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About the team 

We're a team from Oakville, Ontario, Canada. Our team consists of three International Baccalaureate 
students. We met through our common interest in robotics and engineering at our school's engineering 
club. Shayaan (center) is in grade 11, whilst Rohanth (left) and Arnnav (right) are in grades 10 and 9 
respectively. We are all passionate about all kinds of technology and the value it can provide us. In our 
spare time, we enjoy watching Formula 1, 3D printing, and playing board games. 
 
We divided the work for this project based on our areas of expertise. Arnnav focused on the hardware 
aspect of the project, including flight systems, drone navigation, and automation. Shayaan researched the 
forest fire detection mitigation models and developed our flammability level detection model. Rohanth 
focused on running the model on a local TPU and creating a map output to provide the user with the final 
information. We integrated our systems together to create “TensorForest”. 
 
 
 

 
Figure #1: Rohanth (Left), Shayaan (Center), Arnnav (Right)  

 



 

Executive Summary 
Over the past years, wildfires have become more frequent and severe. They destroy precious forest land, 
ecosystems, and contribute to a significant amount of greenhouse gases, causing additional global 
warming and respiratory illness for those in nearby communities. The UN Environment Programme 
(UNEP) predicts a global increase of extreme fires of up to 14 percent by 2030, 30 percent by the end of 
2050, and 50 percent by the end of 2100. We chose this problem due to its increasing threat to 
environmental sustainability and human health. We felt our expertise and passion for innovation in this 
field positioned us to tackle this challenge. 
 
While it's not possible to completely eliminate the risk of wildfires, much can still be done to manage and 
reduce risks. The most effective method to mitigate fire risk is active and aware management of the 
available vegetation/fuel on a given site before a wildfire breaks out. However, it is extremely labor, cost, 
and time-intensive to conduct frequent manual on-site surveys and measure the amount and types of fuel 
available on a site, especially since it changes over a season with precipitation and weather changes. 
 
Our solution, TensorForest, is an automated drone designed to capture aerial photographs of forests and 
compile high-resolution imagery. This imagery is used to detect various types of vegetation and assess 
their flammability levels. The resulting flammability map identifies areas of continuous flammable 
vegetation and pinpoints the locations most at risk of fire, potentially indicating where a fire is most likely 
to start. The drone's ability to create detailed flammability maps is crucial for disrupting patterns of 
vegetation continuity that could allow the spread of fires. It also supports fire management planning, such 
as optimizing the placement of firefighting resources (i.e., water reserves). The use of drones reduces the 
need for costly, labor-intensive manual surveys, enabling more frequent and expansive monitoring at a 
lower cost. This automation allows for more accurate and up-to-date data collection, which allows for 
better forest fire prevention. 
 
If further developed, TensorForest can be the cost-effective starting point for all property owners starting 
their wildfire management workflow, as given a route, it can fly automatically regularly over at-risk areas 
to update flammability maps in real-time. This data would be accessed by property owners to make 
informed decisions on vegetation management and firefighting logistics. 
 
TensorForest is crucial not just for mitigating the immediate risks of wildfires but also for its broader 
impact as it reduces carbon emissions and protects ecosystems. It also offers a scalable solution that can 
be adapted for different regions and types of vegetation, potentially serving as a global standard for 
wildfire risk assessment and management. 
 
 

 

 



 

Presentation of the Robotic Solution 

Technical Approach and Methodology 
After identifying the issue we wanted to tackle—which was better and more accessible data collection for 
forest fire mitigation—we began examining current technology and solutions. We discovered that the 
primary methods for creating forest vegetation maps and flammability heat maps involved: firstly, manual 
data collection, which is extremely time and labor intensive and becomes outdated very quickly; and 
secondly, the use of satellite imagery by various organizations and fire departments. However, this 
method only offers a maximum resolution of 1 kilometer, which means the smallest detail it can resolve is 
about 10 meters, rendering the imagery less effective due to its limited accuracy. 
 
However, using drones could dramatically improve this situation by providing imagery with a resolution 
of 1 meter, which would be a huge increase in the accuracy of such vegetation maps, especially beneficial 
for smaller property owners, like a farmer in rural Ontario. Initially, we also explored using the Canadian 
Forest Fire Weather Index, part of the Canadian Forest Fire Danger Rating System (CFFDRS), which 
assesses the risk of a forest fire in a specific location but, we quickly realized that this system, originally 
developed in 1984, is outdated and lacks the responsiveness required by modern science, which could 
accelerate the process of mitigating fires. The system, while useful for forest rangers in Alberta, fails to 
adapt to meet the needs of property owners and farmers who need to prevent wildfires on their lands. 
 
