Simple Sync Animator
Simple Sync Transform
© 2019 emotitron | Davin Carten

Current version of this document online here

Contact the author at: davincarten@gmail.com

| am also regularly in #Unity-Dev on Discord as emotitron if you have questions.
https://discord.gg/tGDUxp?%

This is still version 1.x.
As such, there are bug fixes and improvements regularly being added.

Be sure to check for updates!
And don't hesitate to contact me.

Unity 2019+ users:

Be sure a network library is installed before installing Simple Network Sync. UNet
is no longer included, and if there is no library (PUN2, Mirror, MLAPI or manually
added UNet) you will get a wall of errors.

Documentation is intentionally still minimalistic. PLEASE, contact me with any questions or for
help, | am very quick to respond. | am avoiding too much documentation work until the first
version of this has finished being updated as use cases come up, as it will quickly become
outdated and wrong.

https://docs.google.com/document/d/1v5Nisfo5OK3qrphiO3e-yQ7omCwSZd3pLXcPpDl4oCo/edit?usp=sharing
mailto:davincarten@gmail.com
https://discord.gg/tGDUxp9

This software is always being improved and tightened up, and the main driver outside of my own
usage is the devs using it requesting changes, improvements and fixes. email me or even better

hop on to discord and let me know what you think it needs, or let me know how you were able to
break it.

Concept

My aim is to create “just works” drag and drop networking components that bring better
practices of tick-based simulation syncing and advanced bitpacking to areas of networking most
new developers have the most trouble. This component, like the ones it is designed to replace
uses snapshot interpolation for replication.

The first two components are syncs for Transforms and Animators.

Unlike the built-in UNET NetworkTransform, NetworkAnimator, PhotonTransformView,
PhotonAnimatorView as well as other third party transform syncs, this library uses a ring buffer
with numbered frames for each net entity (Networkldentity/PhotonView). This produces VERY
smooth and stable syncs even in adverse network conditions, and also establishes a base for
more advanced networking concepts later, like rewind and determinism.

All SimpleNetworkSync components on a networked gameobiject serialize into a single byte[]
using bitpacking, to give the highest levels of compression possible.

Animator Compression:

SendEveryX value reduces the overall tick rate to a set fraction of the FixedUpdate rate.
Keyframe Rate allows for the use of delta frames, reducing unchanged data elements to 1 bit.

Note about FixedUpdate vs Update timing:

This component set is tuned for games that simulate/move/animate using timings based around
FixedUpdate(). It will work in simulation-free or Update() based simulations as well, but those are
generally less than ideal for networking. and are prone to micro-jitter. | always recommend in
Unity doing all game logic in fixed, and only using Update() for interpolation/extrapolation when
doing networking - rather than applying changes and game logic in Update(). This however is a
much larger topic | won't cover here.

https://github.com/emotitron/BitpackingTools

Usage

These components are meant as replacements for NetworkTransform, NetworkAnimator,
PhotonTransformView and PhotonAnimatorView. As such, you must do the same ownership
checks as you do for those. Specifically be sure to test hasAuthority (Unet/Mirror) and IsMine
(PUN2) in your controllers, and only apply controllers if these are true. Otherwise, you will be
trying to apply inputs to all objects on every connection, even the ones that player does not own.

Be sure to include the following on any .cs files referencing these components:

using emotitron.Networking;

Simple Sync Animator

Place on any GameObject that has an Animator component you would like to sync.

¥ it ¥ Animator B,
Controller & AlControllerQy @
Avatar » ajAvatar 2]
Apply Root Motion Handled by Script
Update Mode | Marmal ¢ |
Culling Mode | Cull Update Transfor # |

Clip Count: O

Curves Pos: 0 Quat: 0 Eulert O Scale: O
(1} Muscles: O Generic: O PPt O
~i¢ Curves Count: O Constant: 0 (0,0%)
Dense: O (0,09%) Straam: 0 (0.0%)

TD ESImple Sync Animator (Scr [#

ANIMATOR SYNC ‘5589 |

Simple Sync Transform

Place on any GameObject root or child that needs its Transform to be synced.

