

WAYCRATE

SWHKD: PROVIDE LIBINPUT
AS AN ALTERNATIVE INPUT

BACKEND

GSoC 2025
Mohammad Aadil Shabier

:aadilshabier

1

http://www.github.com/aadilshabier

Contact Information
●​ Email: aadilshabier1@gmail.com
●​ Github: aadilshabier
●​ Linkedin: Mohammad Aadil Shabier
●​ Discord: tps787

Introduction
The project I’m planning to contribute to is related to a highlighted issue
from the ideas page(#191). It seeks to replace evdev with a libinput
backend.

swhkd currently uses udev and libevdev for input handling. Udev is a
device manager which is responsible for detecting when devices are added
and removed, these devices are then “grabbed” so that all events from
these devices pass through swhkd. Evdev is a generic input interface which
passes events generated from the kernel to the userspace, it is used to get
all events coming from these devices as a stream which it then processes.
We then check for any keybinds or shortcuts, any other events are
simulated using uinput, a kernel module which is used to emulate input
devices from the user space using libevdev.
Libinput is a user space input library which processes events from evdev
devices. It offers excellent support for commonly used input devices like
mice, keyboards, touchpads, etc. In short, it is built over evdev and handles
filtering, debouncing, acceleration, gestures, etc to provide a better user
experience.

The goal of this project is to provide an option for the user to use libinput as
the input backend.

2

mailto:aadilshabier1@gmail.com
http://www.github.com/aadilshabier
https://www.linkedin.com/in/mohammad-aadil-shabier-228015220/
https://discord.com/users/721244227480059937
https://waycrate.github.io/outreach/gsoc/2024/idea-list/
https://github.com/waycrate/swhkd/issues/191

Related Experience
You can find my resume here, and some other experiences on my Linkedin.
I primarily work in Systems Engineering and Machine Learning in C,
C++, Python, Rust, etc.

I love to program, primarily in C++ and Python. I participated in GSoC 2022
under Inkscape, where I worked in C++, on modernizing memory
management and worked towards removing the garbage collector.

I’ve contributed to scalpel, a packet dissector and sculptor written in Rust.

At the time of writing, this I have made a few PRs to swhkd.

Why Waycrate?
I came across Rust a few years ago, and was pretty amazed by the ease of
programming in it compared to some other languages. The packet
management seemed as easy as in Python, while having all the raw
performance possible in C, with a few cool bells and whistles. Working on
the Rust libraries I mentioned above made me realize how much I enjoyed
programming in Rust. So I hopefully get to do GSoC 2025 at Waycrate, and
get to work on something used by a lot of people.

I really like the vision of the Waycrate team, and really enjoyed the
community I came across on Discord. I think the maintainers have a lot
going for them as maintaining such a project is probably by no means easy.

I’ve been using i3 since 2021 and eventually plan to switch to sway once I
have enough time to rice my setup again xD. I think working on a slightly
newer project which I will eventually go on to use will be very exciting.

3

https://docs.google.com/document/d/1aHm1PDs8GKQJ8RRTy3o8lubTuD-pfIvMTTSY9kvr3CA/edit?usp=sharing
https://github.com/ystero-dev/scalpel
https://github.com/waycrate/swhkd/pulls?q=is%3Apr+author%3Aaadilshabier

Proposal

Motivation
Currently, we capture input from only the keyboard, mouse, and similar
devices (currently defined as devices which support the Enter key) unless
specified.
The goal of libinput is to provide better support for common devices that
interact with a desktop environment, this also means that it does not
support devices like joysticks because:

a.​ It does not have a clear interaction with the desktop environment
b.​ Any abstraction that libinput would provide would introduce

complexity and processing delays for no clear benefit.​
Libinput handles some device specific quirks, and also has code to
handle common device malfunctions like debouncing, this could help avoid
some pitfalls faced when handling certain types of inputs directly with
evdev, and consecutively solve some device related issues, e.g: #230,
#244, #209, #211, #215, etc.
Libinput also only supports a subset of the switches that libevdev supports,
so any user that requires these extra switches might find it better to
continue using libevdev. This project would allow testing the feasibility of
this alternative backend, which gives the user more fine grained control
over the input backend to better suit their uses.
Libinput does not handle all device types. E.g: joysticks. We may need to
handle these separately using some sort of evdev passthrough.
Grabbing the devices might also interfere with gestures, so we have to give
the user power to ignore any devices if they want fine grained control over
their experience.
I also plan to add functionality to emulate device events for devices which
we currently do not have, e.g: middle mouse click emulation.

