal of the token (price Appreciation, Stability, Inflation

hedge etc.)

○​ Business goal of the project

○​ Vesting or pre defined token distribution (if any)

○​ Most similar projects and their markets

○​ Future utilities of token

Token Utility

○​ Why do you need a token?

○​ Who uses a token?

○​ Why should they use the Tokens?

○​ Will the utility of the token grow with time?

Economic Model Design

Mechanism Design

What is Mechanism Design?

A useful caricature is to think of mechanism design like inverse game theory. In

game theory, we take the game as a given and analyze its outcomes according to

players’ utilities. In mechanism design we start by defining desirable outcomes

and work backwards to create a game that incentivizes players towards those

outcomes. Another (similarly caricatured) way of looking at it is to think of game

theory as the positive side and mechanism design as the normative side of the

same coin.

Protocol Architecture / Workflow

○​ ABM

○​ How do incentives of actors of a system align with protocol

incentives?

○​ How do different pieces of the system interact and connect with each

other?

○​ Rules of Ecosystem

○​ How will these rules be implemented?

ABM

○​ A set of agents, their attributes and behaviors.

○​ A set of agent relationships and methods of interaction: An underlying

topology of connectedness defines how and with whom agents

interact.

○​ The agents’ environment: Agents interact with their environment in

addition to other agents.

○​ Agents

■​ Activities / Attributes / Behaviors of agents

○​ Topology

■​ Rules

■​ Link Structure

○​ Environment

■​ Stress test

■​ Behaviors emerging from interactions of agents

Game Theory

Incentive / Disincentive Mechanisms

○​ Alignment of reward mechanism with enhancement of network

adoption mechanism (Curve: r'=wg*wt*r, Liquidity Gauge)

○​ Incentivize users to participate in governance (Curve: 2.5 factor

slashing)

○​ Profit - Sharing

○​ Incentives to ensure long enough token hold time

■​ Amount and time weighted incentives (Curve: t/tmax factor,

time weighted voting weight)

■​ Slashing upon quick withdrawal

○​ Assign weight to factors in incentive models to prioritize network

growth (Curve: Gauge weight, Gauge type weight)

○​ Marginal Case Analysis - Sustainability of model in controlled

environment constraints

Forecasting and Predictive Analysis

●​ Statistical Models

●​ Machine Learning Models

●​ Data Analytics

Financial Risk Assessment / Management /

Optimization

●​ Complex dynamic systems

●​ Updating parameters and monitoring

●​ Monitoring usage of protocol

●​ Characterizing Types of users

●​ Simulating theses cases

●​ Edge case scenarios simulations

Tokenomics DAO

Introductory Content
●​ All You Need to Know About Tokenomics

○​ Great starting point outlining the basics of tokenomics and overview of the

key variables: supply, burning, monetary policy, token distribution and

earnings

●​ An introduction to token economics (tokenomics)

○​ Similar level of detail to link above, but with a bit more detail on token

distribution

●​ Tokenomics 101: The Basics of Evaluating Cryptocurrencies

○​ Breakdown of tokenomics through the lens of supply + demand as opposed

to the underlying drivers (e.g. burning, monetary policy, etc.), with a

high-level evaluation of Convex Finance

●​ Economics Design Youtube

○​ Lisa JY Tan’s channel on tokenomics. She’s also authored Economics and

Math of Token Engineering and DeFi : Fundamentals of Token Economics

Sample Protocol Tokenomics Overviews
●​ Each example covers initial tokenomics, governing principles and the associated

trade offs made when designing incentives compared to other protocols.

●​ NEAR Protocol

https://medium.com/coinmonks/all-you-need-to-know-about-tokenomics-39642fe11d02
https://alexbeckett.medium.com/an-introduction-to-token-economics-tokenomics-c6eb9211778f
https://every.to/almanack/tokenomics-101
https://www.youtube.com/c/economicsdesign
https://www.amazon.com/Economics-Math-Token-Engineering-DeFi-ebook/dp/B08NCP7K7S
https://www.amazon.com/Economics-Math-Token-Engineering-DeFi-ebook/dp/B08NCP7K7S
https://near.org/blog/near-protocol-economics/

●​ Harmony One (Initial Token Economic Model, Updated Tokenomics, Economic

Model)

●​ Florian’s substack

●​ Ethereum Tokenomics 2021: Impact of Eth2, EIP 1559, and L2 Scaling Solutions on

Demand/Supply

○​ Slightly outdated, but helpful illustration of how changes infrastructure

changes impact supply/demand dynamics for ETH (or another crypto asset)

Advanced Content

●​ https://ahitchhikers.substack.com/ - good deep dive substack on token

engineering.

●​ - Value capture and distribution of Chapter 3: Cryptoeconomic Patterns

protocols.

Tokenomics Evaluation Framework

Supply

Key Question: Based on supply alone, will this token hold or increase it’s value? Or will that

value be inflated away?

●​ Total Supply

○​ How many tokens exist today?

○​ How many will ever exist? (eg is there a supply cap)

●​ Issuance rate

○​ Is the issuance rate fixed or variable?

○​ If variable, what are the factors that determine (and can influence) issuance

rate?

●​ Allocation/Vesting

○​ How was supply initially allocated among investors, community, core team,

etc? Are there any group(s) with a significant holding that could drive

material selling pressure upon vesting?

https://docs.google.com/presentation/d/1j4aNHhpaxUJjJ-DmnG2DC_zCGDc65oq-ND7zHNrmeKk/edit#slide=id.ga24c72073b_0_23
https://www.harmony.one/
https://blog.harmony.one/harmony-token-economic-model/
https://blog.harmony.one/harmonys-new-tokenomics/
https://docs.google.com/spreadsheets/d/1bcABBb47X8jOAQC-Dno9A9HFtLf8vlRp70P9xVqjhG4/edit#gid=1322834538
https://docs.google.com/spreadsheets/d/1bcABBb47X8jOAQC-Dno9A9HFtLf8vlRp70P9xVqjhG4/edit#gid=1322834538
https://fstrauf.substack.com/
https://hackernoon.com/ethereum-tokenomics-2021-impact-of-eth2-eip-1559-and-l2-scaling-solutions-on-demandsupply-gx5034tw
https://hackernoon.com/ethereum-tokenomics-2021-impact-of-eth2-eip-1559-and-l2-scaling-solutions-on-demandsupply-gx5034tw
https://ahitchhikers.substack.com/

○​ What is the vesting schedule for the largest holders?

Demand

Key Question: Why would someone hold this token?

●​ ROI

○​ Excluding any price appreciation, what is the return generated by simply

holding the token? (eg staking)

○​ Is there an opportunity to earn additional return by yield farming?

○​ Are earnings/fees generated from the protocol distributed back to token

holders?

○​ Does any “rebasing” take place as the protocol inflates?

■​ Rebasing works similar to a stock split, whereby holding and staking

the token enables the holder to receive more, thereby offsetting any

impact of inflation (eg % ownership remains constant)

●​ Community

○​ How active is their Discord/Twitter?

○​ Has an ecosystem fund been announced? Grants? Hackathons?

○​ How is the protocol actively working to drive additional community

engagement?

○​ Do one-time + ongoing initiatives drive additional token demand?

●​ Lockups

○​ Is there a lockup program in place?

○​ If there is a lockup program in place, what is the incremental value of

rewards and what are the requirements to earn those rewards?

○​ What % of total tokens outstanding are locked up?

○​ How much selling pressure is generated upon lockup expiration (and when)?

○​ Are there other non-monetary benefits to staking + locking up tokens? (eg

increased voting power)

DAO Specific Content

●​ Incentive Design & Tooling for DAOs

○​ How to match a DAO's goals with the right incentive mechanisms to achieve

them...