¥ .~ Transform) #.
Position X 0 Y0 Z|0
Rotation X 0 Y0 Z\|0
Scale X1 Y1 Z(1

v@ [« Simple Sync Transform (5« #,

TRANSFORM SYNC\ecis |

MLAPI Setup

For MLAPI, a define needs to be added to the project.
Go to Edit >Project Settings > Player,
and add MLAPI to the Scripting Define Symbols.

Open the player settings in the inspector:

Edit Assets GameObject Component Asset Store Tools Simple Metwork Sync

Undao Ctrl+Z
Redo Ctrl+Y
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Duplicate Ctrl+D
Delete Shift+Del <Right
Frame Selected F
Lock View to Selected Shift+F
Find Ctrl+F
Select All Ctrl+&
Preferences...
Modules...
Play Ctrl+P
Pause Ctrl+Shift+P
Step Ctrl+Alt+P
Sign in...
Sign out
Selection »
Project Settings » Input
Graphics Emulation > Ezpensles
MNetwork Emulation » Sudio
Time
Snap Settings... Player
e — i
Add MLAPI to the symbols.
Configuration
Scripting Backend [Monozx |

Api Compatibility Level* | .MET 2.0 Subset
Disable HW Statistics* [

Scripting Define Symbols*

[MLAPI |

Demos
To support a wide range of Network Libraries (Unet/PUN2/MLAPI/Mirror) and the range of

Unity versions (5.6 to 2019) - it is not possible to keep demo scenes in the project, as they would
all suffer from missing components for the unused libraries.

To this end the demos are all Asset Packages that need to be opened.

1) Extract the Demo for the Network Library you are using.

3 Project

Assets » emotitron » S

== Example

2) Open the newly created scene in the Example folder
3 Project

Assets = emotitron » S

-
oy
-
oy

-
oy

_ _UNET_Demao
Example -

Net Master

This singleton is created at runtime if none exists in the scene. It exists to ensure all networked
objects using Simple Network Sync components fire on the same distinct timings, and is the
primary traffic cop. If you would like to send at a lower rate than every FixedUpdate(), add Net
Master to your scene and adjust the Send Every X value to reduce the send rate.

< Unity 5.6.7F1 Personal (64bit) - NewFeaturesScene.unity - SimpleNetworkSyne - PC

File Edit Assets GameObject Component | Simple Negtwork Sync . Window

[@-u‘:ﬂ:|m] m Add Met Master I

¥ || ¥ Net Master Lite (Script) Send Every X Fixed - SimpleSync uses FixedUpdate as
its primary tick, but can produce a network rate that is a
@m ONM subdivision of that rate. For example the default Unity
physics fixedDeltaTime is .02 secs (50 ticks per sec).
Script etiasterlite Setting [Send Every X]to 2would resultin anetrate
Send Every X —C—[] of .04 (25 ticks per seconds) - % of the physics rate. This
Timing singleton used by all Simple Metwark Sync

] | 1 1 effectively cuts generated traffic in half.
components, Effectively a tiny networking specific

Update Manager. Will be added automatically at
runtime if one does not exist in your scene,

Net Object

This component acts as the network id address and traffic cop of networked game objects, and is
automatically added whenever a syncObject component is added to an object. This object
collects and manages all of the callback interfaces of all sync objects on a gameobject, and
responds to the timings generated by NetMaster. This works in conjunction with PhotonView
(PUN2), Networkldenity (UNet/Mirror) and NetworkedObject (MLAPI)

¥ || ¥ Net Object Lite (Script) Skip When Empty: EXPERIMENTAL

This instructs the NetObject to not send at all, not even
Gm ON w a heartbeat. This saves about 3 bytes per tick per object
Script NetObjectLite by removing heartbeat data, but the side effect is some

less than desirable extrapolation. This is included for
Skip When Empty [edge cases where a scene may have a LOT of idle

get*-'ﬂ::k ﬁntit'f manager Iilc'EEd by 51irm|='|e yetwnll_;kld objects and some hitchy wake up behavior is worth the
wno, Collects all networking interfaces from chi . .
companents, and relays network callbacks, savmgs.'Be sure to set your k'eyframe rates on children
serialization, and events between the MetMaster and sync objects, as keyframes will force a send. Keyframe =

synced components.,

zero will never send a keyframe. Also be aware that
PUN does not initialize objects, so until an object
moves, any late joiners will not see a correct position.

