Citations of Jarzynski Equality Experiment

  1. Heat distribution of a quantum harmonic oscillator, Tobias Denzler, Eric Lutz, arXiv:1807.03572
  2. Coherent fluctuation relations: from the abstract to the concrete, Z. Holmes, S. Weidt, D. Jennings, J. Anders, F. Mintert, arXiv:1806.11256
  3. Work required for selective quantum measurement, Eiji Konish, J. Stat. Mech.(2018) 063403
  4. MARRERO, R. E. H. (2018). NONLINEAR QUANTUM OPTICS AND THERMODYNAMICS WITH THREE TRAPPED IONS (Doctoral dissertation).
  5. Maximum one-shot dissipated work from Rényi divergences, Nicole Yunger Halpern, Andrew J. P. Garner, Oscar C. O. Dahlsten, and Vlatko Vedral, Phys. Rev. E 97, 052135 – Published 25 May 2018
  6. Equilibrium free energies from non-equilibrium  trajectories with relaxation fluctuation  spectroscopy, David Ross , Elizabeth A. Strychalski , Christopher Jarzynski and Samuel M. Stavis, Nature Physics, in pressing (2018)
  7. 量子计算与量子模拟,  范桁, 物理学报 Acta Phys. Sin. Vol. 67, No. 12 (2018) 120301
  8. Experimental demonstration of work fluctuations along a shortcut to adiabaticity with a superconducting Xmon qubit, Zhenxing Zhang, Tenghui Wang, Liang Xiang, Zhilong Jia, Peng Duan, Weizhou Cai, Ze Zhan, Zhiwen Zong, Jianlan Wu, Luyan Sun, Yi Yin, Guoping Guo,  arXiv:1805.10879
  9. Fluctuacting work in coherent quantum systems: proposals and limitations, Elisa Bäumer, Matteo Lostaglio, Martí Perarnau-Llobet, Rui Sampaio,  arXiv:1805.10096
  10. Optimal operating protocol to achieve efficiency at maximum power of heat engines, Yu-Han Ma, Da-Zhi Xu, Hui Dong, Chang-Pu Sun, arXiv:1805.05667
  11. Path integral approach to heat in quantum thermodynamics, Ken Funo, H. T. Quan,  arXiv:1805.02815
  12. Quantum work statistics and resource theories: bridging the gap through R{é}nyi divergences, Giacomo Guarnieri, Nelly Huei Ying Ng, Kavan Modi, Jens Eisert, Mauro Paternostro, John Goold, arXiv:1804.09962
  13. Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems, Aurélia Chenu, Javier Molina-Vilaplana, and Adolfo del Camp, arXiv:1804.09188
  14. Experimental Realization of non-Adiabatic Shortcut to non-Abelian Geometric Gates Tongxing Yan, Bao-Jie Liu, Kai Xu, Chao Song, Song Liu, Zhensheng Zhang, Hui Deng, Zhiguang Yan, Hao Rong, Man-Hong Yung, Yuanzhen Chen, Dapeng Yu,  arXiv:1804.08142
  15. The role of quantum work statistics in many-body physics John Goold, Francesco Plastina, Andrea Gambassi, Alessandro Silva, arXiv:1804.02805
  16. An autonomous quantum machine to measure the thermodynamic arrow of time, Juliette Monsel, Cyril Elouard, Alexia Auffèves, arXiv:1804.02296
  17. Quantum corrections of work statistics in closed quantum systems, Zhaoyu Fei, Haitao Quan, Fei Liu, arXiv:1804.00151
  18. Single-atom demonstration of quantum Landauer principle, L. L. Yan, T. P. Xiong, K. Rehan, F. Zhou, D. F. Liang, L. Chen, J. Q. Zhang, W. L. Yang, Z. H. Ma, M. Feng, arXiv:1803.10424
  19. Melting a Hubbard dimer: benchmarks of `ALDA' for quantum thermodynamics, Marcela Herrera, Krissia Zawadzki, Irene D'Amico, arXiv:1803.06724
  20. Quantum Fluctuation Theorems, Ken Funo, Masahito Ueda, Takahiro Sagawa,  arXiv:1803.04778
  21. Marcantoni, Stefano. "On the non-equilibrium thermodynamics of quantum systems." (2018). PhD Thesis
  22. Verifying Detailed Fluctuation Relations for Discrete Feedback Controlled Quantum Dynamics, Patrice A. Camati, Roberto M. Serra, arXiv:1802.07703
  23. Information gain and loss for a quantum Maxwell's demon, M Naghiloo, JJ Alonso, A Romito, E Lutz, KW Murch - arXiv preprint arXiv:1802.07205, 2018
  24. Yamano T. A Lower Bound on Work Extraction Probability Prescribed by Nonequilibrium Work Relation[C]//Multidisciplinary Digital Publishing Institute Proceedings. 2017, 2(4): 162.