Past trends in tokenomics

1.​ Token staking rewards i.e. yield farming

2.​ Pool 1 - single token staking pool

3.​ Pool 2 - liquidity token staking pool

4.​ Issues

-​ Mercenary capital tends to farm and dump tokens with liquidityliquidit4y

and token price spike followed by a dump and rotation into other newer

projects

-​ Bag holders end up blaming the project for normal market movements

-​ Fine balancing act between too low APY thus unable to attract new capital

and too high APY leading to being called a scam and leading to quicker

dumping

-​ Can lead to over paying for liquidity and capital

Different token release schedules

1.​ Linear

a.​ Easiest to implement

b.​ No real beneficial rewards for early or late users

c.​ Capital inflow will dilute rewards preventing further capital inflow

2.​ Growing

a.​ Token release increases over time ala Badger

b.​ Will get lots of hate from community and criticism

c.​ There is no real advantage to being early

https://blog.aragon.org/incentive-design-tooling-for-daos/

d.​ Higher rewards later can help sustain higher APYs and thus continuous

capital inflow

3.​ Shrinking

a.​ Token release shrinks over time

b.​ Fomo aspect incentivizing early entry into project

c.​ Lower outflow at the tail end of the spectrum can render the protocol,

alongside normal downward price trends, unable to attract new capital

4.​ Dynamic

a.​ A dynamic token release schedule can help prevent overpaying for liquidity

early on, while providing rewards for early users by reducing rewards later

as theres less risk, to match APYs on other projects

b.​ Can be difficult to advertise and sell users on

c.​ Few projects implementing this

d.​ More work and adjustments needed

e.​ https://www.mechanism.capital/liquidity-targeting/

Current and new trends in tokenomics

1.​ Protocol owned liquidity

a.​ Purchase LP tokens off holders instead of renting liquidity via extended

farming programs

2.​ Vote escrowed tokens

a.​ Users lock tokens for 1 week to 4 years in exchange for a time weighted

token. Pioneered by curve. veToken can be used for voting, as holders are

expected to vote with long term interest in mind, and can be incentivized

with fee sharing or farming rewards boosts

b.​ Reduce circulating supply to potentially make the token deflationary and

help boost price with reduced sell pressure

https://www.mechanism.capital/liquidity-targeting/

3.​ XTokens

a.​ Similar to veTokens but without a required lockup

b.​ Tokens can be staked for xTokens e.g. Trader Joe, Sushi

c.​ xTokens accrue rewards directly with the price of the xToken being worth >1

of the underlying token

4.​ Revenue or fee sharing

a.​ Incentivize token locking via vote-escrow schemes in exchange for protocol

fee sharing

b.​ Offer high APY without diluting/inflating free floating token supply

c.​ Implemented by blizz, geist, qidao, iron.finance

5.​ Vested farming

a.​ Instead of releasing 100% of a users farmed tokens on claim, vest the

tokens at a linear rate for a time period. This allows advertising higher APYs

and reflects some of the tokens back to the treasury for more farming

longevity or ve token lockers.

b.​ This has been implemented by Adamant.finance, blizz.finance, geist.finance,

kyber

c.​ Overall, it doesn’t seem like it stops farm and dumping of tokens

6.​ Options liquidity mining

a.​ Instead of, or alongside the regular tokens, farmers get a options NFT

b.​ Options NFT can be redeemed after a period of time,e.g. 1 month, for the

token for a pre-set or floor price, allowing the user to option to buy the

token at a discount from the protocol

c.​ If the price of the token drops below the floor price of the option, the option

becomes worthless, providing a floor price for the token

d.​ Concurrently raises money for the protocol and treasury as the user is

buying the tokens off the protocol instead of off the market

e.​ Pioneered by pods.finance and kp3r

Price support trends

1.​ Buyback and burn

a.​ Protocol revenue used to buyback tokens from the market and burn them

b.​ Theory is that reduced supply will help boost investor confidence and price

c.​ Buyback also provides some price support

d.​ Overall success of these programs seems minute

2.​ Buyback and make

a.​ Protocol fees are used to buyback tokens and redistribute

b.​ Can be redistributed to token holders thus boosting APY

c.​ Can be used to incentivize or fund protocol development

d.​ Provides some price support and investor confidence from the buybacks

e.​ Can be used to prolong project farming runway in case of capped token

supply

3.​ Burn

a.​ Tokens are burnt, reducing supply to imply scarcity to boost investor

confidence and potentially trigger FOMO

b.​ Not very effective from observations

c.​ Can reduce project runway as there’s less tokens left to incentivize liquidity

4.​ Fee distribution

a.​ Protocol fees are distributed to token holders as mentioned before

b.​ Gives a direct secondary incentive for holding the protocols tokens and does

not lead to users directly dumping the gained tokens thus negatively

affecting token price

Miscellaneous trends

1.​ Reflections

a.​ Wherein token transfers cause some percent of the tokens to be reflected

back to the treasury /token holders / burnt

b.​ Mainly used by meme coin projects such as Safemoon

c.​ Fei used this for a while but was met with criticism

d.​ Transfer tax can cause transfers to fail on low slippage causing the illusions

of low liquidity, which is bad

e.​ Can cause difficulty integrating with other protocols

Token supply trends

2.​ Rebasing tokens

a.​ Token balance changes based on rebasing to try and control token value

b.​ Used by protocols like Frax, Ampleforth, Badger Digg, OHM

c.​ https://www.mechanism.capital/algorithmic-stablecoins/

d.​ OHM

https://www.mechanism.capital/algorithmic-stablecoins/

Domain Knowledge (Economics,

Defi, Finance etc.)

Mechanism Design

https://medium.com/blockchannel/a-crash-course-in-mechanism-design-for-cryptoeconomic-app
lications-a9f06ab6a976

DeFi Basics

●​ Stablecoins

https://medium.com/blockchannel/a-crash-course-in-mechanism-design-for-cryptoeconomic-applications-a9f06ab6a976
https://medium.com/blockchannel/a-crash-course-in-mechanism-design-for-cryptoeconomic-applications-a9f06ab6a976

○​ Algo and crypto backed

○​ Asset backed

●​ Uniswap V3

○​ Grained liquidity farming

○​ Non forkable

●​ Sushiswap

○​ Vampire Attacks

○​ Well executed Uni - V3 fork

●​ Curve

○​ Solving Slippage issue

■​ Negative slippage

■​ Positive Slippage

○​ Stable Swap

○​ CPMM

○​ Liquidity Mining

■​ Earn Trading fee from your liquidity provided (AMM)

■​ Extra incentives for liquidity providers

■​ CRV Farming

■​ Curve Wars (Voting for emissions directed)

●​ Aave

○​ Collateral backed loans

○​ Collateral should be bigger than Borrowed asset

○​ Borrower Pays interest

○​ Use borrowed money for arbitrage opportunities

○​ aTokens interest bearing derivatives

■​ Interest is paid to aToken Holders

○​ Flash Loan

■​ Borrow without collateral

■​ Used for exploits

●​ Maker DAO

○​ Algorithmic stable Coins

■​ UST

○​ Crypto Collateralized Stable coins

■​ DAI

●​ Borrowing Stable Coins

●​ 100% overcollateralized

●​ Liquidations in auctions

○​ Fiat Backed Stable coins

■​ USDT, USDC

●​ Yearn Finance

○​ Competitor of Curve

○​ Gives Stable coin in yield farming reward instead of CRV in case of Curve

●​ Trending

○​ Game Fi and metaverse

■​ When you earn money by playing game it becomes a job not game

○​ DAO 2.0

○​ Insurances

○​ Institutions in DeFi

Foundations of Finance

●​ Financial reporting:
○​ Balance sheet = Assets - Liabilities

○​ Cash Flow = Receipts - Payments

○​ Income Statement / Profit loss Statement = Revenue - Cost

●​ Inventory

●​ Accrued expenses / Accruals

●​ Interest

●​ Return

●​ Compounding interest / Growth

●​ Interest only loans:

●​ Equal capital Repayment Loans:

●​

●​ Linking primary Financial statements:

Economics

●​ Nominal Price

○​ Current dollar price

○​ Price of a good in markets at a given time

●​ Real Price

○​ (CPIi-1 /CPIi) * Nominal Price

○​ Constant dollar price

○​ Price relative to aggregate measure of prices

○​ Price adjusted for inflation

●​ CPI

○​ Change in price of basket of goods purchased by consumers

○​ Percentage changes in CPI measures the rate of inflation in economy

●​ PPI

○​ Measures how price at wholesale market changes

○​ Percentage changes in PPI measures the cost inflation

○​ Predicts the future changes in CPI

●​ Supply and Demand Curves

○​ Equilibrium

○​ Changes in market Equilibriums

○​ Shifting of Supply and Demand Curves based on Factors (Increase in income,

Cheaper Raw material etc.)

●​ Price Elasticities of Supply and Demand

○​ Sensitivity of a variable w.r.t another

○​ Percentage change in one variable in response to 1 percent change in another

variable

●​ Price elasticity of demand

○​ Percentage change in quantity demanded in response to 1 percent change in

price

○​ Ep=(ΔQ/Q) / (ΔP/P)

○​ Ep>1 ​ Demand is price elastic

○​ Ep<1​ Demand is price inelastic

○​

●​ Price Elasticity of Supply

○​ Percentage change in quantity supplied from one percent change in price

●​ Indifference Curves / Maps

●​ Cardinal Utility Function

○​ A utility function which provides numerical value of level of satisfaction of a

consumer by getting a specific market basket

●​ Budget line

Mathematics
Resources:

Calculus

●​ Derivatives

○​ Partial derivatives (Marginal products)

○​ Slope

○​ Level sets/curves of a function

○​ Cobb Douglas production (utility) function

○​ isoQuant

○​ Level sets and gradient

https://www.tensorflow.org/resources/learn-ml#math-concepts

○​ Mixed partials / Young’s Theorem

○​ Hessian and Young’s Theorem

○​ 1st derivative

■​ Slopes of tangent

■​ Vf = 0

●​ Gives critical point

○​ 2nd derivative

■​ Concavity

■​ V2f=0

●​ Gives Concave up or down / Positive, negative definite

●​ Differentials

○​

○​

○​ Slope of level sets =

○​ Production functions (Cobb Douglas function)

■​ 16L1/4K3/4

■​ Isoquants = level sets

■​ Marginal rate of technical substitution = slope of level sets

○​ Utility functions

■​ $$U(x1,x2) = X1 * X2$$

■​ level sets = Indifferent curves

■​ Marginal rate of substitution = slope of level sets

○​ Positive Definite Matrices(V2f=0) Hessian

■​ Leading principal minors

https://www.codecogs.com/eqnedit.php?latex=Dy%20%3D%20f'%20*%20dx#0
https://www.codecogs.com/eqnedit.php?latex=Dy%20%3D%20f'1%20*%20dx%20%2B%20f'2%20*%20dx#0
https://www.codecogs.com/eqnedit.php?latex=%20dx2%20%2F%20dx1%20%3D%20-f1%20%2F%20f2#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=p(L%2CK)%20%3D%20%24%24#0

