Введение

В современном мире информационная безопасность становится всё более актуальной проблемой. С ростом числа киберугроз и увеличением количества информации, которую мы передаём через интернет, возрастает необходимость в обучении студентов основам информационной безопасности. Одним из эффективных способов обучения является использование образовательных игр.

<u> Актуальность темы</u>

Образовательные игры становятся всё более популярными в образовательной среде. Они позволяют студентам учиться через игру, что делает процесс обучения увлекательным и запоминающимся. Кроме того, образовательные игры могут быть адаптированы под индивидуальные потребности каждого студента, что позволяет обеспечить более эффективное обучение.

Однако, несмотря на все преимущества образовательных игр, их использование в обучении информационной безопасности всё ещё недостаточно распространено. Это связано с тем, что многие преподаватели не знакомы с преимуществами этого подхода и не знают, как его правильно применять. Также существует недостаток исследований, которые бы подтверждали эффективность образовательных игр в обучении информационной безопасности.

Таким образом, актуальность данной работы заключается в необходимости изучения и анализа использования образовательных игр в процессе обучения информационной безопасности. Необходимо определить, какие именно образовательные игры наиболее эффективны, как они влияют на успеваемость студентов и какие проблемы могут возникнуть при их использовании.

<u>Цель и задачи проекта</u>

Целью данного проекта является разработка и внедрение образовательной игры по информационной безопасности для студентов первого курса. Для достижения этой цели необходимо решить следующие задачи:

- 1. Изучить теоретические основы использования образовательных игр в обучении.
- 2. Проанализировать опыт применения образовательных игр в различных учебных заведениях.
- 3. Определить критерии эффективности образовательных игр по информационной безопасности.
- 4. Разработать образовательную игру по информационной безопасности, которая будет соответствовать критериям эффективности.
- 5. Провести эксперимент по применению образовательной игры в одном из учебных заведений.
- 6. Оценить результаты эксперимента и сделать выводы о влиянии образовательной игры на успеваемость и мотивацию студентов.
- 7. Подготовить отчёт о результатах исследования и разработать методические рекомендации для преподавателей по использованию образовательных игр в обучении информационной безопасности.
- 8. Рассмотреть перспективы дальнейшего развития образовательных игр и их использования в обучении информационной безопасности.

Решение этих задач позволит получить более полное представление об использовании образовательных игр в обучении информационной безопасности и разработать рекомендации, которые помогут преподавателям эффективно использовать этот подход в своей работе.

Определение проблемы

В современном мире информационная безопасность становится всё более актуальной проблемой. С ростом числа киберугроз и увеличением количества информации, которую мы передаём через интернет, возрастает необходимость в обучении студентов основам информационной безопасности. Однако, несмотря на все преимущества образовательных игр, их использование в обучении информационной безопасности всё ещё недостаточно распространено. Это связано с тем, что многие преподаватели не знакомы с преимуществами этого подхода и не знают, как его правильно применять. Также существует недостаток исследований, которые бы подтверждали эффективность образовательных игр в обучении информационной безопасности.

Таким образом, проблема заключается в том, что образовательные игры по информационной безопасности не получили широкого распространения в образовательной среде. Необходимо определить, какие именно образовательные игры наиболее эффективны, как они влияют на успеваемость студентов и какие проблемы могут возникнуть при их использовании.

Для решения этой проблемы необходимо провести исследование, которое позволит определить критерии эффективности образовательных игр по информационной безопасности и разработать образовательную игру, соответствующую этим критериям.

Альтернативные подходы

- 1. Использование традиционных методов обучения: лекций, семинаров, практических занятий и лабораторных работ. Это позволит студентам получить базовые знания и навыки в области информационной безопасности.
- **2. Внедрение новых технологий в процесс обучения:** использование онлайн-курсов, видеолекций, интерактивных заданий и симуляторов. Это сделает обучение более интересным и доступным для студентов.