  25. Bruch A. Operating machines at the nanoscale[D]. Freie Universität Berlin, 2018.
  26. Quantum fluctuation theorem to benchmark quantum annealers, Bartłomiej Gardas, Sebastian Deffner, arXiv:1801.06925
  27. Quantum Work in the Bohmian framework, Rui Sampaio, Samu Suomela, Tapio Ala-Nissila, Janet Anders, Thomas Philbin, arXiv:1707.06159
  28. Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain, S. Debnath, N. M. Linke, S.-T. Wang, C. Figgatt, K. A. Landsman, L.-M. Duan, C. Monroe, arXiv:1711.00216
  29. Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion, Xiang Zhang, Kuan Zhang, Yangchao Shen, Shuaining Zhang, Jing-Ning Zhang, Man-Hong Yung, Jorge Casanova, Julen S. Pedernales, Lucas Lamata, Enrique Solano & Kihwan Kim, Nature Communications 9, Article number: 195 (2018).
  30. Xiong T P, Yan L L, Zhou F, et al. Experimental Verification of a Jarzynski-Related Information-Theoretic Equality by a Single Trapped Ion[J]. Physical Review Letters, 2018, 120(1): 010601.
  31. Paule, Gonzalo Manzano,  "Thermodynamics and synchronization in open quantum systems Termodinámica y sincronización en sistemas cuánticos abiertos." PhD thesis, (2017).
  32. Relations between Heat Exchange and Rényi Divergences, Bo-Bo Wei,  arXiv:1711.05383
  33. Quantum work statistics, Loschmidt echo and information scrambling, Aurélia Chenu, Iñigo L. Egusquiza, Javier Molina-Vilaplana, Adolfo del Campo,  arXiv:1711.01277
  34.  Revealing missing charges with generalised quantum fluctuation relations, J. Mur-Petit, A. Relaño, R. A. Molina, D. Jaksch,  arXiv:1711.00871
  35. Quantum Work Relations and Response Theory in PT-Symmetric Quantum Systems, Bo-Bo Wei,  arXiv:1711.00586
  36. Quantum simulation of the quantum Rabi model in a trapped ion, Dingshun Lv, Shuoming An, Zhenyu Liu, Jing-Ning Zhang, Julen S. Pedernales, Lucas Lamata, Enrique Solano, Kihwan Kim,  arXiv:1711.00582
  37. Demonstration of irreversibility and dissipation relation of thermodynamics with a superconducting qubit, Xue-Yi Guo, Yi Peng, Changnan Peng, Hui Deng, Yi-Rong Jin, Chengchun Tang, Xiaobo Zhu, Dongning Zheng, Heng Fan, arXiv:1710.10234
  38. Wei, Bo-Bo. "Links between Dissipation and R\'{e} nyi Divergences in $\mathcal {PT} $-Symmetric Quantum Mechanics." arXiv preprint arXiv:1710.06059 (2017).
  39. Heat and work in Markovian quantum master equations: concepts, fluctuation theorems, and computations, F Liu,  arXiv:1710.02311, 2017
  40. Quantum fluctuation theorems for arbitrary environments: adiabatic and non-adiabatic entropy production, Gonzalo Manzano, Jordan M. Horowitz, Juan M. R. Parrondo,  arXiv:1710.00054
  41. Additional energy-information relations in thermodynamics of small systems, Raam Uzdin, Phys. Rev. E 96, 032128 (2017).
  42. Uncertainty relations in implementation of unitary control, Hiroyasu Tajima, Naoto Shiraishi, Keiji Saito,  arXiv:1709.06920
  43. Wright, Kenneth E. MANIPULATION OF THE QUANTUM MOTION OF TRAPPED ATOMIC IONS VIA STIMULATED RAMAN TRANSITIONS. Diss. 2017.