■​ If all determinants of leading principal minors are positive then its positive

definite matrix

■​ Minima

■​ |V2f| > 0 , f11>0

■​ Eigenvalues > 0

○​ Negative Definite Matrices (V2f=0)

■​ If all determinants of leading principal minors are alternate signs starting

with a negative then its negative definite matrix

■​ Maxima

■​ |V2f| < 0 , f11< 0

■​ Eigenvalues < 0

○​ Saddle Points(V2f=0)

■​ Neither positive nor negative definite matrix

○​ Extreme Value theorem

■​ Constraint is a point (x,y) instead of a function, which is case in lagrange

multiplier

●​ Lagrange Multiplier

■​ Vf(x,y) =

■​ Vg(x,y) λ

■​ Used To Find max/min of f(x,y) subjected to constraint g(x,y) = k

■​ Budgeting for least cost

●​ Cost function constrained by budget

●​ VC(x,y) = VB(x,y) λ

■​ Cobb Douglas function

●​ 2L1/3K2/3

●​ Constraint Budget(L,K) = 60L + 50K

○​ Find MRTS

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=p(L%2CK)%20%3D%20%24%24#0

○​

○​ Find Stationary Points

○​ Price Elasticity of Demand

■​ R(P)=P.D(P)

■​ Price elasticity= P.D’(P) / D(P)

●​ Chain Rule

○​ Composite function

●​ Sets

○​ Union

○​ Intersection

●​ Geometric Series

○​ PDV

○​ Discount rate

○​

Linear Regression Analysis

●​ Lines of best fit / Least square estimators

●​ y is the predicted value of the dependent variable (y) for any given value

of the independent variable (x).

●​ B0 is the intercept, the predicted value of y when the x is 0.

●​ B1 is the regression coefficient – how much we expect y to change as x

increases.

●​ x is the independent variable (the variable we expect is influencing y).

●​ e is the error of the estimate, or how much variation there is in our

estimate of the regression coefficient.

y=mx+c+u

R^2=SSE/SST

SST= y1-ya
1

𝑛

∑

SSE= y-ya
1

𝑛

∑

u= Residuals= y1-y

●​ Least Square Estimators

Number of man-hours and the corresponding productivity (in units) are furnished below.

Fit a simple linear regression equation ˆY = a + bx applying the method of least squares.

Solution:

The simple linear regression equation to be fitted for the given data is

ˆYˆ = a + bx

Here, the estimates of a and b can be calculated using their least squares estimates

From the given data, the following calculations are made with n=9

Substituting the column totals in the respective places in the of the estimates aˆ and bˆ ,

their values can be calculated as follows:

Thus, bˆ = 1.48 .

Now aˆ can be calculated using bˆ as

aˆ = 121/9 – (1.48× 62.1/9)

= 13.40 – 10.21

Hence, aˆ = 3.19

Therefore, the required simple linear regression equation fitted to the given data is

ˆYˆ = 3.19 +1.48x

It should be noted that the value of Y can be estimated using the above fitted equation

for the values of x in its range i.e., 3.6 to 10.7.

Linear Algebra

●​ Linear Equations Solution

○​ Gauss Elimination Method

○​ Gauss Jordan Method

○​ LU decomposition Method

○​ Jacobi iteration Method

○​ Gauss Seidel Method

○​ Substitution Method

○​ Row reduction - Reduced echelon form of Matrix

○​ Square matrix

■​ x=A^-1 * b

○​ Augmented Coefficient matrix

○​ Underdetermined system

■​ x=t, Elimination / substitution method

○​ Homogeneous systems of equations

○​ Matrices

■​ Multiplication

■​ Addition

■​ Transpose

■​ Inverse

■​ Order

■​ Determinant

■​ Adjoint

○​ Output - Input Analysis using matrices

■​ Technology matrix of Leontf

○​ Cramer’s rule

■​ Xj=|Aj| / |A|

○​ Eigenvalue problem

■​ | A- λ𝐼 | = 𝑉

■​ Av = lambda * v

■​ | A - lambda*I | = 0

■​ A^n = Q * Lambda^n * Q^-1

Mathematical Modeling Basics

●​ Derivative

●​ Phase Lines and stability of equilibrium solution

●​ Directional Fields

●​ Bounded growth

●​ Euler’s method

Numerical Analysis

●​ Interpolation

○​ Newton forward / Backward

○​ Newton center value

○​ Gauss forward / backward

○​ Langrange interpolation (Unequal interval) / find polynomial

○​ Inverse lagrange formula

○​ Newton divided difference formula

●​ Numerical integration

○​ Trapezoidal rule

■​ Applicable For any h intervals

○​ Simpson ⅓ rule

■​ Applicable for Even intervals

○​ Simpson ⅜ rule

■​ For intervals of multiples of 3

●​ Solution of ODE by numerical method

○​ Picard Method

○​ Euler’s method and euler’s modified method (1st and 2nd order ODEs

respectively)

○​ Runge-kutta method (4th order ODEs)

○​ Milne predictor and corrector Method

○​ Adam Bashford predictor and corrector method

●​ Curve Fitting (Straight line)

●​ Least square (Second degree parabola)

●​ Roots of an Algebraic and transcendental equation using Numerical Methods

○​ Bisection Method

○​ Regula Falsi Method

○​ Iteration method

○​ Secant Method / Chord Method

○​ Newton Rophson Method

Fourier Analysis

●​ Fourier Series

●​ Laplace transform (for CT) / Z-Transform(for DT) is used for design purpose, while

fourier series is used for analysis purpose

●​ Fourier series is an infinite representation of periodic functions in terms of sine and

cosine

●​ https://kilthub.cmu.edu/articles/thesis/Examining_Applications_of_Fourier_Transforms_t

o_Financial_Data_and_Covariance_Estimation/12824255

●​ https://www.youtube.com/watch?v=jbn-5JeYVuY&ab_channel=MichaelPollock

●​ https://www.youtube.com/watch?v=VYpAodcdFfA&ab_channel=InfoQ

○​ Periodic Signals

■​ Continuous time fourier series

■​ Discrete time fourier series

○​ Non-periodic Signals

■​ Continuous time fourier Transform

■​ Discrete time fourier transform

●​ Fourier Transform

○​ Converting Time-Amplitude functions to Amplitude-Frequency functions

○​ Moving from time domain to frequency domain

●​ Laplace Transform

○​ Time domain to frequency domain

○​ Used to solve complex Differential equations

https://kilthub.cmu.edu/articles/thesis/Examining_Applications_of_Fourier_Transforms_to_Financial_Data_and_Covariance_Estimation/12824255
https://kilthub.cmu.edu/articles/thesis/Examining_Applications_of_Fourier_Transforms_to_Financial_Data_and_Covariance_Estimation/12824255
https://www.youtube.com/watch?v=jbn-5JeYVuY&ab_channel=MichaelPollock
https://www.youtube.com/watch?v=VYpAodcdFfA&ab_channel=InfoQ

Statistics and Probability

●​ Expected Value / Mean

●​ Variance

●​ Discrete Random variable

●​ Probability mass function

●​ Probability distribution function

●​ Continuous Random Variable

●​ Probability density function

●​ C.D.F

●​ Binomial Distribution

Product Management

Digital Product Management

What is Digital Product Management?

●​ Features of DPM

○​ Planning and organizing

○​ Managing Tasks

○​ Budget and control costs

●​ Components of DPM

○​ Customer, competitor, and market research

○​ Product roadmap and vision maintenance and development

○​ Product and customer analysis

●​ What is a DPM?

○​ Intersection of three components of a product

■​ User experience (Desirability)

■​ Technology (Feasibility)

■​ Business (Viability)

https://airfocus.com/glossary/what-is-market-development-strategy/
https://airfocus.com/glossary/what-is-a-product-roadmap/

The main difference between digital and non-digital product management is how

available data is. Other than that, managing digital products is fundamentally the same

as managing non-digital products. Just like non-digital product managers, digital product

managers have to:

○​ Define the product

○​ Understand the customer’s needs

○​ Describe and analyze the product strategy

○​ Explain the market strategy

○​ Guide the engineering of the product

○​ Direct marketing and sales tactics

○​ Compile and update requirements

○​ Manage the product roadmap and effectively communicate any changes

○​ Represent the product’s point of contact

What Are a Digital Product Manager’s Responsibilities and

Job Description?

●​ The specific responsibilities of a digital product manager will differ in each

company. But you can expect to find at least the following responsibilities on their

digital product manager job description.

●​ Lead the development of a digital product (or a suite of such products).

●​ Analyze the market to make sure the product continues to offer advantages over

its competitors.

●​ Understand the user persona and buyer persona and develop unique value

propositions for both.

●​ Monitor, analyze, and act on key product analytics. Continually improve the

product, increase retention rate, and boost customer lifetime value (LTV).