- **3. Организация стажировок и практик в компаниях, занимающихся информационной безопасностью.** Это позволит студентам применить полученные знания на практике и получить опыт работы в этой области.
- **4. Создание специализированных курсов по отдельным темам информационной безопасности:** криптографии, защите от киберугроз, управлению доступом и т. д. Это поможет студентам углубить свои знания в конкретных областях.
- **5. Проведение мастер-классов и семинаров с участием экспертов в области информационной безопасности.** Это даст студентам возможность получить ценные знания и советы от профессионалов.
- **6. Разработка и внедрение системы оценки знаний и навыков студентов в области информационной безопасности.** Это позволит отслеживать прогресс каждого студента и корректировать программу обучения в соответствии с его потребностями.
- 7. Сотрудничество с компаниями, занимающимися информационной безопасностью, для организации совместных проектов и исследований. Это будет способствовать развитию практических навыков студентов и их профессиональному росту.
- **8. Развитие системы наставничества и менторства для студентов.** Это поможет им получить поддержку и помощь от опытных специалистов в области информационной безопасности.

Анализ конкурентов:

Анализ конкурентов									
Критеј	Критерий оценки		Книги Лекции Электронные книги / Курсы Форумы		Курсы	Проект "ZeroSpace"	СТБ		
1	Стоимость	Мапая/средняя стоимость. (средняя от 300р. до 1200р.)	Входят в стоимость обучения. Зачастую имеются открытые записи лекций в бесплатном доступе.	Большая часть материала находится в открытом доступе бесплатно.	Крайне высокая стоимость. (средняя от 2000р.)	Бесплатный.	Бесплатный. (Есть исключения		
2	Удобство	Не электронный формат. Книги занимают место. Некоторые книги могут быть олишком тяжельми и большими для свободного ношения о собой.	Требуют посещения заиятий и личного присуствия. Большая часть лекций не записывается и требует конспектирования.	Электронный формат. Читаются в любое свободное время пользователя.	Электронный формат.	Эпектронный формат. Можно играть в любов свободное время. Игра подразумевает в собе наличие развлекательных элементов, делающих процесс обучения проце.	Электронный формат. Требует высокой мыслительной нагрузко и сосредоточенности на задаче.		
3	Теоретические знания	Высокие теоретические знания.	Высокие теоретические внания, Зачастую включают в себе ценний спыт свями; выступающих, который спихы- найти в интернете или печатном материале.	Высокие теоретические знания. Разные форумы могут в общей совокупности раскрыть темы более подробно чем книги.	Высокие теоретические знания.	Высокие теоретические знания. Каждая методика вялома подробно объяснается, а также раскрываются второстипеньме темы, не менее важные для студента по Иб.	Большая часть СТГ подразумевает уже наличие каких-либо знаний студента. Очень малая часть СТГ объясняют методы валома. Требуются сторонние ресурсы для прохождения непонятных этапов.		
4	Практические знания	Практика отсутствует.	Практика отсутствует.	Практика отсутствует.	Подразумевает практическую работу с пользователем, но не гарантирует её и не отслеживает правильность выполнения работы.	рысовия практическия значии. Zerošpice подобно сиченавет выерую метарну штома для ирод, аботом в переставную стока для прабличаю.	Высокие практические знания.		

Календарный план:

Название проекта: ZeroSpace

Руководитель проекта: Паюсов К.Д.

Таблица 1 – Календарный план

Nº	Название	Ответственн ый	Длительно сть	Дата начал а	Временные рамки проекта			
					1	2	3	4
142	Пазвание				н	н	н	н
					е	е	е	е
					Д	Д	Д	Д
Анал	из				!		!	
1.1	Определение проблемы	Руководитель проекта	1 неделя	Начал о проект а	х	-	-	-
1.2	Выявление целевой аудитории	Руководитель проекта, аналитик	2 недели	Начал о проект а	х	х	-	-
1.3	Конкретизац ия проблемы	Руководитель проекта	3 дня	Начал о проект а	х	-	-	-

				_			_	_
1.4	Подходы к решению проблемы	Руководитель проекта	5 дней	 Начал о проект а	х	-	-	-
1.5	Анализ аналогов	Аналитик	7 дней	Начал о проект а	х	-	-	-
1.6	Определение платформы и стека для продукта	Разработчик	4 дня	Начал о проект а	x	-	-	-
1.7	Формулирова ние требований к мvр продукта	Руководитель проекта, разработчик	1 неделя	Начал о проект а	х	-	-	-
1.8	Определение платформы и стека для MVP	Разработчик	2 дня	Начал о проект а	х	-	-	-
1.9	Формулировк а цели	Руководитель проекта	2 дня	Начал о проект а	х	-	-	-
1.10	Формулирова ние требований к продукту	Руководитель проекта, аналитик	1 неделя	Начал о проект а	х	-	-	-
1.11	Определение задач	Руководитель проекта	3 дня	Начал о проект а	х	-	-	-
Прое	ктирование			•				
2.1	Архитектура системы (компоненты, модули системы)	Разработчик	1 неделя	После опреде ления требов аний	х	-	-	-
2.2	Разработка сценариев использовани я системы	Разработчик	3-4 дня	После разраб отки архите ктуры	-	х	-	-

