

Proposed GN “metadata” features
juliehockett@google.com, mcgrathr@google.com

Proposal note
This proposal was forked from @brettw’s Proposed GN "tags" feature. This iteration
attempts to clarify and extend the feature proposed there based on feedback from the
mailing list discussion and to provide concrete examples of the motivating use cases.

Background
A principle of the GN expression language is to isolate the information accessible to any
given buildfile. Code in a file can’t interrogate the build graph directly because there’s no
explicit ordering to the loading of the build files, and therefore no guarantee about the
state of dependency graph during the file load. A key realization to note here is that the gen
command is a two-phase operation: the first phase involves evaluating the GN expression
language to produce the build graph, while the second phase is when the Ninja files are
actually generated. The second phase by nature sees the whole build graph, and so there is
not a barrier to doing more with that knowledge (with the caveat that the ‘more’ doesn’t
affect the build graph itself in any way).

We currently have a few ways that these use cases get around this restriction. GN’s iOS
support involves a custom GN feature with two custom built-in target types: bundle_data
and create_bundle, which collect and pass an explicit dependency list. The Chrome
Android build created an elaborate system that includes having scripts write dependencies
to files that can be interrogated at build-time to reconstruct some dependency information.
In Fuchsia, there is a packaging system that has similar requirements and a convoluted
implementation.

Motivation
The motivating use case for this proposal is the Fuchsia archive packaging system. In
building the system image, the build system must generate an archive based on the set of
built targets. GN is currently quite good at building a collection of individual targets, but
cannot collect those targets back and emit them to a single archive. This step could be
performed outside of the build system, but the introspective view GN has on the
dependency graph and the build itself would be useful for knowing when it is necessary to
rebuild and repackage the archive.

The example given by @abarth on the mailing list is as follows:

mailto:juliehockett@google.com
mailto:mcgrathr@google.com
https://docs.google.com/document/d/16BFv5HaRZs5S9OLoe-yfigle869YRMAfS29kB5Ph8q8/edit?usp=sharing
https://groups.google.com/a/chromium.org/forum/#!topic/gn-dev/zoVnBgjLgnQ

You might want to include the ls program in your disk image. Somewhere in gn
there's an executable() target that builds ls. For shared libraries, we usually only want to
include a shared library in the disk image if there's actually a program that depends on that
shared library. For example, suppose we had a shared_library("skia") target in the
build. If we happened to assemble a disk image that had an executable that depended on
libskia.so, then we'd want to include libskia.so in the disk image. If not, then we wouldn't
want to include it.

The proposed metadata feature has gone through several iterations, and this is an attempt
to consolidate and discuss them as we now have a more concrete knowledge of how the
Fuchsia build in particular would use the feature.

Proposal
This proposal is for a way to attach metadata (like file names) to GN targets and to
propagate it across the dependency tree. This data can be collected and passed to action
targets that can consume the data and execute the corresponding packaging step.

The goal of this proposal is to add a minimal set of features required to meet the packaging
requirements described above. It is specified in a very flexible way so that we can extend
the functionality over time and eventually begin to converge the different packaging
requirements for different systems.

The main disadvantage is that the generality of the feature makes it more difficult to
understand than most GN features. However, it is easier to understand than the custom
bundle systems that have been created for iOS, Android, and Fuchsia. The feature is
intended to be driven primarily by templates that provide a natural API for the metadata
and for consumption.

Alternatives considered
●​ A similar proposal is to follow the iOS bundle example and create separate target

types for declaring and consuming metadata. It is theoretically equivalent to the
metadata proposal but comes down to an aesthetic question of whether it’s
preferable to have more targets and target types or more target variables.

metadata target variable
A variable of type scope containing opaque key/value pairs that can be passed up the
dependency tree. The values must always be a list, as this provides an interface for
collecting all values of a single key in a simple operation with clear and intuitive results. This
constraint also simplifies the extraction function below, as no additional details on

flattening or combination logic need be specified.​

Metadata values are not interpreted by GN, but can be read by the get_metadata()
function (see below).

