Citations of Jarzynski Equality Experiment

  1. Heat and work in Markovian quantum master equations: concepts, fluctuation theorems, and computations, F Liu,  arXiv:1710.02311, 2017
  2. Quantum fluctuation theorems for arbitrary environments: adiabatic and non-adiabatic entropy production, Gonzalo Manzano, Jordan M. Horowitz, Juan M. R. Parrondo,  arXiv:1710.00054
  3. Additional energy-information relations in thermodynamics of small systems, Raam Uzdin, Phys. Rev. E 96, 032128 (2017).
  4. Uncertainty relations in implementation of unitary control, Hiroyasu Tajima, Naoto Shiraishi, Keiji Saito,  arXiv:1709.06920
  6. Semiclassical approach to the work distribution, Ignacio García-Mata, Augusto J. Roncaglia, Diego A. Wisniacki, arXiv:1709.05115
  7. Fluctuation Theorem for Many-Body Pure Quantum States, Eiki Iyoda, Kazuya Kaneko, and Takahiro Sagawa, Phys. Rev. Lett. 119, 100601 (2017).
  8. Information-to-work conversion by Maxwell's demon in a superconducting circuit-QED system, Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, Y. Nakamura,  arXiv:1709.00548
  9. Perturbative analysis of quantum fluctuation theorems in a driven open system, Y Peng, H Fan - arXiv preprint arXiv:1708.08214
  10. Kralj, A. Earth Perspectives (2017) 4: 5.
  11. On the thermodynamic implications of path integral formalism of quantum mechanics, Ken Funo, H. T. Quan, arXiv:1708.05113
  12. Verification of the Quantum Nonequilibrium Work Relation in the Presence of Decoherence, Andrew Smith, Yao Lu, Shuoming An, Xiang Zhang, Jing-Ning Zhang, Zongping Gong, H. T. Quan, Christopher Jarzynski, Kihwan Kim,  arXiv:1708.01495
  13. Junkai Dong, YiMing Chen, Da Xu*, Zhang-qi Yin*, “Greenberger-Horne-Zeilinger test for multi-dimension and arbitrary time nodes entangled histories”, accepted for Sci. Bull., arXiv:1610.04296.
  14. Properties of entanglement between the two trapped ions, Qing-Hong Liao, Jun-Fang Wu, Ping Wang, Indian Journal of Physics, in pressing.
  15. Effects of Quantum Coherence on Work Statistics, Bao-Ming Xu, Jian Zou, Li-Sha Guo, Xiang-Mu Kong, arXiv:1707.09591
  16. Duality of work distributions between 1-D fermions and bosons with short-range interactions, Bin Wang, Jing-Ning Zhang, H. T. Quan, arXiv:1707.09117
  17. The role of coherence in the non-equilibrium thermodynamics of quantum systems, G. Francica, J. Goold, and F. Plastina, arXiv:1707.06950
  18. Deformed Jarzynski Equality, Jiawen Deng, Juan D. Jaramillo, Peter Hanggi, Jiangbin Gong, arXiv:1707.07393
  19. Title: Towards thermodynamics of quantum systems away from equilibrium, Author(s): Deesuwan, Tanapat,Thesis or dissertation, Imperial college,
  20. The Impossible Quantum Work Distribution, Rui Sampaio, Samu Suomela, Tapio Ala-Nissila, Janet Anders, Thomas Philbin, arXiv:1707.06159
  21. Nonlinear, Nonequilibrium and Collective Dynamics in a Periodically Modulated Cold Atom System, Geol Moon, Myoung-Sun Heo, Yonghee Kim, Heung-Ryoul Noh, Wonho Jhe, arXiv:1707.02787
  22. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality, Vincenzo Alba, Phys. Rev. E 95, 062132 (2017).
  23. Using a quantum work meter to test non-equilibrium fluctuation theorems; Federico Cerisola, Yair Margalit, Shimon Machluf, Augusto J. Roncaglia, Juan Pablo Paz, Ron Folman;  arXiv:1706.07866
  24. Reconstruction of the stochastic quantum entropy production to probe irreversibility and correlations, Stefano Gherardini, Matthias M. Müller, Andrea Trombettoni, Stefano Ruffo, Filippo Caruso; arXiv:1706.02193
  25. Gelbwaser-Klimovsky, David, et al. "Single-atom heat machines enabled by energy quantization." arXiv preprint arXiv:1705.11180 (2017).