Simple Network Sync - Common Fields

Shared fields among sync components.

Apply Order ——| Apply Order
It is recommended that you not change this.
The order in which components on a network object
run, in order from lowest to highest. This is used to
ensure things that regardless of component order,
certain things will always happen first. Some
Transform and Animator setups may prefer one or
the other to happen first. By default Transform is
first, as this produced the best results in my example
scene, but it may not be the case with all Animator
configurations.
When components have the same Apply Order
value, then the order in the gameobiject hierarchy is
used.

Keyframe Rate o — B Keyframe Rate
These components are one-directional broadcasts.
As suchitis possible to reduce data by using
keyframes. When no changes occur to elements of
synced objects, they will send a 1 bit false flag
indicating no content, rather than sending the same
data every update. This does mean that loss and late
joining players (in the case of PUN2) may have out of
date values for a short period. Keyframes ensure
eventual consistency when using delta frames. The
greater the value the more data savings, but also a
greater risk of odd behavior when packet loss is
encountered.

If bandwidth is less of a concern, set this value to 1,
and every update will contain a full compressed
state.

Simple Sync Transform

The primary NetworkTransform / PhotonTransformView replacement component is
SimpleSyncTransform.

v || [« Simple Sync Transform (5¢ [#

TRANSEORM SYNC\ 558 |

Script SimpleSyncTral @

Apply Order e — |

Keyframe Rate

- — B

Teleport Threshold |5
Interpolation

[Linear

Extrapolate Ratio
Auto Kinematic [+
¥ Transform Crusher 44 hits

A

— | 0,5

¥ Position [Jwarld Bnds []Lecl 32 Bits

[= 12 Bits
Bits 12 ¢ 12

Range: mini -20
[] Use Accurate Center (0)

maxi 20

Actual: res: 1/102,3750 prec: 0.0098
[8 Bits
Range: min: -1 max 1

[] Use Accurate Center (0]

Actual: res: 1/127.5000 prec: 0.0078
[« = 12 Bits
Range: min: -20 max 20

[] Use Accurate Center (0)

Actual: res: 1/102,3750 prec: 0,0098
¥ Euler - [JLel 12 Bits
[] % (Pitch)
[[raw) 12 Bits
Bits 12 : 1z

[] Limit Ranges
[] Use Accurate Center (0)
Actual: res: 1/11,2750° prec; 0,.0879°
[]Z (rRell)

|l' Scale HYZ « M Lel 0 Bits |

Teleport Threshold

The distance in units between frame updates that will trigger a
teleport. This exists just to have parity with other transform
syncing tools. Teleporting can have different meanings in
different games, so ideally you will want to code teleport
handling yourself.

Interpolation

o None - Objects will snap to the networked states,
without lerping.

e Linear - Basic Lerp/Slerp are used to interpolate
between networked frames. This is likely the mode
you want.

e Catmull Rom - (Experimental) A more sophisticated
lerp that uses 3 points, producing a more naturally
curved and accurate path than a basic lerp.

Extrapolate Ratio

Extrapolation occurs when the tick advances, but no frame info
has arrived yet on clients for this object. The synced object
now has to guess what the next frame’s values are.
Extrapolation uses the last two values to extrapolate the new
frame. The Ratio is the t value used by LerpUnclamped, and
acts as a dampener of extrapolation. So for sequential missing
frames the extrapolation gets reduced on a curve.

0 = no extrapolation - object will not move on empty buffer.

.5 = evenly dampened - object will lerp less with each tick.

1 = full extrapolation - no damping, will extrapolate until a
frame arrives or object is destroyed (disconnect).

Auto Kinematic

A best guess is made for the handling of owner/server/others
on how to set the rigidbody isKinematic. Generally all
non-authority instances of the object will be set to isKinematic
=true.

Crusher

See TransformCrusher

TRS data (Position, Rotation, Scale) are compressed using my
Transform Crusher library, which has its own documentation.