Defining metadata
Metadata is defined for a particular target in the metadata target variable. This variable
should be a scope that maps metadata keys to list values:

source_set("foo") {

 metadata = {

 archive_inputs = [

 "file1.cc",

 "file2.cc",

]

 }

}

This example sets a metadata field on the target: archive_inputs, containing a list of
filenames. Metadata values can only be lists of any value type, but generally will be lists of
strings or paths.

Example
This example defines a shared library that adds a bundle_files metadata value:

lib_with_data("mylib") {

 sources = ["foo.cc"]

 deps = [":bar"]

 metadata = {

 bundle_files = ["mydata1.dat"]

 }

}

metaresult value type
A type of Value containing an opaque collection of metadata.

This Value type introduces a way of accessing and using metadata in the GN expression
language that separates it from the existing notion of lists. This type of value is only
returned from the get_metadata() function, and can only be used in the places described
below (see Valid Uses). The value will be opaque at parse time, storing only the parameters

of the get_metadata() function. It will not expose the ability to manipulate or edit those
contained values. All metaresult values are by definition unequal, as the parser and
expression language will not be able to interpret them literally at parse time.

The value will be expanded after the build graph is constructed, walking the tree as
specified in the function (see Walking the dependency tree below). The expansion site can
then determine what to do with the data during the second phase. If the expansion site
expects a single file or a list of files , the value will attempt to rebase_path() the value onto
the relative source path of the target as the function walks the graph. If any value in the
metaresult is expected to be a string and isn’t, the value will raise an error to the user.

The critical element of the metadata implementation is that a user will be able to statically
express a need for dynamic data. Thus, this type is an opaque, list-like collection. Metadata
from different targets can be gathered by the get_metadata() function into a metaresult
after the build graph is complete, with the expectation that the user cannot edit or
otherwise manipulate the data or define an instance of it.

Valid uses
As this is a fairly powerful feature, there must be some limitations on where it is acceptable
to access it. It can be used anywhere it does not modify the dependency tree; that is, any
place you would put a value that only ninja will read (e.g. toolchain definitions, argument
lists, response file contents). It could also be used in file lists that only affect ninja
dependencies, including the sources list of a compiling target or action_foreach, as those
affect how many ninja targets are generated but do not introduce any ordering or
dependency changes into GN.

The semantics of the metaresult depend on the context in which it is used; it could be
used in a singleton context or a list context.

Use in a singleton context (e.g. an action’s script) would require one and only one element
to be present in the metaresult, and would give an error during the generation if zero or
more than one element were present on expansion. Use in the list context would indicate
that though it is one element at definition, it would expand to zero or more elements after
the build graph is traversed.

It could also be used as the the parameter containing the data to be written in the
write_file() function. This would require delayed write_file() semantics, which is a
separate proposal . 1

1 GN write_file() semantics design doc here.

https://docs.google.com/document/d/1c4QifH_C7N9v1F732ecw4T9Se2ib0jOipyAoRWxnCi8/edit#

get_metadata() function
A function to trigger the collection of metadata from the specified target(s) into a
metaresult.

GN build scripts cannot query the dependency tree programmatically because the load
order of targets is not defined. This function provides a way to pass data from direct and
indirect dependencies to a script at build-time. A call returns a single metaresult value
containing the parameters of the collection at parse time, and is expanded to a value
consisting of the concatenation of all metadata values for the given keys in the set of
defined walkable targets.

The order of the data in the result will be that of a depth-first-search of the build graph. The
walk visits each node exactly once, so a graph with multiple paths to the same target will
only ever collect that target’s metadata once. The traversal will mimic the existing traversal
order used elsewhere in GN (e.g. collecting link inputs) to begin, but we may want to iterate
on the exact specification of the ordering.

Parameters
get_metadata(label_list, data_key_list, walk_key_list=[“”]) is defined to take
three parameters:

●​ label_list is the list of targets to gather metadata on. It is a list of target labels,
which will be used by the function as starting points for the collection.