For these reasons, our solution proved much more helpful. It does not require daily manual input of 
weather, precipitation, or moisture data. We developed a more simplified and adaptable system. Our 
high-resolution drone imagery processed through an AI-driven object identification model, classifies 
vegetation types and generates detailed flammability heat maps. This automation enhances both the speed 
and accuracy of the data analysis. Our maps clearly identify when and where there is a need to prune 
specific trees, thanks to the continuity in the presence of flammable tree species, making our system much 
more primal and easy to use. 
 

 
Figure #2: Relationship between common north american forest fuel types and flammability levels 

 
 
 
 

 



 

 

Construction of Solution 
We began with the assembly of the chassis of our drone, which consists of a prebuilt carbon fiber Turnigy 
Talon Tricopter V1 kit. We chose to build a tricopter solution because of its dynamic yaw control, which 
is controlled by a servo that tilts one of the motors left and right. This allows for easy and precise 
adjustment against different wind conditions. The drone is run off three DJI Brushless motors. Brushless 
motors were chosen due to their efficiency, precision, and superior higher speeds compared to brushed 
motors, and also because they were easily accessible. 
 

 
Figure #3: Completed Assembly of TensorForest  

 
We opted for the SpeedyBee F405 FC as our flight controller, recognizing its high processing power and 
compatibility with Betaflight software. The F405 stands out for tricopters, particularly because of its 
precision in yaw adjustments. With its array of UART ports, the F405 not only provides extensive 
telemetry but also enables real-time flight data monitoring through its OSD capabilities, which is crucial 
for adapting quickly under varying conditions. Its GPS functionality further adds advanced navigational 
and safety features to our setup. 
 
Integrating the radio controller with the current firmware and receiver proved to be a challenging task, as 
the software we initially used did not support the connection. To overcome this hurdle, we employed an 
Arduino to facilitate the conversion from CPPM/PPM to SBUS. This workaround not only solved the 
compatibility issue but also ensured a reliable communication link between our radio controller and the 
drone, which is critical for maintaining control and responsiveness during flight. 
 
With the FC finally in place and the radio controller connection stabilized, we proceeded to install the 
BN-880 GPS Compass module. This component significantly enhances our navigational accuracy, 
providing dependable GPS and compass data that support advanced autonomous flight capabilities, such 
as waypoint navigation, return-to-home (RTH), and position hold. These features are crucial for 
improving both the precision and safety of the drone, enabling it to autonomously navigate back to a 
home position in case of any signal loss or emergency scenarios. 

 



 

 
Linking the BN-880 with the SpeedyBee F405 FC via a UART port streamlines the setup and simplifies 
the configuration process in Betaflight. The integration enriches the OSD with essential flight metrics 
such as altitude, speed, and location, vital for the autopilot functionalities we aim to develop further. 

 
 

Figue #4: Speedybee F405 FC​ ​ ​       Figure #5: BN880 GPS 
 
We further enhanced our drone's capabilities by incorporating a Raspberry Pi Zero W into the 
configuration to execute autopilot software. The Raspberry Pi Zero W, notable for its compact form and 
Wi-Fi capability, serves as a companion computer. This allows us to extend the functionalities of our 
drone well beyond basic flight control. By integrating the Raspberry Pi Zero W with the SpeedyBee F405 
FC, the Raspberry Pi handles complex navigational and automated flight tasks, freeing the F405 to focus 
on maintaining stable, real-time flight control. This division of labor between the Raspberry Pi and the 
F405 allows for the handling of advanced features without burdening the flight controller, ensuring both 
efficient processing and stable flight. 
 
We also designed and created custom 3D-printed mounts to securely hold both the battery and our camera 
module in place. These mounts were engineered for optimal stability and streamlined integration with the 
drone's overall design. 
 

 

 



 

 
The camera module is built around a Raspberry Pi 4 Model B with 4GB RAM and features a Google 
Coral Edge TPU, which is connected to a Raspberry Pi Camera Module V2. This setup enables the 
execution of a sophisticated tree class identification model in real-time. The model is designed to analyze 
live video feeds to detect and classify different types of vegetation captured by the camera, assessing their 
flammability levels based on predefined criteria. This functionality is crucial for environmental 
monitoring and managing fire risks in natural settings. 