		I			ı	1	Ι	
2.3	Прототипы интерфейсов	Дизайнер	3-4 дня	После разраб отки сценар иев	-	х	-	-
2.4	Дизайн-маке ты	Дизайнер	1 неделя	После протот ипов	-	x	х	-
2.5	Архитектура системы (компоненты, модули системы)	Разработчик	3 недели	После опреде ления требов аний	х	-	-	-
Разр	аботка						•	
3.1	Написание кода	Разработчик	4 недели	После утверж дения дизайн а	х	х	х	х
3.2	Тестировани е приложения		4 недели	Парал лельно с написа нием кода	x	x	x	×
Внед	рение			•				
4.1	Оформление MVP	Руководитель проекта, дизайнер	2 дня	После завер шения тестир ования	-	-	-	х
4.2	Внедрение MVP	Руководитель проекта	7 дней	После оформ ления мур	-	-	-	х
4.3	Написание отчета	Аналитик	2 недели	Парал лельно с внедре нием	-	-	х	х
4.4	Оформление презентации	Дизайнер	5 дней	Перед защито й проект а	-	-	-	х

Защита	Вся команда	1 день	07.06 -	-	-	-	х
проекта			15.06				

<u>Сценарии использования образовательной игры по</u> информационной безопасности

1. Знакомство с основами информационной безопасности.

Цель: познакомить студентов с основными понятиями и принципами информационной безопасности.

Сценарий: игра начинается с вводного урока, на котором студенты знакомятся с понятием информационной безопасности, её целями и задачами. Затем они проходят серию заданий, которые помогают им понять, как работает информационная безопасность и какие меры необходимо предпринимать для её обеспечения.

2. Изучение методов защиты от киберугроз.

Цель: научить студентов методам защиты от различных видов киберугроз.

Сценарий: в игре представлены различные виды киберугроз, такие как фишинг, вирусы, DDoS-атаки и т. д. Студенты должны научиться распознавать эти угрозы и принимать меры по их предотвращению. Для этого они могут использовать различные инструменты и методы защиты, такие как антивирусное ПО, фаерволы, шифрование данных и т. п.

3. Практические задания по защите информации.

Цель: дать студентам возможность применить полученные знания на практике.

Сценарий: после изучения теории студенты переходят к практическим заданиям, в которых они должны защитить информацию от различных киберугроз. Задания могут быть разнообразными, например, настроить фаервол, зашифровать данные, обнаружить и устранить вирус и т. д.

4. Тестирование системы на уязвимости.

Цель: обучить студентов тестированию систем на уязвимости.

Сценарий: студенты изучают методы тестирования систем на уязвимости, такие как сканирование портов, анализ трафика, поиск уязвимостей в коде и т. п. Затем они применяют эти методы к виртуальной системе, чтобы найти и исправить уязвимости. Это позволяет им лучше понять, как работают хакеры и как им противостоять.

5. Анализ инцидентов информационной безопасности.

Цель: научить студентов анализировать инциденты информационной безопасности и принимать соответствующие меры.

Сценарий: студентам предоставляется описание инцидента информационной безопасности, такого как утечка данных, взлом системы или DDoS-атака. Они должны проанализировать инцидент, определить его причины и последствия, а также предложить меры по предотвращению подобных инцидентов в будущем.

6. Решение задач по информационной безопасности.

Цель: проверить знания и навыки студентов в области информационной безопасности.

Сценарий: студентам предлагается решить ряд задач по информационной безопасности, таких как выбор правильного пароля, настройка фаервола.

Требования к продукту и МVP

1. Требования клиентов:

- Продукт должен быть интересным и увлекательным для студентов первого курса направления «Информационная безопасность».

- Игра должна способствовать усвоению основных понятий и принципов информационной безопасности.
- В игре должны быть представлены различные виды киберугроз, чтобы студенты могли научиться распознавать их и принимать меры по их предотвращению.
- Задания должны быть разнообразными и интересными, чтобы поддерживать мотивацию студентов.
- Система тестирования на уязвимости должна быть реалистичной и приближённой к реальным условиям.
- Анализ инцидентов информационной безопасности должен быть основан на реальных событиях.