  44. Semiclassical approach to the work distribution, Ignacio García-Mata, Augusto J. Roncaglia, Diego A. Wisniacki, arXiv:1709.05115
  45. Fluctuation Theorem for Many-Body Pure Quantum States, Eiki Iyoda, Kazuya Kaneko, and Takahiro Sagawa, Phys. Rev. Lett. 119, 100601 (2017).
  46. Information-to-work conversion by Maxwell's demon in a superconducting circuit-QED system, Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, Y. Nakamura,  arXiv:1709.00548
  47. Perturbative analysis of quantum fluctuation theorems in a driven open system, Y Peng, H Fan - arXiv preprint arXiv:1708.08214
  48. Kralj, A. Earth Perspectives (2017) 4: 5. https://doi.org/10.1186/s40322-017-0041-7
  49. On the thermodynamic implications of path integral formalism of quantum mechanics, Ken Funo, H. T. Quan, arXiv:1708.05113
  50. Verification of the Quantum Nonequilibrium Work Relation in the Presence of Decoherence, Andrew Smith, Yao Lu, Shuoming An, Xiang Zhang, Jing-Ning Zhang, Zongping Gong, H. T. Quan, Christopher Jarzynski, Kihwan Kim,  arXiv:1708.01495
  51. Junkai Dong, YiMing Chen, Da Xu*, Zhang-qi Yin*, “Greenberger-Horne-Zeilinger test for multi-dimension and arbitrary time nodes entangled histories”, Sci. Bull. 62, 1235 (2017), arXiv:1610.04296.
  52. Properties of entanglement between the two trapped ions, Qing-Hong Liao, Jun-Fang Wu, Ping Wang, Indian Journal of Physics, in pressing.
  53. Effects of Quantum Coherence on Work Statistics, Bao-Ming Xu, Jian Zou, Li-Sha Guo, Xiang-Mu Kong, arXiv:1707.09591
  54. Duality of work distributions between 1-D fermions and bosons with short-range interactions, Bin Wang, Jing-Ning Zhang, H. T. Quan, arXiv:1707.09117
  55. The role of coherence in the non-equilibrium thermodynamics of quantum systems, G. Francica, J. Goold, and F. Plastina, arXiv:1707.06950
  56. Deformed Jarzynski Equality, Jiawen Deng, Juan D. Jaramillo, Peter Hanggi, Jiangbin Gong, arXiv:1707.07393
  57. Title: Towards thermodynamics of quantum systems away from equilibrium, Author(s): Deesuwan, Tanapat,Thesis or dissertation, Imperial college,
  58. The Impossible Quantum Work Distribution, Rui Sampaio, Samu Suomela, Tapio Ala-Nissila, Janet Anders, Thomas Philbin, arXiv:1707.06159
  59. Nonlinear, Nonequilibrium and Collective Dynamics in a Periodically Modulated Cold Atom System, Geol Moon, Myoung-Sun Heo, Yonghee Kim, Heung-Ryoul Noh, Wonho Jhe, arXiv:1707.02787
  60. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality, Vincenzo Alba, Phys. Rev. E 95, 062132 (2017).
  61. Using a quantum work meter to test non-equilibrium fluctuation theorems; Federico Cerisola, Yair Margalit, Shimon Machluf, Augusto J. Roncaglia, Juan Pablo Paz, Ron Folman;  arXiv:1706.07866
  62. Reconstruction of the stochastic quantum entropy production to probe irreversibility and correlations, Stefano Gherardini, Matthias M. Müller, Andrea Trombettoni, Stefano Ruffo, Filippo Caruso; arXiv:1706.02193
  63. Gelbwaser-Klimovsky, David, et al. "Single-atom heat machines enabled by energy quantization." arXiv preprint arXiv:1705.11180 (2017).