●​ Create and prioritize the strategic product roadmap.

https://airfocus.com/product-learn/what-is-product-strategy/

Skills digital product managers need

●​ Rapid iteration and deployment

○​ Digital product managers today have little choice but to embrace

agile principles. These principles favor delivering working products to

users frequently. This means digital products must develop the ability

to rank small updates. Because the ranking ability is important to

push updates out to customers on shorter timescales.

●​ Design thinking

○​ The user experience is an essential component of a digital product.

The best software or mobile app will fail if its interface and user

experience is frustrating or confusing. A digital product manager

must learn how to create an intuitive product experience.

●​ Understanding usage data

○​ Digital product managers have an advantage over product managers

who oversee physical products. They can track how people use their

products and learn what’s working and what isn’t. Digital product

managers must become skilled at reading and interpreting these

product analytics. Because they must leverage these insights into the

ability to improve their products.

Process of Product management

●​ Waterfall Method

○​ Discrete Units who are supposed to plan and manage with high degree of

precision (Assembly Line concept

○​ Applicable in organizations that are organized by departments and

specialization

○​ For physical and mechanical services where the world is predictable and

markets are less volatile

●​ Agile Method

○​ For innovation and Tech centered projects

●​ Continuous Design

○​ Ideas

○​ Designs

●​ Application Development

○​ Execution

○​ Code

●​ Continuous Delivery

○​ Test and Deployment

○​ Cost to release a successful feature = (Cost to build a feature) / (Portion of

all release content that is successful)

○​ Cost to build feature = Team cost / Release content

●​ Hypothesis Testing

○​ Product / Market Fit

○​ Managing a Product Pipeline

○​ Design Team

○​ Development Team

■​ JTBD

■​ Agile User Stories

■​ Prototypes

■​ App Analytics

■​ Usability testing

■​ DevOps

○​ Product Manager vs product owner

■​ Focus: Market facing vs Dev / Eng facing

■​ Creates: Focus, direction, roadmap vs story backlog

■​ Review: Features vs Execution of user stories

■​ Internally facing vs externally facing

○​ Analytics and Data science Team

■​ Dependent and independent variable correlation

■​ Forecasting through predictive models

■​ Framing dependent variable

■​ How results are changing the behaviors

○​ Consulting and support team

■​ Physical interaction and good relationship with the support team

○​ Sales and Marketing Team

■​ Business model canvas

■​ Getting to better ideas

○​ Finance Team

■​ Managerial and financial

○​ Legal Team

○​ Management Team

■​ Understanding management’s overall organizational goals

●​ Primary focus of a product manager

○​ Identifying product market fit hypothesis

○​ Testing it with interdisciplinary team

○​ Facilitating Alignment with outside stakeholders

●​ User Journey

○​ Trigger

○​ Action

○​ Variable Reward

○​ Investment

●​ HOOK Methodology

○​ Managing habits

○​ Internal and external triggers

○​ Simplest behavior of user after getting triggered

○​ Variable and unpredictable reward

○​ Investment of user in product which brings him back to product

●​ Dealing with Enterprise Customers

○​ Anchoring Problems not solutions

○​ Writing a full narrated story

○​ Work in prioritized outcome based batches

○​ Test often and appropriately

○​ Over invest in training

○​ Over Invest in onboarding

○​ Design for variation

○​ If it’s a ‘No’ say ‘No’

●​ Product Death Cycle

○​ Instead of focusing on features (which are easily quantifiable) focus on

value those features/product is delivering to user

○​ Focus on outcomes and think beyond features

●​ Storyboarding

○​ AIDA Funnel

■​ Awareness

■​ Interest (Consideration)

■​ Desire (Consideration)

■​ Action (Conversion)

○​ The Customer Funnel

●​ Managing a product with a hardware

○​ Functional Decomposition

●​ Product Manager Spectrum

●​ Agile Methodology of Product Pipeline

●​ Find the right Problem

○​ Persona hypothesis

○​ JTBD hypothesis

○​ Demand hypothesis

○​ Identify DVs and IVs

●​ Find the right solution

○​ Usability hypothesis

○​ App analytics

●​ Lean Startup Method

○​ The lean startup methodology is a method of managing and building a

business or startup by experimenting, testing, and iterating while developing

products based on findings from your tests and feedback.

○​ This method of business management and product development is

designed to deliver products to customers at a quicker pace (often tested in

the form of an MVPby focusing on product features that have been

validated through explicit customer feedback at various stages in the

product development cycle.

○​ Entrepreneur Eric Ries first introduced this methodology in a book that he

authored in 2008, which is titled "How Today's Entrepreneurs Use

Continuous Innovation to Create Radically Successful Business".

○​ The goal of using this methodology is to get rid of wasteful practices during

the initial stages of a company, which provides the company with a higher

possibility of long-term success. By using the lean startup methodology, it's

possible for early-stage startups to garner success without requiring high

amounts of funding, comprehensive business plans, or a product that has

no flaws.

○​ For the lean startup process to be successful, the startup that uses it will

need to focus on obtaining customer feedback on the initial product. This

feedback will help you make changes and iterations on the product that will

allow it to be improved over time in accordance with the wishes of the

customers. The customer feedback that you receive should also keep you

from spending resources on services and features that your customers don't

want. The lean startup methodology is aimed at using the lowest amount of

resources possible.

●​ Developing new Products - Progress

○​ Customer Discovery (MVP)

○​ Customer Validation (MVP)

○​ Customer Creation (Product Market Fit)

○​ Company Building (Scale)

●​ Learning Vs Scaling

○​ The Product Hypothesis

■​ Persona

■​ Problems

■​ Alternatives

■​ Value proposition

●​ Types of MVP

○​ Concierge MVP

○​ Sales MVP

○​ Wizard of oz MVP

●​ Horizons of growth

○​ H1

■​ Strategize and optimize existing business model and tech

○​ H2

■​ Either new business model or tech

○​ H3

■​ New Business model and new tech

●​ Corporate innovation pipeline

●​ Idea generation

○​ Subject Interviews

○​ Reverse Hackathons

○​ Customer Comments

○​ Consulting and support

○​ Open innovation

●​ Concept Testing

○​ Talent hunt

●​ Fledgling Business

●​ Mature Business

●​ Cross functional teams are more suitable for innovation as you have expertise in

multiple disciplines in your team

○​ Daily Standups

○​ Weekly Plannings

○​ Qualitative and quantitative data analytics

○​ Believe in product

●​ Business Model Design

○​ Preposition Design

●​ Identifying Business Model Types

○​ Infrastructure Driven

○​ Scope Driven

○​ Product Driven

●​ Strategic Foresight - Context Tool

○​ Channel

○​ Content

○​ Objective

○​ Flexibility

○​ Methodology

○​ People

○​ Cost

○​ Career, Skills

●​ Actionable Analytics

○​ Analytics Objective

○​ Understand Problem

○​ Diagnose Data

○​ Diagnose resources and priorities

○​ Prototype

○​ Communicate and observe

○​ Action

●​ Monolith Architecture Vs Microservices

Software Architecture

Technical Specification Document

What are the goals of a technical specification document?

A technical specification document, in the case of a software project also referred to as a

“software design document”, is aimed to provide an entry point for externals. On a high

level, its goal is to understand the goals of the software and guide a potential software

vendor on how the project is expected to be managed for both the customer as well as

the vendor. The technical spec should help with:

Defining deliverables: What features are expected and in which way should they be

delivered? The deliverables are split up into milestones, if the project is larger. These

milestones usually contain an isolated aspect of the project and aim at being usable by

themselves.

Environment: How does the software operate in daily business? How does it fit into the

existing IT infrastructure?

Ways of communication: Who is managing this project on the customer end as well as on

the end of the vendor? Key people such as project managers are usually set early on and

stay on throughout the whole project.

Clarify the details of collaboration: This includes expected project updates and meetings.

This ensures both sides have a clear understanding of how the project should be executed.

Generally, it is wise to review the software build regularly while it’s getting developed.

In the following we will go deeper into the topic by structuring these points more.

How to write a good project specification for your software project

A good software specification doesn’t just describe the features in detail, it guides the

reader in learning about the core ideas in all major aspects.

Introduction

As with many documents, you want to introduce the reader slowly to the story. The

following two points will help your reader get started on the project:

Title page: Share the current working name of the project, if already defined. Don’t forget

to include you as the author with contact details in case of questions. If you’ve got your

project team already assembled, you should mention it as well. Often software engineers

know each other from meetups or other social events. This can help to make the

communication more smooth.

Brief Summary: Share the high-level purpose of the project/product you are planning to

build. This shouldn’t be longer than 5 lines of text. Skip details about features and

concentrate on the high-level picture here.

Feature overview and environment

Diving a bit deeper, the idea takes shape, the users and the environment get described

further:

Core Features: What should the software “do”? Describe the functionality grouped into

sets without going into the nitty gritty part yet. Share which business processes/functions

should be managed/automated with the software. If your project is a website, include the

expected hierarchy of pages. Table overview works well for any non-website project. Keep

it brief at this point.

Users and roles: Who is using the software at the end and what are they trying to achieve?

Describe the user groups with their background. The individual experience level of the

users gives the software engineers insights too: A software for accountants requires a

different level of detail in the user interface than a generic contact form on a website.

Environment: How should it be accessed? Is this a desktop software or a web application?