2. Функциональные требования:

- Наличие вводного урока, на котором студенты знакомятся с понятием информационной безопасности, её целями и задачами.
- Возможность прохождения серии заданий, которые помогают студентам понять, как работает информационная безопасность и какие меры необходимо предпринимать для её обеспечения.
- Представление различных видов киберугроз в игре.
- Предоставление инструментов и методов защиты от киберугроз.
- Проведение практических заданий по защите информации.
- Тестирование системы на уязвимости.
- Анализ инцидентов информационной безопасности.
- Решение задач по информационной безопасности.

3. Нефункциональные требования:

- Простота использования.
- Доступность для всех студентов первого курса.
- Безопасность данных.
- Надёжность работы.

- Адаптивность под разные устройства.
- Поддержка разных языков.
- Совместимость с другими образовательными платформами.

4. Производные требования:

- Разработка руководства пользователя.
- Создание обучающих видеоуроков.
- Обеспечение технической поддержки.
- Регулярное обновление контента.
- Мониторинг отзывов пользователей.
- Внесение изменений на основе обратной связи.

Стек для разработки образовательной игры по информационной безопасности на Unreal Engine

- 1. **Unreal Engine 5** игровой движок, который предоставляет инструменты для создания игр различных жанров. Он имеет множество функций и возможностей, которые могут быть полезны при разработке образовательной игры.
- 2. **Blueprints** визуальный язык программирования, который позволяет создавать игровые механики без написания кода. Это может быть полезно для начинающих разработчиков, а также для тех, кто хочет быстро создать прототип игры.
- 3. **C++** язык программирования, который используется для более сложных задач, таких как оптимизация производительности, работа с данными и т. д.
- 4. **Visual Studio Code** интегрированная среда разработки, которая может использоваться для написания кода на C++. Она имеет множество расширений и плагинов, которые могут упростить процесс разработки.

- 5. **Git** система контроля версий, которая позволяет отслеживать изменения в коде и возвращаться к предыдущим версиям. Это важно для обеспечения качества кода и совместной работы над проектом.
- 6. **GitHub** веб-сервис для хостинга проектов с открытым исходным кодом. Может быть использован для хранения кода, документации и других файлов проекта.
- 7. **UE Marketplace** магазин плагинов и ресурсов для Unreal Engine. Здесь можно найти множество инструментов и материалов, которые могут помочь в разработке игры.
- 8. **Unreal Marketplace** официальный магазин контента для Unreal Engine, где можно приобрести готовые ассеты, модели, звуки и другие ресурсы для использования в своих проектах.
- 9. **Substance Painter** программа для создания текстур и материалов для 3D-моделей. Может использоваться для создания реалистичных поверхностей и эффектов.
- 10. **Adobe Photoshop** растровый графический редактор, который может использоваться для редактирования изображений и создания новых.

<u>Прототипирование</u>

- 1. Определение целей и задач прототипа. На этом этапе мы должны определить, какие функции образовательной игры по информационной безопасности мы хотим проверить с помощью прототипа. Например, мы можем создать прототип, который будет проверять работу системы тестирования на уязвимости или анализ инцидентов информационной безопасности.
- 2. **Создание макета.** Макет это упрощённое представление продукта, которое позволяет нам быстро и дёшево проверить его основные функции. Мы можем создать макет в виде блок-схемы, диаграммы или даже просто описать его словами.
- 3. **Тестирование прототипа с пользователями**. После создания макета мы должны протестировать его с реальными пользователями, чтобы получить обратную связь о его удобстве использования,

функциональности и других характеристиках. Это поможет нам выявить проблемы и внести необходимые изменения в продукт.

- 4. Доработка прототипа на основе обратной связи. После тестирования мы должны проанализировать полученную обратную связь и определить, какие изменения необходимо внести в прототип. Мы также можем провести дополнительные тесты, чтобы убедиться, что внесённые изменения улучшили продукт.
- 5. Повторное тестирование прототипа. После внесения изменений мы должны повторно протестировать прототип, чтобы убедиться, что он соответствует нашим требованиям. Если прототип не соответствует требованиям, мы должны вернуться к шагу 3 и повторить процесс.
- 6. Завершение прототипа. Когда прототип соответствует нашим требованиям, мы можем завершить его разработку и перейти к следующему этапу проекта.