  64. Fluctuation theorems in feedback-controlled open quantum systems: quantum coherence and absolute irreversibility, Yûto Murashita, Zongping Gong, Yuto Ashida, Masahito Ueda, arXiv:1705.06513
  65. Experimental study of quantum thermodynamics using optical vortices; R. Medeiros de Araújo, T. Häffner, R. Bernardi, D. S. Tasca, M. P. J. Lavery, M. J. Padgett, A. Kanaan, L. C. Céleri, P. H. Souto Ribeiro; arXiv:1705.02990
  66. Anti-Dynamical Casimir Effect as a Resource for Work Extraction; A. V. Dodonov, D. Valente, T. Werlang; arXiv:1704.04763
  67. The quasiprobability behind the out-of-time-ordered correlator; Nicole Yunger Halpern, Brian Swingle, Justin Dressel; arXiv:1704.01971
  68. Cavity assisted measurements of heat and work in optical lattices; Louis Villa, Gabriele De Chiara; arXiv:1704.01583
  69. Xiao, Gaoyang. Microscopic heat engine and control of work fluctuations. Diss. National University of Singapore (Singapore), 2016.
  70. Mitchison, Mark. "From thermodynamics to thermometry with single-atom devices." PhD thesis, Imperial College London (2016).
  71. Thermodynamics along individual trajectories of a quantum bit; M. Naghiloo, D. Tan, P. M. Harrington, J. J. Alonso, E. Lutz, A. Romito, and K. W. Murch; arXiv:1703.05885
  72. Entropy production and time-asymmetry in the presence of strong interactions; Harry J. D. Miller, Janet Anders; arXiv:1703.03764
  73. DFT-inspired methods for quantum thermodynamics; Marcela Herrera, Roberto M. Serra, Irene D'Amico;  arXiv:1703.02460
  74. Cross-Kerr nonlinearity for phonon counting; Shiqian Ding, Gleb Maslennikov, Roland Hablutzel, Dzmitry Matsukevich; arXiv:1703.00251
  75. Quantum absorption refrigerator with trapped ions; Gleb Maslennikov, Shiqian Ding, Roland Hablutzel, Jaren Gan, Alexandre Roulet, Stefan Nimmrichter, Jibo Dai, Valerio Scarani, Dzmitry Matsukevich; arXiv:1702.08672
  76. Quantum Work Fluctuations in connection with Jarzynski Equality, Juan D. Jaramillo, Jiawen Deng, Jiangbin Gong, arXiv:1701.07603
  77. Realizing three-step photoionization of calcium by two lasers, Zhang, J., Xie, Y., Liu, P. et al. Appl. Phys. B (2017) 123: 45.
  78. Non-Boltzmann stationary distributions and nonequilibrium relations in active baths, Aykut Argun, Ali-Reza Moradi, Erçaǧ Pinçe, Gokhan Baris Bagci, Alberto Imparato, and Giovanni Volpe, Phys. Rev. E 94, 062150 (2016).
  79. Halpern N Y. Toward Physical Realizations of Thermodynamic Resource Theories[M]// Information and Interaction. Springer International Publishing, 2017: 135-166.
  80. Zvyagin, A. A. "Dynamical quantum phase transitions (Review Article)." Low Temperature Physics 42.11 (2016): 971-994.
  81. Heat dissipation and fluctuations in a driven quantum dot; Andrea Hofmann, Ville F. Maisi, Julien Basset, Christian Reichl, Werner Wegscheider, Thomas Ihn, Klaus Ensslin, Christopher Jarzynski; arXiv:1611.07852
  82. Experimental Preparation of High NOON States for Phonons; Junhua Zhang,  Mark Um,  Dingshun Lv,  Jing-Ning Zhang, Lu-Ming  Duan and Kihwan  Kim; arXiv:1611.08700
  83. Vacuum Measurements and Quantum State Reconstruction of Phonons; Dingshun Lv, Shuoming An, Mark Um, Junhua Zhang, Jing -Ning Zhang, M. S. Kim, Kihwan Kim;  arXiv:1611.03209
  84. Quantum to classical transition in the work distribution for chaotic systems; Ignacio García-Mata, Augusto J. Roncaglia, Diego A. Wisniacki; arXiv:1610.08874
  85. Zhou, Fei, et al. "Verifying Heisenberg’s error-disturbance relation using a single trapped ion." Science Advances 2.10 (2016): e1600578.