 
Figure 6: Raspberry Pi Integrated Unit with Coral Edge TPU 

 
 
Additionally, this same Raspberry Pi 4 serves as an interactive hub for users. Through a local host 
connection, users can access a detailed map generated from the collected data, allowing for deeper 
analysis and insights. This dual-purpose use of the Raspberry Pi 4 not only maximizes efficiency but also 
enhances the drone's utility for field operations. 

Software Component 
To make the drone autonomous, we used ArduPilot. ArduPilot is an open-source project maintained by 
FPV and autonomous drone enthusiasts. It is a firmware that allows autonomous flight on any drone and 
enables you to add a Raspberry Pi for faster flight data readings. ArduPilot was used in this case as it is 
heavily documented, well-updated, and has a huge community around it, so finding help or solving issues 
wouldn't be a problem.  
 
For flight planning, we used Mission Planner, one of the world's most used Flight Planning software used 
by professionals and DIY enthusiasts alike. It allows us to map out areas, route them automatically, and 
send the routes to our Flight Controller instantly. ArduPilot and Mission Planner are built for each other 
and work flawlessly together. 
 

 



 

 
Figure 7: Mission Planner Software 

Machine Learning Model 
The machine learning model's software portion has four distinct segments that work in tandem to create a 
processed output heatmap of the fuel in a given forested region. The first script is used to capture images 
from the drone when flying using a Raspberry Pi Cam V2. The duration of the image capture, along with 
the interval at which the images are taken, can be adjusted to the user's liking or use the predetermined 
values.  
 
These images are then stitched together using the OpenCV library to create one large image of the 
forested region. This image is then put through the inference/classification model run through the Coral 
Edge TPU, and the output is processed to create a heatmap. 
 

 
Figure 8: Sample Stitched Image Output 

 



 

Image Capture: 

The image_capture.py script creates a time lapse image series on the Raspberry Pi. It interacts with the 
Raspberry Pi's camera module and captures images at user-specified intervals. The captured images are 
then used to create a timelapse image series which can be used to stitch together the image of the whole 
forest. 

 

 



 

 
Figure 9: Image Capture Script  

 



 

Image Stitching: 
The image_stitch.py script stitches multiple images together to create a single, larger image. All the 
captured images from the drone flight are put in a directory in which this script runs. It looks for common 
features between each image and combines them on that basis. This script works effectively when there is 
a significant overlap between the images, and this occurs when the robot takes its image timelapse of the 
forest region. It does this through various methods, such as feature detection and description, feature 
matching, homography estimation and image manipulation. These methods allow OpenCV to find regions 
with an image such as corners and edges which bleed into other images, allowing it to match them up. If 
two images are matched closely, Homography determines how to warp and manipulate an image to best 
align with the overlapping regions. By relying on these methods across images, OpenCV can create a 
cohesive stitched image even if the original images have slightly different viewpoints or lighting 
conditions. The stitching in the script is done using the Stitcher class from the OpenCV library. The 
stitched image is then saved to the disk. The output of this file is then given to the inference model to 
detect all the classes of vegetation fuel that exist within the given forest region. 
 

 
Figure 10: Image Stitching Script 

 

 



 

Inference Model: 

One of the important features of the TensorForest model lies in the inference model script which 
automates object detection on a series of images using pre-trained models. It leverages TensorFlow Lite 
for efficient on-device processing. The script begins by initializing two object detection models. These 
models are pre-trained convolutional neural networks (CNNs) capable of identifying specific objects 
within images, trained on a publicly available dataset on Roboflow. The dataset was then trained on the 
YOLOv8 (You Only Look Once version 8) model to be custom tailored for forest fuel vegetation 
detection. The model is then loaded from optimized .tflite files. The script iterates through each image in 
a given folder and runs it through the mode using the .predict() method .The results of this are then stored 
in a separate directory, with bounding boxes and associated class labels for each identified object, are then 
saved to disk for further analysis. 