What technology (e.g. operating system and browsers - including versions) should be

supported? For web-applications and websites, information about the browsers are

important. Version information such as “Firefox: current version minus two” are commonly

understood. Project scope and costs depend on your required level of platform support.

Keep it as low as possible, but as high as needed to make it work for your organisation.

Constraints: This is the moment to mention your corporate identity (CI), style guide, etc.

You can append these documents in your emails or share links to relevant sources here.

Detail features

This is the moment to dive deep into the features. Similar to the previous high-level

features, write a section for each core functionality. Describe the expected workflow.

Mention the information entered, load/saved and displayed.

Graphics, even freehand sketches, can help with understanding of the goals. A designer

can help bring sketches of user interfaces into order.

User stories are a good way to clarify workflow with more details. These are theoretical

scenarios describing how a feature would be used by one of the end users. Include all

steps such as input, clicks and similar actions needed to complete the user journey.

Describe the expected outcome as well.

Don’t forget to include information about the required permissions: Usually not all parts of

a software product are accessible by every user. Make sure to reference the user group

from the previous section here. Alternatively, a permission table can make sure nothing is

forgotten.

Depending on the complexity of the feature, each of the sections should take up between

a half page to two pages at maximum. If you exceed two pages you should consider

splitting the feature further or reducing details and adding these to a general section.

External interfaces

Software doesn’t exist in a void anymore. Often software interacts with other software.

This can be through interfaces (APIs) to services or external databases. Examples could

be email services or services providing real-time data such as stock prices. Describe any

systems which your project needs to integrate with. Share any details such as links to

documentation.

UML

What is a Use Case Diagram?

A use-case model describes a system's functional requirements in terms of use cases. It is

a model of the system's intended functionality (use cases) and its environment (actors).

Use cases enable you to relate what you need from a system to how the system delivers

on those needs.

Think of a use-case model as a menu, much like the menu you'd find in a restaurant. By

looking at the menu, you know what's available to you, the individual dishes as well as

their prices. You also know what kind of cuisine the restaurant serves: Italian, Mexican,

Chinese, and so on. By looking at the menu, you get an overall impression of the dining

experience that awaits you in that restaurant. The menu, in effect, "models" the

restaurant's behavior.

https://creately.com/blog/diagrams/uml-diagram-types-examples/

Because it is a very powerful planning instrument, the use-case model is generally used in

all phases of the development cycle by all team members.

What is an Activity Diagram?

Activity diagrams are graphical representations of workflows of stepwise activities and

actions with support for choice, iteration and concurrency. It describes the flow of control

of the target system, such as the exploring complex business rules and operations,

describing the use case also the business process. In the Unified Modeling Language,

activity diagrams are intended to model both computational and organizational

processes (i.e. workflows).

What is a State Machine Diagram?

A state diagram is a type of diagram used in UML to describe the behavior of systems

which is based on the concept of state diagrams by David Harel. State diagrams depict

the permitted states and transitions as well as the events that effect these transitions. It

helps to visualize the entire lifecycle of objects and thus help to provide a better

understanding of state-based systems.

Software Design and Digital Project

Management

System Analysis and Design

Architectural Design

●​ Architectural Analysis and Design

○​ Layers and partitioning

https://d3c33hcgiwev3.cloudfront.net/aUkdFly8Rd2JHRZcvPXd_Q_982beb0d62d64931b7ee04d7dcefc2a1_L15Analysis-Design.pdf?Expires=1673222400&Signature=gZZw-FSGVzHCA2k7SCBgPggu2S0UspZQBjXTC2D6sqpbrVBKivCJrhLC3TSWTXTMph2H7I9MOWMXScO9zMja48ZCjS7Bl4E8ufW-AEjqVDmAI8pSv2QTbhFyticu4nPX38QfrztFwb~j4i7UUx32BsNtw-3~BaL-xvxhbNtVIms_&Key-Pair-Id=APKAJLTNE6QMUY6HBC5A

○​ Decisions

○​ Patterns

■​ Multi layer

■​ Repository

■​ Client Server

■​ Broker

■​ Transaction processing

■​ Pipe and filter

■​ MVC

Class Design
●​ Use case analysis

○​ Boundary Classes

○​ Entity classes

○​ Control classes

○​ Cohesion and coupling

 State machine Diagrams

●​ Events

●​ States

●​ Transitions

●​ Actions

●​ Composite State Machine Diagrams

●​ Sequential State machine Diagrams

●​ Objects

●​ Classes

●​ Unavailable States

●​ Triggers

Design Patterns

●​ General reusable solution to a commonly occurring problem

Software Architectural Patterns for Big Data

and Blockchain

Principles of Software Design

●​ Assume Simplicity

●​ Quality work

●​ Incremental changes

●​ Rapid feedback

●​ Honest and open communication

●​ Embracing changes

Testing

●​ Test Doubles

○​ Stub

○​ Spy

○​ Fake

○​ Mock

●​ Dependency injection

●​ Inversion of control

○​ Constructor injection

○​ Setter injection

○​ Interface Injection

https://d3c33hcgiwev3.cloudfront.net/t5AaVSdZS1uQGlUnWbtb6A_9750ec2b112d40c491203d891d3490a1_L18Analysis-Design.pdf?Expires=1673481600&Signature=Ioz~~p7DkesN-Tm8dqt64VYg8AAYWpGyZ-ozfC7wguNJPeEb-cx8B3iskZ8bio9Z0iry3SSXfbBeylSUlZJShqRVKxYgFwDfz-MsRHUJ~aqqPHHBkHPR5~UOAAScIv5kTsBERAKPL0jKD-ZtpkDV4cXDocV8tXZO0NOTGlHH~uk_&Key-Pair-Id=APKAJLTNE6QMUY6HBC5A

Systems Engineering

●​ Requirements Definition and Management

●​ Systems Architecture Development

●​ System/Subsystem Design

●​ Verification/Validation

●​ Risk Management

●​ Systems Integration and Interfaces

●​ Life Cycle Support

●​ Deployment and Post Deployment

●​ System and Program Management

Modeling
●​ Functional Modeling

○​ Activity Diagrams

●​ Behavioral Modeling

○​ State Machine Diagrams

○​ Use Case Diagrams

●​ Structural Modeling

○​ Block Diagrams

○​ Class Diagrams

MBSE stands for Model-Based Systems Engineering. It is an approach to systems

engineering that uses models as the primary means of representing, analyzing,

and designing systems. The MBSE analysis framework is a structured method for

applying MBSE to the development of complex systems.

The MBSE analysis framework includes several key components:

System Requirements: The first step in the MBSE analysis framework is to define

the system requirements. This involves identifying the objectives of the system, its

constraints, and any performance criteria that must be met.

System Architecture: The next step is to develop a system architecture that

describes the overall structure of the system and how its components interact. This

includes identifying the subsystems, interfaces, and other key features of the

system.

Functional Analysis: The functional analysis stage involves breaking down the

system into its functional components and analyzing how these components

interact to achieve the system objectives. This may involve the use of block

diagrams, flowcharts, and other modeling techniques.

Behavioral Analysis: The behavioral analysis stage involves analyzing the system's

dynamic behavior, including how it responds to inputs and how it operates over

time. This may involve the use of simulation models, state-transition diagrams,

and other techniques.

Verification and Validation: The final stage of the MBSE analysis framework is to

verify and validate the system design to ensure that it meets the system

requirements. This may involve the use of testing, simulation, and other methods

to evaluate the system's performance.

Overall, the MBSE analysis framework provides a structured approach to the

development of complex systems. By using models as the primary means of

representing and analyzing the system, it enables engineers to more effectively

manage the complexity of modern systems and to identify potential issues early in

the design process.

cadCAD

System Modelling Techniques

●​ System Dynamics (Machinations)

●​ ABM (cadCAD)

●​ Networked Models

●​ Multiscale Modeling

Process

1. System goals identification

2. Control parameter identification

3. Environmental parameter identification

4. Metric identification

5. Simulation

6. Optimal parameter selection

Steps

●​ Modeling

○​ State variables

■​ Active_validators

■​ Ethe_price

■​ Revenue_yields

■​ Profit_yields

■​ Validator_rewrads

■​ Validator_penalities

■​ Validator_slashing

■​ Operational_costs

■​ mev_realized

○​ System Parameters

■​ Used in policy functions to update the state of system

■​ Validaor_environments

●​ Hardware

●​ Cloud, etc.

■​ Time_parameters

○​ Stochastic processes

■​ Uses system_parametrs module to config time dependent

parameters

○​ Policy Functions

○​ State Update Functions

■​ Updates the state of system, environment and individual actor

○​ Partial State Update Blocks

●​ Simulation

○​ Configuration

○​ Execution

○​ Output Preparation

○​ Analysis

●​ Experiments

○​ Templates module

■​ Reusable simulation configurations for time domain analysis, monte

carlo analysis and other type of analysis

■​ Get imported by experiment notebooks

■​ Time_domain analysis template

●​

○​ Default experiment module

■​ All experiment templates are based on this module

■​ Experiment template chosen will configure itself using default

experiment module

○​ Simulation config module

■​ Adaptable parameters of simulation like monte carlo runs, delta time,

timesteps, etc.