  86. Quantum Jarzynski equality of measurement-based work extraction; Yohei Morikuni, Hiroyasu Tajima, Naomichi Hatano; arXiv:1610.06316
  87. Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework; Harry J. D. Miller, Janet Anders; arXiv:1610.04285
  88. DE JARZYNSKI, LIMITE CLASSICO DA IGUALDADE. Josiane Oliveira Rezende de Paula. Master thesis, (2016).
  89. Irreversible Work versus Fidelity Susceptibility for infinitesimal quenches; S Paganelli, TJG Apollaro - arXiv preprint arXiv:1610.02666, 2016
  90. Gangloff D A. Nanocontacts controlled atom-by-atom in an ion-crystal friction emulator[D]. Massachusetts Institute of Technology, 2016.
  91. Universal Work Fluctuations during Shortcuts To Adiabaticity by Counterdiabatic Driving; Ken Funo, Jing-Ning Zhang, Cyril Chatou, Kihwan Kim, Masahito Ueda, Adolfo del Campo;  arXiv:1609.08889
  92. Thermodynamics of the quantum butterfly effect, Michele Campisi,  and John Goold, arXiv:1609.05848
  93. Work fluctuation and total entropy production in nonequilibrium processes; Ken Funo, Tomohiro Shitara, Masahito Ueda;  arXiv:1609.00174
  94. Fluctuation theorem for out-of-time-ordered correlator; Nicole Yunger Halpern; arXiv:1609.00015
  95. Characteristic Functions Straightforwardly Based on Quantum Jump Trajectory, Fei Liu, and Jingyi Xi; arXiv:1608.07925
  96. Operator-based derivation of phonon modes and characterization of correlations for trapped ions at zero and finite temperature; U Bissbort, W Hofstetter, D Poletti - arXiv preprint arXiv:1608.07235, 2016
  97. Transient exchange fluctuation theorems for heat using Hamiltonian framework: Classical and Quantum  P. S. Pal, Sourabh Lahiri, A. M. Jayannavar, arXiv:1608.05965
  98. Wächtler C W, Strasberg P, Brandes T. Stochastic thermodynamics based on incomplete information: Generalized Jarzynski equality with measurement errors with or without feedback[J]. arXiv preprint arXiv:1608.01574, 2016.
  99. Fundamental limits for cooling of linear quantum refrigerators; Nahuel Freitas, Juan Pablo Paz;  arXiv:1607.04234
  100. GAOYANG X. Microscopic Heat Engine and Control of Work Fluctuations[D]. , 2016.
  101. Influence of the two level approximation on the measurement of work in a driven open harmonic oscillator; Rui Sampaio, Samu Suomela, Tapio Ala-Nissila;  arXiv:1607.02342.
  102. One atom and one photon - the simplest polaritonic heat engine; Qiao Song, Swati Singh, Keye Zhang, Weiping Zhang, Pierre Meystre;  arXiv:1607.00119
  103. Correlations in quantum thermodynamics: Heat, work, and entropy production; S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A. T. Rezakhani; arXiv:1606.08869
  104. Probing Quantum Interference Effects in the Work Distribution; Paolo Solinas, Simone Gasparinetti; arXiv:1606.08633
  105. Optimized Tomography of Continuous Variable Systems Using Excitation Counting; Chao Shen, Reinier W. Heeres,  Phil Reinhold, Luyao Jiang, Yi-Kai Liu, Robert J. Schoelkopf,  and Liang Jiang; arXiv:1606.07554
  106. Quantum jump model for a system with a finite-size environment; S. Suomela, A. Kutvonen, and T. Ala-Nissila; Phys. Rev. E 93, 062106 (2016).