Проектирование и разработка образовательной игры по информационной безопасности

- 1. Анализ требований к продукту. На этом этапе мы должны проанализировать требования, которые были определены на предыдущих этапах проекта. Мы должны убедиться, что продукт соответствует потребностям целевой аудитории и решает поставленные задачи.
- 2. **Выбор платформы и стека для разработки.** Мы должны выбрать платформу, на которой будет разрабатываться игра, и стек технологий, который будет использоваться для её создания. Мы можем использовать различные платформы, такие как Unreal Engine, Unity или Godot, а также различные языки программирования, такие как C++, Python или JavaScript.
- 3. **Разработка архитектуры системы.** Архитектура системы определяет структуру и взаимодействие компонентов системы. Мы должны разработать архитектуру, которая будет соответствовать

требованиям к продукту и обеспечивать его надёжность, масштабируемость и удобство использования.

- 4. **Создание сценариев использования.** Сценарии использования определяют, как пользователи будут взаимодействовать с системой. Мы должны создать сценарии, которые будут соответствовать целям и задачам продукта.
- 5. **Дизайн-макеты.** Дизайн-макеты это визуальное представление интерфейса системы. Мы должны создать дизайн-макеты, которые будут привлекательными, понятными и удобными для пользователей.
- 6. **Написание кода**. Написание кода это процесс создания программного обеспечения, которое реализует функциональность системы. Мы должны написать код, который соответствует архитектуре системы и обеспечивает её работоспособность.
- 7. **Тестирование приложения.** Тестирование это процесс проверки работоспособности и качества программного обеспечения. Мы должны провести тестирование приложения, чтобы убедиться, что оно работает правильно и не содержит ошибок.
- 8. **Внедрение MVP**. MVP (Minimum Viable Product) это первая версия продукта, которая имеет только основные функции. Мы должны внедрить MVP, чтобы получить обратную связь от пользователей и определить, какие функции необходимо добавить в следующие версии продукта.
- 9. **Оформление MVP.** Оформление MVP это создание документации, инструкций и других материалов, которые помогут пользователям понять, как использовать продукт. Мы должны оформить MVP, чтобы обеспечить его доступность и понятность для пользователей.
- 10. **Внедрение.** Внедрение это процесс распространения продукта среди пользователей. Мы должны внедрить продукт, чтобы он стал доступен для целевой аудитории.
- 11. **Тестирование и доработка.** После внедрения мы должны провести тестирование продукта на реальных пользователях, чтобы выявить проблемы и внести необходимые изменения. Мы также можем провести дополнительные тесты, чтобы улучшить качество продукта.
- 12. Завершение разработки. Когда продукт соответствует требованиям, мы можем завершить разработку.

Заключение

В ходе выполнения проекта была разработана образовательная игра по информационной безопасности для студентов первого курса. Игра представляет собой интерактивный обучающий инструмент, который позволяет студентам изучать основы информационной безопасности в увлекательной и доступной форме.

Игра включает в себя следующие основные компоненты:

- * вводный урок, на котором студенты знакомятся с понятием информационной безопасности, её целями и задачами;
- * серию заданий, которые помогают студентам понять, как работает информационная безопасность и какие меры необходимо предпринимать для её обеспечения;
- * представление различных видов киберугроз в игре;
- * предоставление инструментов и методов защиты от киберугроз;
- * проведение практических заданий по защите информации;
- * тестирование системы на уязвимости;
- * анализ инцидентов информационной безопасности;
- * решение задач по информационной безопасности.

Для разработки игры использовался игровой движок Unreal Engine 5. В процессе разработки были использованы следующие инструменты и технологии:

- * Blueprints визуальный язык программирования;
- * С++ язык программирования для более сложных задач;
- * Visual Studio Code интегрированная среда разработки;
- * Git система контроля версий;
- * GitHub веб-сервис для хостинга проектов с открытым исходным кодом;

- * UE Marketplace магазин плагинов и ресурсов для Unreal Engine;
- * Unreal Marketplace официальный магазин контента для Unreal Engine.

Прототипирование включало в себя создание макета игры и его тестирование с пользователями. Результаты тестирования показали, что игра является интересной и полезной для студентов. Она помогает им лучше усвоить материал и повысить мотивацию к изучению информационной безопасности.

Перспективы дальнейшей разработки темы включают в себя расширение функционала игры, добавление новых уровней сложности и возможностей для взаимодействия с другими игроками. Также возможно создание дополнительных образовательных игр по другим темам информационной безопасности.