  26. Fluctuation theorems in feedback-controlled open quantum systems: quantum coherence and absolute irreversibility, Yûto Murashita, Zongping Gong, Yuto Ashida, Masahito Ueda, arXiv:1705.06513
  27. Experimental study of quantum thermodynamics using optical vortices; R. Medeiros de Araújo, T. Häffner, R. Bernardi, D. S. Tasca, M. P. J. Lavery, M. J. Padgett, A. Kanaan, L. C. Céleri, P. H. Souto Ribeiro; arXiv:1705.02990
  28. Anti-Dynamical Casimir Effect as a Resource for Work Extraction; A. V. Dodonov, D. Valente, T. Werlang; arXiv:1704.04763
  29. The quasiprobability behind the out-of-time-ordered correlator; Nicole Yunger Halpern, Brian Swingle, Justin Dressel; arXiv:1704.01971
  30. Cavity assisted measurements of heat and work in optical lattices; Louis Villa, Gabriele De Chiara; arXiv:1704.01583
  31. Xiao, Gaoyang. Microscopic heat engine and control of work fluctuations. Diss. National University of Singapore (Singapore), 2016.
  32. Mitchison, Mark. "From thermodynamics to thermometry with single-atom devices." PhD thesis, Imperial College London (2016).
  33. Thermodynamics along individual trajectories of a quantum bit; M. Naghiloo, D. Tan, P. M. Harrington, J. J. Alonso, E. Lutz, A. Romito, and K. W. Murch; arXiv:1703.05885
  34. Entropy production and time-asymmetry in the presence of strong interactions; Harry J. D. Miller, Janet Anders; arXiv:1703.03764
  35. DFT-inspired methods for quantum thermodynamics; Marcela Herrera, Roberto M. Serra, Irene D'Amico;  arXiv:1703.02460
  36. Cross-Kerr nonlinearity for phonon counting; Shiqian Ding, Gleb Maslennikov, Roland Hablutzel, Dzmitry Matsukevich; arXiv:1703.00251
  37. Quantum absorption refrigerator with trapped ions; Gleb Maslennikov, Shiqian Ding, Roland Hablutzel, Jaren Gan, Alexandre Roulet, Stefan Nimmrichter, Jibo Dai, Valerio Scarani, Dzmitry Matsukevich; arXiv:1702.08672
  38. Quantum Work Fluctuations in connection with Jarzynski Equality, Juan D. Jaramillo, Jiawen Deng, Jiangbin Gong, arXiv:1701.07603
  39. Realizing three-step photoionization of calcium by two lasers, Zhang, J., Xie, Y., Liu, P. et al. Appl. Phys. B (2017) 123: 45.
  40. Non-Boltzmann stationary distributions and nonequilibrium relations in active baths, Aykut Argun, Ali-Reza Moradi, Erçaǧ Pinçe, Gokhan Baris Bagci, Alberto Imparato, and Giovanni Volpe, Phys. Rev. E 94, 062150 (2016).
  41. Halpern N Y. Toward Physical Realizations of Thermodynamic Resource Theories[M]// Information and Interaction. Springer International Publishing, 2017: 135-166.
  42. Zvyagin, A. A. "Dynamical quantum phase transitions (Review Article)." Low Temperature Physics 42.11 (2016): 971-994.
  43. Heat dissipation and fluctuations in a driven quantum dot; Andrea Hofmann, Ville F. Maisi, Julien Basset, Christian Reichl, Werner Wegscheider, Thomas Ihn, Klaus Ensslin, Christopher Jarzynski; arXiv:1611.07852
  44. Experimental Preparation of High NOON States for Phonons; Junhua Zhang,  Mark Um,  Dingshun Lv,  Jing-Ning Zhang, Lu-Ming  Duan and Kihwan  Kim; arXiv:1611.08700
  45. Vacuum Measurements and Quantum State Reconstruction of Phonons; Dingshun Lv, Shuoming An, Mark Um, Junhua Zhang, Jing -Ning Zhang, M. S. Kim, Kihwan Kim;  arXiv:1611.03209
  46. Quantum to classical transition in the work distribution for chaotic systems; Ignacio García-Mata, Augusto J. Roncaglia, Diego A. Wisniacki; arXiv:1610.08874
  47. Zhou, Fei, et al. "Verifying Heisenberg’s error-disturbance relation using a single trapped ion." Science Advances 2.10 (2016): e1600578.