Parameter Selection Under Uncertainty in Detail

Step 1: System Goals Identification

This steps connects the qualitative definitions of targets articulated by the team to

concrete and precise system goals. It helps to attach quantitative measures to the

qualitative statements. It is key to ensure that simulation parameters and metrics are

aligned with the overall objective.

Step 2: Control Parameters Identification

In this step, parameters are identified that are under control by the system, and impact

the outcome of system goals. They can be proposed by the project team — if there is an

idea what the controller is (e.g. fee rate, minting rate) — with the intention to set the ideal

parameter. More generally either controllers can be unspecified or their impact might be

unknown.

A key point is that trade-offs between system goals will occur and the more complex the

system the more difficult it is to optimize for all goals. However there are ranges of

parameters that will favor some goals simultaneously to a different extent. Therefore a

parameter-goal impact assessment is advisable to allow stakeholders to make a

prioritization of the system goals when impacts and consequences are sufficiently

understood. This can be compared with the simulation results to arrive at a ranking of

various parameter selections.

Dynamic system goals can be balanced through feedback (both positive or negative)

from embedded controller mechanisms.

Step 3: Environmental Parameters Identification

In this step all processes are recorded that cannot be controlled but are important so far

as they do affect the system goals. Those systemic events and their effects can then be

targeted by available control mechanisms even if they are taken as variable from the

environment. For example, the price of ETH may factor into a model, but it is not under

control of the model.

Step 4: Metrics Definition

In this step qualitative goals are translated into quantifiable metrics as closely as

possible. System goals and metrics are not exclusive — there might be more KPIs for one

system goal or conversely several system goals might share the same metrics.

Metrics can be of different types as they can measure different system characteristics e.g.

stability, liquidity, responsiveness. In any case, metrics allow to not only optimize for

system targets but also help to identify thresholds beyond which the system is

unresponsive or unstable.

In the subsequent selection process, the control parameters are selected given the

realizations of the environmental parameters such that defined metrics are fulfilled. This

makes the metrics to be the criteria by which the control parameters are chosen.

Exploring tradeoffs between various system goals requires data and visualizations to

make discoveries actionable for stakeholders.

Step 5: Simulation

In this step scenarios are defined that are to be tested against the system goals. All

uncontrolled environmental parameters are represented by generated processes. For

controllable parameters, ranges for value sweeps are defined so that simulation

experiments can be performed in multiple runs.

Afterwards, the robustness of the parameters and their impacts on the system are tested

through a sensitivity analysis.

Step 6: Optimal Parameter Selection

https://en.wikipedia.org/wiki/Data_generating_process

The optimal values can be selected by assessment of the previously stated metrics. Based

on basins of attraction and confidence intervals, choice recommendations can be done. A

ranking allows to order optimal parameters according to the prioritized list of system

goals.

Machine Learning (CS-229)

Supervised Learning

●​ Training set

●​ Learning algorithm

●​ Input —>hypothesis—---->output

https://en.wikipedia.org/wiki/Attractor#:~:text=its%20starting%20parameters.-,Basins%20of%20attraction,be%20iterated%20into%20the%20attractor
https://en.wikipedia.org/wiki/Confidence_interval

●​ Linear Regression

○​ (x^i,y^i) - one training sample

○​ x^i is a n+1 dimensional vector with two features and x_0 as fake feature

and x_1

○​ y_pred=h_theta(x) = SUM_j=0 to n (Theta_j *x_j) = TEHTA^T * X

○​ Cost function (MSE) = SUM i to n (y_true - y_pred)^2 = J(THETA) = ½

(SUM_i =1 to n (h_theta(x)^i - y^i)^2)) minimize this cost function to find

parameter theta

○​ To find the value of theta which minimizes the cost function (error) J(theta)

○​ h(x) = theta_0 + theta_1 * x_1 + theta_2 * x_2

○​ Theta = weights (parameters - algorithm defines parameters to predict)

○​ X = inputs / features

○​ h(x_j) = SUM (theta_j *x _j)

○​ (x,y) = training example

○​ To evaluate h at certain value of x: Fit theta to minimize cost function

(MRSE) and return Theta_x

○​ Cost function = J(theta) = (h(x_i) - y_i)^2 ==0 (choose values of theta which

minimize difference and almost equal to zero)

○​ Theta_j = theta_j - learning rate * Partial derivative of J(theta) w.r.t theta_j

○​ Partial derivative of J(theta) = partial derivative of 1/2(h_theta(x) - y)^2

○​ = (h(x) - y) * partial derivative(theta_0 + theta_1 *x_1 ……….theta_n*x_n)

○​ =(h(x) -y)*x_j

○​ Theta_j = theta_j - learning rate * sum (h(x)_i -y_i) * x_j_i

○​ Repeat until convergence

○​ Cost function can be written in terms of Matrix = derivative J(theta) w.r.t.

theta=½ derivative w.r.t THETA (X.THETA - Y)^T * (X. THETA -Y)

○​ By simplifying we get THETA = (X^t X^-1) X^t * Y

○​ By converting cost function in matrix form we can get matrix THETA using

above formula where MATRIX operations are easier to implement

●​ Gradient Descent (Optimization algorithm)

○​ Taking derivative of cost function for every feature theta and every value of

each feature in data test and repeat this until it converges to local minima

●​ Stochastic gradient Descent (Optimization algorithm)

○​ Instead of using every value of each feature theta just take one random

value from dataset in each iteration

●​ Batch gradient descent (Optimization algorithm)

●​ Locally weighted regression

○​ Fit theta to minimize modified cost function which has weighting function

w_i which tells model that values of x_i which are closer to x_predicted in

training data to focus more on them (x_i which are far from x_predicted

multiplied by zero to nullify / decrease their impact on trained model). It

tells amount of attention a value from dataset is given

○​ W_i = exp(- (x_i - x_predicted)^2 / tau^2)

○​ Paying attention to the points which are closer to x_predicted and ignoring

others

○​ Tau - Gaussian parameter which defines the width of gaussian wight

function

○​ Parametric learning algorithm - Linear regression (Fit fixed set of

parameters to data)

○​ Non parametric learning algorithm - Locally weighted regression

●​ Probabilistic Interpolation (Why we use least square error as cost/objective

function) MLE (Maximum likelihood estimation is used to determine the cost

function. MLE gives probabilities distribution (gaussian) to find cost function for

linear regresission). MLE is used to prove that why a certain cost function should be

selected by proving that it has max likelihood

○​ y^i = Theta^T * X^i + error^i

○​ Probability vs likelihood - For variable dataset with constant parameters is

probability and with constant dataset variable parameters have a likelihood

○​ Probability of y with x and theta is gaussian error function with theta^t*X

as mean sigma^2 as variance

○​ By using minimum likelihood estimation we can conclude that least squares

is suitable choice to estimate error/cost function

●​ Logistic Regression

○​ Used for classification problems

●​ Newton’s Method (Can be used as alternative to gradient dissect as optimization

algorithm to get value of theta which minimizes our cost function MSE for linear

regression)

○​ Find theta such that f(theta)=0

○​ Derivative of function is zero at maxima and minima

○​ Input theta_0 in function f and find tangent of function at point theta_0,

the point where this tangent line crosses x axis is out next point theta_1

○​ Theta_t+1 = theta_t -f(theta_t) / f’(theta_t)

●​ Optimization algorithms:
●​ These are methods used to find the optimal values of a cost function. Examples

include gradient descent and Expectation-Maximization (EM).

●​ Learning principles:

●​ These are principles used to derive a cost function for a specific problem and

model. Maximum Likelihood Estimation (MLE) is an example of a learning principle.

●​ Cost functions:

●​ Also known as loss functions or objective functions, cost functions measure the

discrepancy between the predicted values and the true values. Examples include

mean squared error (MSE) and cross-entropy loss.

●​ Model types:

●​ These are specific statistical models that describe the relationship between input

features and target variables. Examples include Gaussian distribution, Gaussian

Mixture Model (GMM), and linear regression, GDA, SVM, Logistic regressin.

●​ Now, let's see how these concepts fit together in a machine learning process:

●​ Choose a model type that is appropriate for the problem at hand (e.g., linear

regression for a regression problem or GMM for a clustering problem).

●​ Use a learning principle like MLE to derive the cost function that should be

minimized based on the likelihood of the observed data given the chosen model.

●​ Apply an optimization algorithm (e.g., gradient descent or EM) to minimize the cost

function and find the optimal model parameters.

●​ Once the optimal model parameters are found, they can be used to make

predictions for new input data points based on the specific model type. For

example, in linear regression, the optimal parameters (weights and bias) can be

used to make predictions by computing a linear combination of the input features.

●​ Loss functions play a crucial role in this process, as they guide the optimization

algorithm towards finding the best model parameters that minimize the

discrepancy between the true and predicted values. The choice of the loss function

depends on the learning principle (e.g., MLE) and the specific model type.