 

 

Figure 11: Model Prediction Script 

 



 

Heatmap Generation 
The density_heatmap.py script reads bounding box data from text files, which are associated with specific 
images. Each bounding box is represented by a class and coordinates. The class corresponds to a specific 
color, defined in the class_values dictionary. The script then creates a heatmap by drawing these colored 
bounding boxes on the corresponding image. The color of each box represents the class of the object 
within the box, with different colors indicating different classes. The script also creates a legend that maps 
these colors to their respective classes. This script represents the final output of the robotic solution which 
provides the end user with a detailed breakdown of the fuel ratings of vegetation in a given forested area. 
 

 
Figure 12: Heatmap Creation Script 

 



 

 
Figure 12 cont.: Heatmap Creation Script 

 



 

Social Impact & Innovation 
 
TensorForest is designed to significantly enhance fire prevention capabilities across diverse geographical 
and economic landscapes. It will primarily benefit municipalities, regional governments, and private 
property owners who lack the resources to regularly employ professional auditors to assess vegetation 
fuel and flammability risks. This tool is particularly vital for rural regions in countries such as Pakistan, 
Indonesia, and Vietnam. These areas, despite not historically being prone to forest fires, are now facing 
increasing incidents each year. The lack of infrastructure, training, and resources for fire mitigation in 
these countries means that fires can escalate rapidly, causing substantial damage. 
 
The importance of TensorForest cannot be overstated. It democratizes access to critical fire prevention 
technology, allowing areas with limited resources to actively manage and mitigate fire risks. In many 
developing countries, the lack of infrastructure, training, and access to fire mitigation resources means 
that forest fires often escalate far more than necessary. This not only results in larger fires but also 
severely impacts nearby communities who suffer from the health effects of PM2.5 pollutants and bear the 
brunt of economic losses. By providing tools to create accurate and accessible vegetation fuel and 
flammability maps, TensorForest addresses these challenges at the root, potentially preventing devastating 
outcomes and promoting sustainable environmental management. 
 
For example, if a fire department on the island of Sumatra in Indonesia is given access to TensorForest, 
they can generate a vegetation or flammability map for their given forest. This flammability map allows 
them to then identify the lines of continuity where trees need to be cut or pruned, as well as the 
high-risk/most flammable zones which need to be fire safety target areas during extreme hot weather 
conditions, etc. This would allow them to prevent the spread of the fire to a point where such devastating 
outcomes occur. If the fire was stopped earlier, there would be fewer pollutants consumed by the 
residents, less economic loss, fewer greenhouse gases emitted, and so on. 
 
The latter was an extremely niche example; however, it is meant to represent the versatility and 
insightfulness of a tool like TensorForest. TensorForest, in its current stage, is only on its first iteration 
and can only generate a vegetation/flammability map. However, given a bit more resources and access to 
a better LiDAR/photogrammetry sensor, the drone can have an exponentially greater amount of 
applications. 
 

 
Figure #13: Forest Fire in Rural Indonesia, Source: NYT 

 



 

TensorForest as a Start-Up 
 
As we move from discussing the social impact of TensorForest, it is crucial to envision how this solution 
could function as a startup. By incorporating advanced drone technology, TensorForest provides a 
revolutionary approach to assessing and mapping forest flammability, representing a significant 
breakthrough in wildfire risk management. The core value proposition is its capability to deliver 
high-resolution aerial imagery that identifies various vegetation types and their flammability levels. This 
technology not only advances traditional methods but also significantly lowers the risks associated with 
wildfires by offering automation and convenience, replacing labor-intensive manual surveys. 
 
TensorForest primarily targets fire departments and municipalities in developing nations, aligning its 
product with the needs of under-resourced areas that face severe wildfire threats. Additional customer 
segments include property owners in fire-prone areas and international environmental organizations, 
thereby enhancing market diversity and business resilience. The product reaches its customers through a 
direct-to-consumer e-commerce website, supplemented by partnerships with environmental NGOs and a 
dedicated sales team focused on governmental engagement, which facilitates personalized interaction and 
tailored solutions. 
 
Customer relationships are managed through an automated system that provides real-time updates and 
monitoring, complemented by a responsive customer support team. The revenue model includes direct 
sales of drones and an initial image detection model, along with a subscription service for ongoing access 
to newer and updated image detection algorithms, promoting long-term customer engagement. 
 
Overall, TensorForest can leverage corporate social responsibility in its marketing efforts by providing 
services to countries lacking fire safety resources. This initiative can serve as a starting point for 
promoting the product in new markets by demonstrating its effectiveness to communities in need. 
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