  48. Quantum Jarzynski equality of measurement-based work extraction; Yohei Morikuni, Hiroyasu Tajima, Naomichi Hatano; arXiv:1610.06316
  49. Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework; Harry J. D. Miller, Janet Anders; arXiv:1610.04285
  50. DE JARZYNSKI, LIMITE CLASSICO DA IGUALDADE. Josiane Oliveira Rezende de Paula. Master thesis, (2016).
  51. Irreversible Work versus Fidelity Susceptibility for infinitesimal quenches; S Paganelli, TJG Apollaro - arXiv preprint arXiv:1610.02666, 2016
  52. Gangloff D A. Nanocontacts controlled atom-by-atom in an ion-crystal friction emulator[D]. Massachusetts Institute of Technology, 2016.
  53. Universal Work Fluctuations during Shortcuts To Adiabaticity by Counterdiabatic Driving; Ken Funo, Jing-Ning Zhang, Cyril Chatou, Kihwan Kim, Masahito Ueda, Adolfo del Campo;  arXiv:1609.08889
  54. Thermodynamics of the quantum butterfly effect, Michele Campisi,  and John Goold, arXiv:1609.05848
  55. Work fluctuation and total entropy production in nonequilibrium processes; Ken Funo, Tomohiro Shitara, Masahito Ueda;  arXiv:1609.00174
  56. Fluctuation theorem for out-of-time-ordered correlator; Nicole Yunger Halpern; arXiv:1609.00015
  57. Characteristic Functions Straightforwardly Based on Quantum Jump Trajectory, Fei Liu, and Jingyi Xi; arXiv:1608.07925
  58. Operator-based derivation of phonon modes and characterization of correlations for trapped ions at zero and finite temperature; U Bissbort, W Hofstetter, D Poletti - arXiv preprint arXiv:1608.07235, 2016
  59. Transient exchange fluctuation theorems for heat using Hamiltonian framework: Classical and Quantum  P. S. Pal, Sourabh Lahiri, A. M. Jayannavar, arXiv:1608.05965
  60. Wächtler C W, Strasberg P, Brandes T. Stochastic thermodynamics based on incomplete information: Generalized Jarzynski equality with measurement errors with or without feedback[J]. arXiv preprint arXiv:1608.01574, 2016.
  61. Fundamental limits for cooling of linear quantum refrigerators; Nahuel Freitas, Juan Pablo Paz;  arXiv:1607.04234
  62. GAOYANG X. Microscopic Heat Engine and Control of Work Fluctuations[D]. , 2016.
  63. Influence of the two level approximation on the measurement of work in a driven open harmonic oscillator; Rui Sampaio, Samu Suomela, Tapio Ala-Nissila;  arXiv:1607.02342.
  64. One atom and one photon - the simplest polaritonic heat engine; Qiao Song, Swati Singh, Keye Zhang, Weiping Zhang, Pierre Meystre;  arXiv:1607.00119
  65. Correlations in quantum thermodynamics: Heat, work, and entropy production; S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, A. T. Rezakhani; arXiv:1606.08869
  66. Probing Quantum Interference Effects in the Work Distribution; Paolo Solinas, Simone Gasparinetti; arXiv:1606.08633
  67. Optimized Tomography of Continuous Variable Systems Using Excitation Counting; Chao Shen, Reinier W. Heeres,  Phil Reinhold, Luyao Jiang, Yi-Kai Liu, Robert J. Schoelkopf,  and Liang Jiang; arXiv:1606.07554
  68. Quantum jump model for a system with a finite-size environment; S. Suomela, A. Kutvonen, and T. Ala-Nissila; Phys. Rev. E 93, 062106 (2016).