Description
This project will be a medium project lasting for 175 hours. The work done
in this project will be done in a separate branch/repository created for the

4

https://github.com/waycrate/swhkd/issues/230
https://github.com/waycrate/swhkd/issues/244
https://github.com/waycrate/swhkd/issues/209
https://github.com/waycrate/swhkd/issues/211
https://github.com/waycrate/swhkd/issues/215

express purpose. The project will need consistent input and testing by
members of the community as it involves changing elements of the user
experience, and removing functionality which may be useful to them.

Phase 1
The community bonding period lasts for around a month, this will be crucial
to get to know the Waycrate community, and read existing documentation
to plan out all the changes before coding actually starts.

The project would provide libinput as an optional build dependency which
can be added using Cargo “features”. We would initially develop it as a
separate project called swhkd_libinput, and we will try to keep parity with
the current version in terms of behaviour and command line flags.

Phase 2.1
The coding period starts on June 1. We will start from scratch and try to
replicate some existing functionality of swhkd using the libinput backend. At
this stage, we will not plan changes in any of the other modules in swhkd
(config, perms, tests, uinput) but rather work out the specifics of the library
and implement the major functionality of swhkd:

1.​ Adding and removing devices using udev.
2.​ User arguments to add devices by name.

Phase 2.2
The project will continue using uinput to generate virtual device events, this
would be similar to the evdev implementation. This is done by
implementing a translation layer which convert a libinput event to an evdev
event to be able to simulate it with uinput.
We also implement a feature which allows us to simulating device events
for devices and buttons which we currently do not have. This can be used
to emulate missing keys, such as middle mouse clicks, pause, play, mute
buttons, etc.

5

Phase 2.3
The current implementation uses an asynchronous API to reduce CPU
usage, we use the AsyncFd struct in tokio, which provides a wrapper
around the libinput Rust interface to make it async.
We then implement the cooldown timer as in the older version.

Phase 2.4
As we discussed above, libinput does not handle non-common devices,
although this is the majority of devices, and will work without problems for
the vast majority of the people, we can experiment handling events for
these devices by using an evdev fallthrough.
It is not currently clear whether this will work as expected, but it would be a
nice addition if it worked.

Phase 2.5
To provide libinput as a drop-in replacement, we would have to modularize
and clean up the code in swhkd_libinput. This also allows us to make a
minimal amount of changes to replace it with other userspace input libraries
in the future. This also enhances readability and maintainability which is
important for a project of this scale used by a large number of people.

Phase 3
This phase will prepare for the end of the Summer of Code period by
reviewing all the changes that were made, documenting them, writing unit
tests and integration tests, and completing the GSoC blog. All the changes
that have been made will be ironed out in preparation for the final
evaluation.

Timeline

1. Read and
Research

1.1 Community bonding period May 8 - May 17

1.5 weeks

6

1.2. Plan and document core
differences that could arise
from changes to the input
backend. DIscuss with the
community and understand the
tradeoffs to make choices.

May 18 - May 31

2 weeks

2. Start
implementation
and plan
integration into
existing swhkd

2.1. Start from scratch and try
to replicate some existing
functionality of swhkd using the
libinput backend.

June 1 - June 14

2 weeks

2.2. Experiment with ways to
replicate existing usage, such
as emitting events, grabbing
devices using the libinput
backend, etc.

June 15 - July 7

3 weeks

2.3. Asynchronize the libinput
API for better performance and
CPU usage and to work well
with the current
implementation.

July 8 - July 14

1 week

MIDTERM EVALUATION

2.4. Implement input handling
for joysticks and other devices
not handles by libinput

July 15 - July 28

2 weeks

2.5. Modularize code to make it
a drop-in replacement

July 29 - August 11

2 weeks

3. Test and
Document

Test the functionality, write unit
tests, document all changes,
iron out all changes. Bring
everything to completion.

August 12 -
September 1

2.5 weeks

FINAL EVALUATION

7

Availability
After my college ends in the first week of May, I’ll have most of the day to
dedicate to the project.

References
1.​ Input subsystem (link)
2.​ Kernel input programming documentation (link)
3.​ Thread with information about grabbing libinput devices. (link)
4.​ Work that was done previously (link)
5.​ How libinput-record (link) and libinput-replay (link) emits events.

8

https://www.kernel.org/doc/html/v4.14/input/input.html
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/input/
https://www.mail-archive.com/xorg@lists.x.org/msg06402.html
https://github.com/aadilshabier/swhkd/tree/libinput-1
https://gitlab.freedesktop.org/libinput/libinput/-/blob/main/tools/libinput-record.c
https://gitlab.freedesktop.org/libinput/libinput/-/blob/main/tools/libinput-replay.py

	
	WAYCRATE
	Contact Information
	Introduction
	Related Experience
	Why Waycrate?
	Proposal
	Motivation
	Description
	Phase 1
	Phase 2.1
	Phase 2.2
	Phase 2.3
	Phase 2.4
	Phase 2.5
	Phase 3

	Timeline

	Availability
	References