More information about the Element Crusher can be found at in the Transform Crusher

documentation.

https://docs.google.com/document/d/14X8Bmg6UMecx8SlVQzfjrBYBf4ZYRayOLXipgB0BqPU/edit
https://docs.google.com/document/d/14X8Bmg6UMecx8SlVQzfjrBYBf4ZYRayOLXipgB0BqPU/edit#bookmark=id.2ujf6a3qq2zu
https://docs.google.com/document/d/14X8Bmg6UMecx8SlVQzfjrBYBf4ZYRayOLXipgB0BqPU/edit#
https://docs.google.com/document/d/14X8Bmg6UMecx8SlVQzfjrBYBf4ZYRayOLXipgB0BqPU/edit#

Teleporting

Teleporting disables interpolation and tweening momentarily to allow for objects to be moved
great distances. In order to do this move the object to its new position on the authority, then
simply call:

GetComponent<SimpleSyncTransform>().HasTeleported = true

Or if you already have a cached reference to the transform sync component:

cachedSyncTransform.HasTeleported = true;

This flags the next outgoing state as being a teleport, and other clients will disable interpolation
between this state and the following.

Currently this is a very simplistic teleport and there is no special handling for lost packets. If the
state never arrives due to suffers packet loss or a very late arrival, the object will interpolate
normally.

In order to make this more loss tolerant, without making use of acks (which are not feasible in
some of the networking environments), it would have other side effects. So right now | am
keeping this simple until users come to me with situations where it fails them.

Simple Sync Animator

The primary NetworkAnimator / PhotonAnimatorView replacement component.

‘I’D ESimple Sync Animator (Script)

ANIMATOR SYNC m

Script SimpleSyncAnimator

Apply Order -, 5
'S 16
1% Ethan_Player (Animal @

Keyframe Rate

Animatar

[Index Animator Names |

b Indexed Name Summary

[+ Sync Pass Thru Methods

Compress MormalizedTime | Bits 10 %
Call SimpleSyncAnimatar comr Full 22
simpleSyncAnimatar. Trigger() Half 18
simpleSyncAnimator.ResetTrig
simpleSyncAnimator.Play() Bitz 14
simpleSyncAnimator.PlayFixzed
simpleSyncAnimator.CrossFad Bits 12
simpleSyncAnimatar,.CrassFad

« Btz 10
to network them as events.
This is especially useful for trig Bit= O
often happens too quickly to sy

ﬁ 3,

Bit= &
[+ Sync States Bits 7
Compress MormalizedTime Bits &
i Sync Layers Bits 5
Bits 4
[+ Sync Layer Weights .
Bits 3
Compress LayerWeight
Bits 2
[+ Sync Parameters
[+ Use Global Settings
Interp Extrap Defs
M Integers | Hold ¢ | Hold $l0
M Floats | Hold ¢ | Hold $0
M Bools Haold £
[] Triggars Default +]

Index Animator Names

One of the primary compression methods of this component
is the indexing of all State and Trigger names, so that rather
than sending 32 bit hash values for states and ticks every
update, MUCH smaller (1-5 bits) indexes are sent instead.

The indexing happens automatically with a lot of hackery
behind the scenes, but it doesn't always fire (since it can’t be
forced during the build process). You may see warnings in
the log asking you to press this button. It never hurts to press
it, especially after making changes to your Animator
Controller.

If at runtime an index isn’t found, it will just fall back to
sending the full 32bit hash. Things will still work, but your
network usage will increase.

Sync Pass Thru Methods

If you call SetTrigger(), Play(), CrossFadelnFixedTime() and
such through this component, it will network those calls, and
pass along the command locally to the Animator. This often
can give the most in sync result, for a relatively low network
cost (less than a byte typically).

Sync States

This syncs the “snapshot” state of the animator, and enabling
this can sometimes be useful for ensuring agreement with
clients. Typically if you are making use of Passthrough
methods and parameters, it is not needed.

Sync Layers
If you are using layers and want them synced, turn this on.
Disable if you are not to save some data.

Sync Layer Weights

If you are animating layer weights, enable this. If you are not
animating them however, be sure to turn it off to conserve
data and processing time.