  69. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics; Cormac Browne, Tristan Farrow, Oscar C. O. Dahlsten, Vlatko Vedral;  arXiv:1606.03318
  70. Work Extraction and Energy Storage in the Dicke Model; Lorenzo Fusco,  Mauro Paternostro,  and Gabriele De Chiara; arXiv:1605.06286
  71. Engineering Large Stark Shifts for Control of Individual Clock State Qubits; Aaron C. Lee, Jacob Smith, Philip Richerme, Brian Neyenhuis, Paul W. Hess, Jiehang Zhang, Christopher Monroe;  arXiv:1604.08840
  72. Optimal processes for probabilistic work extraction beyond the second law; Vasco Cavina, Andrea Mari, Vittorio Giovannetti;  arXiv:1604.08094
  73. Work distribution in a photonic system; M. A. A. Talarico, P. B. Monteiro, E. C. Mattei, E. I. Duzzioni, P. H. Souto Ribeiro, L. C. Celeri; arXiv:1604.07237
  74. Non-equilibrium properties of trapped ions under sudden application of a laser; A. A. Cifuentes, F. Nicacio, M. Paternostro, F. L. Semião, arXiv:1604.05732
  75. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles; Yuanjian Zheng, Peter Hänggi, Dario Poletti; arXiv:1604.00489
  76. Quantum work and the thermodynamic cost of quantum measurements; Sebastian Deffner, Juan Pablo Paz, Wojciech H. Zurek;  Phys. Rev. E 94, 010103(R) (2016), arXiv:1603.06509
  77. EIT ground-state cooling of long ion strings; R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B. P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, C. F. Roos; arXiv:1603.05568
  78. Quantum Trajectory Thermodynamics with Discrete Feedback Control; Zongping Gong, Yuto Ashida, Masahito Ueda; arXiv:1602.04616
  79. Non-hermitian quantum thermodynamics; Bartłomiej Gardas, Sebastian Deffner, Avadh Saxena; arXiv:1511.06256
  80. Hofmann, Andrea, et al. "Equilibrium free energy measurement of a confined electron driven out of equilibrium." Physical Review B 93.3 (2016): 035425.
  81. The distribution of work performed on a NIS junction; Jaime E Santos, Pedro Ribeiro and Stefan Kirchner; New J. Phys.18 (2016) 023007
  82. Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport, Shuoming An, Dingshun Lv, Adolfo del Campo, Kihwan Kim; arXiv:1601.05551
  83. Critical scaling in quantum thermodynamics, Abolfazl Bayat, Tony J. G. Apollaro, Simone Paganelli, Gabriele De Chiara, Henrik Johannesson, Sougato Bose, Pasquale Sodano, arXiv:1601.04368
  84. Quantum thermodynamics and work fluctuations with applications to magnetic resonance; Wellington L. Ribeiro, Gabriel T. Landi, Fernando Semião; arXiv:1601.01833
  85. Fully Quantum Fluctuation Theorems; Johan Aberg; arXiv:1601.01302
  86. Experimental evidence of the failure of Jarzynski equality in active baths; Aykut Argun, Ali-Reza Moradi, Erçağ Pince, Gokhan Baris Bagci, Giovanni Volpe; arXiv:1601.01123
  87. Perspective on quantum thermodynamics; James Millen and André Xuereb; 2016 New J. Phys. 18 011002.
  88. Quantum Quench Dynamics in the Transverse Field Ising Model at non-zero Temperatures, Nils O. Abeling and Stefan Kehrein, arXiv:1510.08728
  89. A single-atom heat engine; Johannes Roßnagel, Samuel Thomas Dawkins, Karl Nicolas Tolazzi, Obinna Abah, Eric Lutz, Ferdinand Schmidt-Kaler, Kilian Singer;  arXiv:1510.03681
  90. Relations between Dissipated Work and Rényi Divergences; Bo-Bo Wei, M. B. Plenio; arXiv:1509.07043
  91. Toward physical realizations of thermodynamic resource theories; N. Yunger Halpern; arXiv:1509.03873
  92. Cost of transitionless driving and work output; Yuanjian Zheng, Steve Campbell, Gabriele De Chiara, and Dario Poletti; arXiv:1509.01882
  93. Meystre, Pierre. "Les Houches Quantum Optomechanics School 2015–Lecture Notes."
  94. Quantum Thermodynamics; Sai Vinjanampathy, Janet Anders;  arXiv:1508.06099
  95. Brandner, Kay. "Universal bounds on efficiency and power of heat engines with broken time-reversal symmetry." PhD thesis, (2015).