  107. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics; Cormac Browne, Tristan Farrow, Oscar C. O. Dahlsten, Vlatko Vedral;  arXiv:1606.03318
  108. Work Extraction and Energy Storage in the Dicke Model; Lorenzo Fusco,  Mauro Paternostro,  and Gabriele De Chiara; arXiv:1605.06286
  109. Engineering Large Stark Shifts for Control of Individual Clock State Qubits; Aaron C. Lee, Jacob Smith, Philip Richerme, Brian Neyenhuis, Paul W. Hess, Jiehang Zhang, Christopher Monroe;  arXiv:1604.08840
  110. Optimal processes for probabilistic work extraction beyond the second law; Vasco Cavina, Andrea Mari, Vittorio Giovannetti;  arXiv:1604.08094
  111. Work distribution in a photonic system; M. A. A. Talarico, P. B. Monteiro, E. C. Mattei, E. I. Duzzioni, P. H. Souto Ribeiro, L. C. Celeri; arXiv:1604.07237
  112. Non-equilibrium properties of trapped ions under sudden application of a laser; A. A. Cifuentes, F. Nicacio, M. Paternostro, F. L. Semião, arXiv:1604.05732
  113. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles; Yuanjian Zheng, Peter Hänggi, Dario Poletti; arXiv:1604.00489
  114. Quantum work and the thermodynamic cost of quantum measurements; Sebastian Deffner, Juan Pablo Paz, Wojciech H. Zurek;  Phys. Rev. E 94, 010103(R) (2016), arXiv:1603.06509
  115. EIT ground-state cooling of long ion strings; R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B. P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, C. F. Roos; arXiv:1603.05568
  116. Quantum Trajectory Thermodynamics with Discrete Feedback Control; Zongping Gong, Yuto Ashida, Masahito Ueda; arXiv:1602.04616
  117. Non-hermitian quantum thermodynamics; Bartłomiej Gardas, Sebastian Deffner, Avadh Saxena; arXiv:1511.06256
  118. Hofmann, Andrea, et al. "Equilibrium free energy measurement of a confined electron driven out of equilibrium." Physical Review B 93.3 (2016): 035425.
  119. The distribution of work performed on a NIS junction; Jaime E Santos, Pedro Ribeiro and Stefan Kirchner; New J. Phys.18 (2016) 023007
  120. Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport, Shuoming An, Dingshun Lv, Adolfo del Campo, Kihwan Kim; arXiv:1601.05551
  121. Critical scaling in quantum thermodynamics, Abolfazl Bayat, Tony J. G. Apollaro, Simone Paganelli, Gabriele De Chiara, Henrik Johannesson, Sougato Bose, Pasquale Sodano, arXiv:1601.04368
  122. Quantum thermodynamics and work fluctuations with applications to magnetic resonance; Wellington L. Ribeiro, Gabriel T. Landi, Fernando Semião; arXiv:1601.01833
  123. Fully Quantum Fluctuation Theorems; Johan Aberg; arXiv:1601.01302
  124. Experimental evidence of the failure of Jarzynski equality in active baths; Aykut Argun, Ali-Reza Moradi, Erçağ Pince, Gokhan Baris Bagci, Giovanni Volpe; arXiv:1601.01123
  125. Perspective on quantum thermodynamics; James Millen and André Xuereb; 2016 New J. Phys. 18 011002.
  126. Quantum Quench Dynamics in the Transverse Field Ising Model at non-zero Temperatures, Nils O. Abeling and Stefan Kehrein, arXiv:1510.08728
  127. A single-atom heat engine; Johannes Roßnagel, Samuel Thomas Dawkins, Karl Nicolas Tolazzi, Obinna Abah, Eric Lutz, Ferdinand Schmidt-Kaler, Kilian Singer;  arXiv:1510.03681
  128. Relations between Dissipated Work and Rényi Divergences; Bo-Bo Wei, M. B. Plenio; arXiv:1509.07043
  129. Toward physical realizations of thermodynamic resource theories; N. Yunger Halpern; arXiv:1509.03873
  130. Cost of transitionless driving and work output; Yuanjian Zheng, Steve Campbell, Gabriele De Chiara, and Dario Poletti; arXiv:1509.01882
  131. Meystre, Pierre. "Les Houches Quantum Optomechanics School 2015–Lecture Notes."
  132. Quantum Thermodynamics; Sai Vinjanampathy, Janet Anders;  arXiv:1508.06099
  133. Brandner, Kay. "Universal bounds on efficiency and power of heat engines with broken time-reversal symmetry." PhD thesis, (2015).
  134. Thermometry of arbitrary quantum systems via non-equilibrium work distributions, T.H. Johnson, F. Cosco, M.T. Mitchison, D. Jaksch, S.R. Clark;  arXiv:1508.02992
  135. Thermodynamics of weakly measured quantum systems; Jose Joaquin Alonso, Eric Lutz, and Alessandro Romito; arXiv:1508.00438v1
  136. The quantum-classical correspondence principle for work distributions; Christopher Jarzynski, H. T. Quan, Saar Rahav;  arXiv:1507.05763
  137. Title: From free energy measurements to thermodynamic inference in nonequilibrium small systems; Authors: A Alemany et al, 2015 New J. Phys. 17 075009
  138. Title: Stochastic thermodynamics in the quantum regime; Authors: Cyril Elouard, Alexia Auffèves, Maxime Clusel; Source: arXiv:1507.00312
  139. Liu F. Calculating work in weakly driving quantum master equations: backward and forward equations[J]. arXiv preprint arXiv:1506.08343, Physical Review E 93.1 (2016): 012127..