●​ Assumption P(y^i/x^i ;theta)

●​ Error distribution is gaussian with theta^T * x as mean and sigma^2 as variance

and y^ is predicted variable

●​ Least square error function which is cost function in linear regression with gaussian

distribution can be estimated using MLE

●​ H_theta (x) = g(theta^T *x) = 1/(1+e^-theta^T*x) = sigmoid function used for

logistic regression for classification problems

●​ P(y=1 /x ;theta) =h_tehta(x)

●​ P(y=0 | x; theta) = 1- h_theta(x)

●​ = (h(x))^y (1-(h(x))^1-y

●​ L(theta) = p(y|x;tehta)= Product from i=1 to n ((h(x^i))^y^i * (1-(h(x^i))^1-y^i)

●​ P(x | theta) = h(x) * exp (eta (theta^T (x) - A(theta)

●​ Use MLE to find find error function L(theta)

●​ l(theta) = m * log 1/sqrt(2*pie)*sigma + SUM i=1 to n -(y^i - theta_tau (x)^-1)/2 *

sigma^2

●​ As y^pred is distributed gaussian therefore we will use mean value of y^pred =

mean =theta_tau (x)^-1 and divide by variance of gaussian distribution of y^pred

●​ Logistic regression using log likelihood

○​ l(tehta) = log L(theta)= log PRODUCT t=1 to m (1/sqrt(2*pie)*sigma * exp -(y

- theta_tau (x))/2 * sigma^2 = m log 1/(sqrt 2 *pie) SUM(i=1 to m (y^i -

theta^T *x)^2 / 2* sigma^2

○​ Probability density = P(e^i) = 1/sqrt(2*pie)*sigma exp(- e^i/2*sigma^2)

○​ J(tehta)= SUM i=1 to n (y^i - theta ^T *x^i)^2

●​ GLM

○​ N is natural parameter

○​ Function that connects n with mean of distribution is called canonical

response function

○​ Train theta to predict n which is input to the distribution and output of that

distribution is variable which we want to predict

○​ Linear regression gives us theta which is a line or vector

○​ GLM classifies that vector in to a distribution

●​ Discriminative learning algorithm

○​ Model classes in isolation and test data is compared with both models

○​ Learn P(y |x) = h_theta(x)= 0,1

●​ GLA

○​ Learns P(x|y) where x= feature and y=class

○​ Given y=1 or y=0 predicts the feature x

○​ P(y) = class prior

●​ Baye’s rule

○​ p(y=1 | x) = = P(x|Y=1) * P(y=1) / p(x)

○​ p(x)= p(x |y=1) * P(y=1) + P(x|y=0) * P(y=0

○​ P(x|y) and p(y) are learnt from model using these learnt terms we can

calculate p(y=1 | x)

○​ Use sample data to train two models in separate which learns features x if

y=1 and y=0 and also learnt p(y=0,1)

○​ Using baye’s rule we can learn P(y=1 |x)

Unsupervised Learning

Hand Written Notes

https://drive.google.com/drive/folders/13UQy8mvkiKTH3FwCJoSKuAxEMcoxUjXH?usp=s

hare_link

https://drive.google.com/drive/folders/13UQy8mvkiKTH3FwCJoSKuAxEMcoxUjXH?usp=share_link
https://drive.google.com/drive/folders/13UQy8mvkiKTH3FwCJoSKuAxEMcoxUjXH?usp=share_link
https://drive.google.com/drive/folders/13UQy8mvkiKTH3FwCJoSKuAxEMcoxUjXH?usp=share_link

Summary CS- 229

Hypothesis function: The choice of hypothesis function will depend on the problem

domain and the type of learning task. In addition to defining the functional form of the

model, you may need to choose hyperparameters, such as the number of hidden layers or

the regularization strength.

Loss function: The choice of loss function will also depend on the problem domain and the

type of learning task. In addition to mean squared error (MSE), there are many other loss

functions that may be appropriate for different types of problems, such as cross-entropy

loss for classification problems. You may also need to consider how to handle class

imbalance or other challenges that may affect the choice of loss function.

Parameter estimation: There are different methods for estimating the parameters of the

model, including maximum likelihood estimation (MLE), maximum a posteriori (MAP)

estimation, and Bayesian inference. MLE is a commonly used approach, but other

methods may be more appropriate depending on the problem domain and the available

data.

Optimization algorithms: Gradient descent is a commonly used optimization algorithm for

minimizing the loss function, but there are many other optimization algorithms that may

be more efficient or effective for different types of problems. For example, stochastic

gradient descent (SGD) is a popular variant of gradient descent that can be more efficient

for large datasets. Other optimization algorithms, such as Adam or Adagrad, may be

more effective for optimizing deep neural networks.

Model evaluation: Once you have trained the model, you will need to evaluate its

performance on a validation set or test set. In addition to standard metrics such as

accuracy or mean squared error, you may need to consider other metrics that are more

appropriate for specific problems, such as precision and recall for imbalanced

classification problems.

Token Engineering Framework
●​ Incentive & token design

●​ Optimal pricing and resource allocation in distributed networks

●​ Real-world experience & business impact

●​ Network analytics & data-driven monitoring

●​ Formation, diffusion, and learning in networks

●​ Modeling & simulation

●​ Value attribution and graph-based algorithms

●​ Evolutionary game theory, population games, state-based potential games

●​ Prediction markets, automated market makers, reputation systems

●​ Governance process & principles

Discovery Phase

●​ TUC

○​ Actors

○​ Desired and undesired behaviors

○​ Mechanism

○​ Value Preposition (Creation & Capture)

●​ Stakeholders Map

○​ Identifying participants and their roles

○​ Incentives and disincentives

●​ Value Exchange Map

○​ FLow of value within the ecosystem

○​ Monetary and non monetary

●​ MECE (Mutually Exclusive, Cumulatively Exhaustive)

●​ Taxonomy of actors

Design Phase

●​ Design and Engineer an ecosystem which aligns to secure and incentives

●​ Network Analysis

○​ Direct and Indirect participants

●​ Network Objective function definition

●​ Define Metrics of Network Success

●​ Constraints definition

●​ Assumptions about:

○​ Participants

○​ Problems (Core (Macro) and Periphery (Micro))

●​ Experiments:15 In this section, every assumption in the above category needs to

be validated through experimentation. Experiments should be run sequentially

from top to bottom and from left to right:

●​ Moving from top to bottom. The results from testing down through Participants

Problem Incentives Solution all feed into the next sequence of experiments and

mark the creation of the first interactive feedback loop in the token design. This

feedback loop is critical and should be present across all stages of the token

design.

●​ Moving from left to right. Experiments gradually become more sophisticated and

specific, starting with simple surveys, then moving to experiments, modeling and

simulations, and then A/B testing.

●​ Decision Theory: Individual’s own preferences and Constraints

●​ Game Theory: Interactive decisions, how individual’s make decisions in competitive

and/or competitive environment

○​ Find out contradictions in self interest of participants to the interests of the

network

○​ Alignment of stakeholders incentives

○​ In an experiment/randomized control trial (RCT), participants are randomly

assigned to treatment (where they receive the intervention) vs. control

groups (where they do not receive the intervention). Randomization is

crucial as it allows us to compare the effectiveness of a treatment

objectively. Using the right treatments and controls, we can get robust

causal inference. In this setting, a smaller and simpler version of the a

project’s economy/interactions can be replicated with multiple users taking

various representative roles within the network. In each treatment, we can

change one single factor to determine how this would affect participants’

incentives, hence their behavior and the whole ecosystem. Potential

implementation fields for experimentally testing a specific behavior include

MTurk and Experimental Labs . An additional option is to look at empirical

data provided by existing networks, and if possible, identify and analyze

natural experiments within them.

●​ Minimal Viable Token for our purposes is the simplest but most effective design

possible to deliver upon the Objective Function, within a system’s set constraints,

determined during the token design process.

●​ Token Network Fit

●​ Ledger Market Fit

●​ 1. Create hypotheses based on the participants’ incentives which were defined.

●​ 2. Formulate ways to test this hypothesis and decide the best avenue for testing.

For example, are experiments the best option for testing? Are we setting these up

quickly enough? Will we have enough statistical power to detect any effect from

experimental observations? Is it better to go for interviews and surveys or run

simulations?

●​ Deliverables of a token design process

○​ Objective function of the overall network that supports the ecosystem

○​ Architecture of the token

○​ Circulating supply model

○​ Velocity model

○​ Utility model

○​ Networks effects model

○​ Token Distribution

■​ Business

■​ Technical

■​ Legal

Token Design - Process

Process
Process of tokenomics design is divided in four following phases;

Timeline
Time required to complete a tokenomics project is 14 - 15 days depending
upon complexity of the project. Distribution of timeline is given below;

Initiation Phase (2 - 3 days)

Initial reconnaissance

○​ Idea validation

○​ Analyze project document

○​ Identify and study similar project

Prepare Questionnaire

○​ What are agents of the system and how do they interact

with each other?

○​ Main use cases and functionality of the token

○​ Economic goal of the token (price Appreciation, Stability,

Inflation hedge etc.)

○​ Business goal of the project

○​ Total distribution

○​ Governance voting and resolution mechanisms

○​ Most similar projects and their markets

○​ Inflationary / deflationary

○​ Future utilities of token

○​ Token classification

○​ Overhead costs of the business

Define Scope of Work / Deliverables

○​ Burning and minting schedule

○​ Incentivization and desensitization mechanisms

○​ Financial Engineering / Model

○​ Failsafe mechanisms and triggering indicators​

Initial Reconnaissance Meeting

○​ Submit reconnaissance report

○​ Share scope of work

Planning Phase (3 - 4 days)

Identify Methodology / Tools

○​ Empirical proof

○​ Agent-based modeling

○​ Game theory and Mathematical Modeling

○​ Marginal cases analysis

○​ Probability theory

○​ Financial Modeling

Identify Design Goals

○​ Token Utility

■​ Why do you need a token?