Sync Parameters

You can globally or selectively select which parameters to
sync.

Interpolation, Extrapolation and default values can be set,
but generally you will just want to leave the defaults.

Compress NormalizedTime/LayerWeights

Anywhere normalized values are used (normalizedTime and
layerWeights) an option is given for how much to compress
these. Half 16 is the failsafe. Lower values can be tried to see
how low you can get before seeing any artifacts.

[+ Sync Parameters
[Juse Global Settings
¥ Adv. Parameter Settings

Interp Extrap Defs
B| B walking [Hold][]
F| speed | Hald 4 || Haold #|O
[Half 16 %]
T [jump
B| ¥ isJuming [Hold %] -
T [turnLeft

T [upperBodyRun

T [l upperBodyldle

M syncInt [Held #|[Hald ¢][o
| Pack Signed 3|

=

n

M syncFloat | Hold ¢/ Hald #|D

| Bits &8 # | min|0 max 1 centar

By default Triggers are not synced as
parameters, as they should be synced using the
PassThrough methods. They are only included
for completeness.

Advanced Parameter Settings
(Not for the average user)

Per parament settings are not pretty to look at, but they do let
you get into the specifics of which parameters are synced, and
gives the ability to indicate how they are interpolated,
extrapolated, what their default values are (when needed for
the interp/extrap settings).

Also recently a second row has been added with basic
compression settings options for Ints and Floats.

Int Compression:

Pack Signed - This is useful if your values typically stay
reasonably close to zero, but you don't actually know how
high or low they can go. This is the default codec as it will
always just work.

Pack Unsigned - if you know the numbers will only be
positive, this is better than PackSigned as it skips the ZigZag
operation on the sign bit.

Range - If you know the range your int will stay in, this will
give the best compression. Just indicate the min and max
values, and the compressor will handle the rest. Any values
outside of the given rangle will be clamped.

Float Compression:
Full 32 - No compression. Please don’t use this.

Half 16 - Greatly reduced accuracy from float32, but typically
will be good enough for most things. This is the default float
codec.

Range - If you know the range your float will stay in, this will
give the best compression. Just indicate the min and max
values, and the number of bits you want to limit compression
to. Any values outside of the given rangle will be clamped. Play
with the BitsX setting to find the lowest number that gives
you acceptable results. | may add some context info in the
future to indicate the precision.

Accurate Center toggle - because of the nature of bits, there
will always be an even number of quantized steps to
compression. Enabling Accurate Center reduces the
compressed range by 1 creating an odd number of steps...
thus allowing a value exactly between min and max to be
reproducible after lossy compression.

Net Master

This singleton is created at runtime if none exists in the scene. It exists to ensure all networked
objects using Simple Network Sync components fire on the same ticks, and is the primary traffic
cop.

¥ || [+ Net Master Lite (Script) g # Send Every X Fixed - SimpleSync uses FixedUpdate as
its primary tick, but can produce a network rate that is a

@(VJ ONM subdivision of that rate. For example the default Unity
physics fixedDeltaTime is .02 secs (50 ticks per sec).

=i t MetMasterLit . .

- IZ sthasterlite | @ Setting [Send Every X]to 2would resultin anetrate
—c.— . . .

S B d of .04 (25 ticks per sec) - % of the physics rate. This

Timing singleton used by all Simple Metwark Syne effectively cuts generated traffic in half.

components, Effectively a tiny networking specific

Update Manager. Will be added automatically at
runtime if one does not exist in your scene,

	Simple Network Sync Documentation
	Simple Sync Animator​Simple Sync Transform
	© 2019 emotitron | Davin Carten
	Concept
	Animator Compression:
	Note about FixedUpdate vs Update timing:

	Usage
	Simple Sync Animator
	Simple Sync Transform

	MLAPI Setup
	For MLAPI, a define needs to be added to the project.​Go to Edit >Project Settings > Player, ​and add MLAPI to the Scripting Define Symbols.
	
	

	Demos
	

	Net Master
	Net Object
	
	Simple Network Sync - Common Fields
	
	
	Simple Sync Transform
	Teleporting

	Simple Sync Animator
	
	Net Master