  140. Title: Quantum work statistics of charged Dirac particles in time-dependent fields; Authors: Sebastian Deffner and  Avadh Saxena; Source: arXiv:1506.09131
  141. Title: Realization of near-deterministic arithmetic operations and quantum state engineering; Mark Um, Junhua Zhang, Dingshun Lv, Yao Lu, Shuoming An, Jing-Ning Zhang, Hyunchul Nha, M. S. Kim, Kihwan Kim; Source:  arXiv:1506.07268
  142. Title: The role of quantum information in thermodynamics --- a topical review; Authors: John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, Paul Skrzypzyk; Source:  arXiv:1505.07835
  143.  Thermodynamics of Micro-and Nano-Systems Driven by Periodic Temperature Variations;K Brandner, K Saito, U Seifert - arXiv preprint arXiv:1505.07771, 2015
  144. Title: Tuning energy transport using interacting vibrational modes; Authors: Chu Guo, Manas Mukherjee, Dario Poletti; Source: arXiv:1505.05942
  145. Title: Reversible work extraction in a hybrid opto-mechanical system; Authors: Cyril Elouard, Maxime Richard and Alexia Auffèves; Source: New J. Phys.17, 055018 (2015)
  146. Title: Testing nonclassicality and non-Gaussianity in phase space; Authors: Jiyong Park, Junhua Zhang, Jaehak Lee, Se-Wan Ji, Mark Um, Dingshun Lv, Kihwan Kim, Hyunchul Nha; Source: arXiv:1505.01470
  147. Müller M M, Poschinger U G, Calarco T, et al. Optimal Phonon-to-Spin Mapping in a system of a trapped ion[J]. arXiv:1504.02858
  148. Work measurement in an optomechanical quantum heat engine,Ying Dong, Keye Zhang, Francesco Bariani, Pierre Meystre;rXiv:1504.02901
  149. Title: Quantum statistics and the performance of engine cycles; Authors: Yuanjian Zheng, Dario Poletti; Source: arXiv:1504.02183
  150. Title:Full distribution of work done on a quantum system for arbitrary initial states; Authors: P. Solinas, S. Gasparinetti; Source: arXiv:1504.01574
  151. Title: Dephasing and dissipation in qubit thermodynamics; Authors: J. P. Pekola, Y. Masuyama, Y. Nakamura, J. Bergli, Y. M. Galperin; Source: arXiv:1503.05940
  152. Brandner K, Bauer M, Schmid M T, et al. Coherence-enhanced efficiency of feedback-driven quantum engines. arXiv preprint arXiv:1503.04865, 2015.
  153. Title: Quantum fluctuation theorems and power measurements; Authors: B. Prasanna Venkatesh, Gentaro Watanabe, Peter Talkner; Source: New J. Phys. 17 (2015) 075018, arXiv:1503.03228
  154. Title: Diverse phenomena, common themes; Author:Christopher Jarzynski; Source:        Nature Physics 11, 105–107 (2015),  doi:10.1038/nphys3229
  155. Title: The other QFT; Authors: Peter Hänggi & Peter Talkner; Source: Nature Physics 11, 108–110 (2015).
  156. Title: Jarzynski equality in PT-symmetric quantum mechanics; Authors: Sebastian Deffner, Avadh Saxena; Source: arXiv:1501.06545
  157. Title: Measuring work and heat in ultracold quantum gases; Authors: G. De Chiara, A. J. Roncaglia, J. P. Paz; Source: arXiv:1412.6116
  158. Title: Quantum nonequilibrium equalities with absolute irreversibility; Authors: Ken Funo, Yûto Murashita, Masahito Ueda; Source: New J. Phys. 17 (2015) 075005, arXiv:1412.5891
  159. Title: Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments; Authors: Michele Campisi, Jukka Pekola, Rosario Fazio; Source: arXiv:1412.0898