■​ Who uses a token?

■​ Why should they use the Tokens?

■​ Growth drivers

■​ Holder incentives

■​ Adoption

■​ Will the utility increase with time / adoption?

●​ Actions-Actors Approach

Parameters Definition / Constraints and Schedule

○​ Total / Circulating supply

○​ Unlock schedule of remaining supply

○​ Annual inflation / deflation

○​ Token Distribution

■​ Different ways how Tokens enter and exit network

■​ High enough circulation volume

■​ More “Ins” than “outs”

Workflow Identification

○​ Sources of Input (Injection) & output (rewards)

○​ Assign weight to factors in incentive models to prioritize network

growth(Curve: Gauge weight, Gauge type weight)

○​ Fee Distribution

■​ Project Funding

■​ Adding liquidity

■​ Burn

■​ Profit - Sharing

●​ Second meeting with client to update him about methodology and

approach to be used

Execution Phase (4 - 5 days)

Mechanism Design

○​ Identification of Agents of system and their possible

interactions with each other

○​ Set of agents, their attributes and behaviors.

○​ Set of agent relationships and methods of interaction: An

underlying topology of connectedness defines how and with

whom agents interact.

○​ The agents’ environment: Agents interact with their environment

in addition to other agents.

○​ Topology

■​ Rules

■​ Link Structure

○​ Environment

■​ Stress test

■​ Behaviors emerging from interactions of agents

Economic Model

○​ Initial Supply

○​ Max Supply

○​ TVL growth strategy

○​ Deflationary Model

■​ Buy Back and Burn

■​ Burn on transactions

○​ Inflationary Model

■​ Inflation schedule (Initial preset rate, Readjusting time

period).

■​ Inflation rate.

■​ Prohibited on demand token minting.

■​ Ensure optimal inflation rate.

■​ Approximate inflow into circulating supply.

Mathematical Model - Business Model

○​ Features of token

○​ “Ins” and “Outs” of token from system

○​ Alignment of reward mechanism with enhancement of network

adoption mechanism

○​ Incentivize users to participate in governance

○​ Profit - Sharing

○​ Burning

○​ Staking

○​ Governance

○​ Incentives to ensure long enough token hold time

■​ Amount and time weighted incentives

■​ Slashing mechanism upon quick withdrawal

Game Theory Design

○​ Desired behaviors of participants and their relation with

protocol incentive mechanism

○​ Sustainability of model in controlled environment constraints

○​ Market sentiment analysis w.r.t incentive and disincentive

mechanisms derived by network growth

Closure Phase (2 - 3 days)

Monitoring and Testing

○​ Agent Based Simulations testing

○​ Stress Test

○​ Financial Model dynamicity testing

○​ Marginal Cases Analysis

Report Submission

○​ Compile and submit Report

○​ Final Meeting with the client

1. Ecosystem Design Over The Token Design

Many industry players start with tokens. However, tokens might not be necessary and

could create friction. Designing a token economy with a token-first approach can be

detrimental to any decentralized application (dApp) or protocol because it removes

resources from the underlying functionality, value, and utility. By prioritizing the token,

developers might be more likely to neglect user experience, security, and scalability,

which are critical to long-term ecosystem success.

Excessive focus on a token also creates artificial demand or speculative bubbles,

ultimately resulting in market volatility. This approach can stress the internal team

excessively, causing them to worry more about the token price and community

sentiment than the core product itself.

Instead, the project team should adopt a product-first mentality. With a value-driven

approach, the token seamlessly complements and enhances the core functionality of

the dApp or protocol. The product-first mentality creates an intrinsic link between token

value and platform utility, fostering organic demand and sustainable growth.

On LooksRare, for example, as much as 90% of the activity consists of wash trading,

where traders engage in this practice to earn $LOOKS rewards worth more than the

fees they pay. Subsequently, they dump the $LOOKS to make a profit. Does the token

benefit the project or make it worse? Sometimes, tokens can create unintended

consequences and harm the project.

2. Value Creation Aligned With Rewards

In tokenomics, reward alignment is the coordination of incentives for different

stakeholders toward a common goal.

Aligning rewards with value creation is essential for building a thriving token economy. It

fuels growth by engaging key innovators who contribute to project development.

Rewarding value creation promotes adoption and fosters sustainable expansion.

Honestly, this is the most essential principle since misaligning the incentives may distort

the project economy and finally lead it to collapse.

We could divide tokenomics system rewards into two buckets: aligned and misaligned.

https://www.bloomberg.com/news/articles/2022-04-05/hottest-nft-marketplace-is-mostly-users-selling-to-themselves

Aligned incentives. Well-aligned incentives create a self-sustaining ecosystem

rewarding users for contributing to the network’s growth and development. It can

promote network security, encourage decentralized governance, and increase the value

of the network’s native token by reducing selling pressure on the market.

Look no further than Bitcoin for well-aligned incentives: miners contribute computational

power to secure the network in exchange for new bitcoins.

Misaligned incentives. Wrong incentives create undesired outcomes undermining

long-term viability and success. Such mechanisms concentrate power in the hands of a

few stakeholders, reduce network security, and discourage user participation.

Airdrops are a well-known example of misaligned incentives. Users often dump the

token they receive at the first chance. It’s a zero-sum game in which the protocol

receives no long-term value from token distribution and only wastes resources.

It is self-explanatory that you should choose aligned rewards if you want your protocol

to flourish.

The key takeaway is to address and manage toxic behaviors rather than blindly hope a

single good-mannered behavior will be enough to make your digital economy

successful. Speaking of breaking overly optimistic lenses, it’s time we talk about

malicious actors in your token model.

	Token Engineering 101
	TE Framework
	Summary
	Idea Validation
	Design Goals Identification
	Requirement Gathering
	Questionnaire
	Token Utility

	Economic Model Design
	Mechanism Design
	Protocol Architecture / Workflow
	ABM

	Game Theory
	Incentive / Disincentive Mechanisms
	Forecasting and Predictive Analysis

	Financial Risk Assessment / Management / Optimization
	Tokenomics DAO
	Advanced Content
	Tokenomics Evaluation Framework
	DAO Specific Content
	Past trends in tokenomics
	Different token release schedules
	1.​Linear
	2.​Growing
	3.​Shrinking
	4.​Dynamic

	Current and new trends in tokenomics
	1.​Protocol owned liquidity
	2.​Vote escrowed tokens
	3.​XTokens
	4.​Revenue or fee sharing
	5.​Vested farming
	6.​Options liquidity mining

	Price support trends
	1.​Buyback and burn
	2.​Buyback and make
	3.​Burn
	4.​Fee distribution

	Miscellaneous trends
	1.​Reflections
	2.​Rebasing tokens

	Domain Knowledge (Economics, Defi, Finance etc.)
	Mechanism Design
	DeFi Basics
	Foundations of Finance
	Economics
	Mathematics
	Calculus
	
	Linear Regression Analysis
	Linear Algebra
	
	Mathematical Modeling Basics
	Numerical Analysis
	Fourier Analysis
	Statistics and Probability
	Product Management
	Digital Product Management
	What is Digital Product Management?
	What Are a Digital Product Manager’s Responsibilities and Job Description?
	Skills digital product managers need
	Process of Product management

	Software Architecture
	Technical Specification Document
	What are the goals of a technical specification document?
	How to write a good project specification for your software project
	Detail features
	External interfaces

	UML
	What is a Use Case Diagram?
	What is an Activity Diagram?
	
	What is a State Machine Diagram?

	Software Design and Digital Project Management
	System Analysis and Design
	Architectural Design
	Class Design
	 State machine Diagrams
	Design Patterns

	Software Architectural Patterns for Big Data and Blockchain
	Principles of Software Design
	Testing

	Systems Engineering
	Modeling

	cadCAD
	System Modelling Techniques
	Process

	Steps
	Parameter Selection Under Uncertainty in Detail
	Step 1: System Goals Identification
	Step 2: Control Parameters Identification
	Step 3: Environmental Parameters Identification
	Step 4: Metrics Definition
	Step 5: Simulation
	Step 6: Optimal Parameter Selection

	Machine Learning (CS-229)
	Supervised Learning
	Unsupervised Learning
	Summary CS- 229
	Token Engineering Framework
	Discovery Phase
	Design Phase

	Token Design - Process
	Process
	Timeline

	Initiation Phase (2 - 3 days)
	Initial reconnaissance
	Prepare Questionnaire
	Define Scope of Work / Deliverables
	Initial Reconnaissance Meeting

	Planning Phase (3 - 4 days)
	Identify Methodology / Tools
	Identify Design Goals
	Parameters Definition / Constraints and Schedule
	Workflow Identification

	Execution Phase (4 - 5 days)
	Mechanism Design
	Economic Model
	
	
	Mathematical Model - Business Model
	Game Theory Design

	Closure Phase (2 - 3 days)
	Monitoring and Testing
	Report Submission
	1. Ecosystem Design Over The Token Design
	2. Value Creation Aligned With Rewards