●​ data_key_list is the list of metadata keys from which to collect data.
●​ walk_key_list is the list of metadata keys whose values are lists of dependencies

to recurse into. See below for details. By default, the function gathers data from all
deps and data_deps (see Walking the dependency tree below for ways to restrict
this).

●​ walk_key_list represents.

Example

source_set("foo") {

 metadata = {

 inputs = [

 "foo1.cc",

 "foo2.cc",

]

 }

}

source_set("bar") {

 metadata = {

 inputs = [

 "bar1.cc",

 "bar2.cc",

]

 }

}

shared_library("foo_lib") {

 metadata = {

 inputs = ["foo_lib.cc"]

 }

 deps = ["//foo", "//bar"]

}

The above snippet defines three targets, each containing metadata. The get_metadata()
call in the last line will walk the dependency tree to gather the metadata values in the
inputs field, beginning with //foo_lib. It will then recurse into //foo and //bar, gathering
their values. The results of this example will be:

get_metadata(["//foo_lib"], ["inputs"]) → metaresult[

 "foo_lib.cc",

 "foo1.cc",

 "foo2.cc",

 "bar1.cc",

 "bar2.cc"

]

Walking the dependency tree
The walk_key_list identifies an explicit list of dependencies recurse into. There will be
many cases where we don’t want the metadata to include everything from all
dependencies. Thus, the walk_key_list provides a way to limit the recursion and define
categories of dependencies.

The expected behavior of this list is to provide a barrier to the recursive walk. The function
will check the metadata scope for any specified walk keys containing a list of zero or more
labels and modify its graph traversal based on those labels. If the function finds one of
these keys, it will recurse into the targets listed.

Placing an empty string element in the walk_key_list indicates that the walk should go to
all deps and data_deps in its traversal, in addition to any targets listed in the specified walk

keys. The function provides [“”] as the default value, so that the default behavior is to walk
all deps and data_deps of the specified targets, recursively.

Example

source_set("foo") {

 metadata = {

 inputs = [

 "foo1.cc",

 "foo2.cc",

]

 include = []

 }

 deps = ["//bar"]

}

source_set("bar") {

 metadata = {

 inputs = [

 "bar1.cc",

 "bar2.cc",

]

 }

}

shared_library("foo_lib") {

 metadata = {

 inputs = ["foo_lib.cc"]

 }

 deps = ["//foo"]

}

The above snippet defines the same targets as the previous example, with the addition of
the include key on the //foo target. The get_metadata() call will now walk the same
dependency tree as before, but will check each target’s metadata for the presence of the
include key. As this key is set on //foo, it knows to not recurse into any target, and will
ignore the //bar dependency. The results of this example will be:

get_metadata(["//foo_lib"], ["inputs"], ["include"]) → metaresult[

 "foo_lib.cc",

 "foo1.cc",

 "foo2.cc",

]

This barrier solution addresses some of the concerns of previous iterations of this
proposal, in that it allows for more complex barrier logic than a simple feature. For

example, in the situation where an action is defined that includes a tool and targets that
produce inputs to that tool:

executable("tool") {

 metadata = {

 args = ["tool.cc"]

 }

 deps = […tool_deps…]

}

source_set("input") {

 metadata = {

 args = ["input.cc"]

 }

 deps = [...input_deps…]

}

action("run_tool") {

 metadata = {

 stop = ["//input"]

 }

 deps = ["//tool", "//input"]

}

 The metadata walk may only want to list the inputs’ deps, and not the tool’s. In this case,
we would use the stop key as our walk key, which yields the result:

get_metadata(["//run_tool", ["args"], ["stop"]) → metaresult[

 "input.cc",

]

	Proposed GN “metadata” features
	Proposal note

	Background
	Motivation
	Proposal
	Alternatives considered

	metadata target variable
	Defining metadata
	Example

	metaresult value type
	Valid uses

	get_metadata() function
	Parameters
	Example

	Walking the dependency tree
	Example