  96. Thermometry of arbitrary quantum systems via non-equilibrium work distributions, T.H. Johnson, F. Cosco, M.T. Mitchison, D. Jaksch, S.R. Clark;  arXiv:1508.02992
  97. Thermodynamics of weakly measured quantum systems; Jose Joaquin Alonso, Eric Lutz, and Alessandro Romito; arXiv:1508.00438v1
  98. The quantum-classical correspondence principle for work distributions; Christopher Jarzynski, H. T. Quan, Saar Rahav;  arXiv:1507.05763
  99. Title: From free energy measurements to thermodynamic inference in nonequilibrium small systems; Authors: A Alemany et al, 2015 New J. Phys. 17 075009
  100. Title: Stochastic thermodynamics in the quantum regime; Authors: Cyril Elouard, Alexia Auffèves, Maxime Clusel; Source: arXiv:1507.00312
  101. Liu F. Calculating work in weakly driving quantum master equations: backward and forward equations[J]. arXiv preprint arXiv:1506.08343, Physical Review E 93.1 (2016): 012127..
  102. Title: Quantum work statistics of charged Dirac particles in time-dependent fields; Authors: Sebastian Deffner and  Avadh Saxena; Source: arXiv:1506.09131
  103. Title: Realization of near-deterministic arithmetic operations and quantum state engineering; Mark Um, Junhua Zhang, Dingshun Lv, Yao Lu, Shuoming An, Jing-Ning Zhang, Hyunchul Nha, M. S. Kim, Kihwan Kim; Source:  arXiv:1506.07268
  104. Title: The role of quantum information in thermodynamics --- a topical review; Authors: John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, Paul Skrzypzyk; Source:  arXiv:1505.07835
  105.  Thermodynamics of Micro-and Nano-Systems Driven by Periodic Temperature Variations;K Brandner, K Saito, U Seifert - arXiv preprint arXiv:1505.07771, 2015
  106. Title: Tuning energy transport using interacting vibrational modes; Authors: Chu Guo, Manas Mukherjee, Dario Poletti; Source: arXiv:1505.05942
  107. Title: Reversible work extraction in a hybrid opto-mechanical system; Authors: Cyril Elouard, Maxime Richard and Alexia Auffèves; Source: New J. Phys.17, 055018 (2015)
  108. Title: Testing nonclassicality and non-Gaussianity in phase space; Authors: Jiyong Park, Junhua Zhang, Jaehak Lee, Se-Wan Ji, Mark Um, Dingshun Lv, Kihwan Kim, Hyunchul Nha; Source: arXiv:1505.01470
  109. Müller M M, Poschinger U G, Calarco T, et al. Optimal Phonon-to-Spin Mapping in a system of a trapped ion[J]. arXiv:1504.02858
  110. Work measurement in an optomechanical quantum heat engine,Ying Dong, Keye Zhang, Francesco Bariani, Pierre Meystre;rXiv:1504.02901
  111. Title: Quantum statistics and the performance of engine cycles; Authors: Yuanjian Zheng, Dario Poletti; Source: arXiv:1504.02183
  112. Title:Full distribution of work done on a quantum system for arbitrary initial states; Authors: P. Solinas, S. Gasparinetti; Source: arXiv:1504.01574
  113. Title: Dephasing and dissipation in qubit thermodynamics; Authors: J. P. Pekola, Y. Masuyama, Y. Nakamura, J. Bergli, Y. M. Galperin; Source: arXiv:1503.05940
  114. Brandner K, Bauer M, Schmid M T, et al. Coherence-enhanced efficiency of feedback-driven quantum engines. arXiv preprint arXiv:1503.04865, 2015.
  115. Title: Quantum fluctuation theorems and power measurements; Authors: B. Prasanna Venkatesh, Gentaro Watanabe, Peter Talkner; Source: New J. Phys. 17 (2015) 075018, arXiv:1503.03228
  116. Title: Diverse phenomena, common themes; Author:Christopher Jarzynski; Source:        Nature Physics 11, 105–107 (2015),  doi:10.1038/nphys3229
  117. Title: The other QFT; Authors: Peter Hänggi & Peter Talkner; Source: Nature Physics 11, 108–110 (2015).
  118. Title: Jarzynski equality in PT-symmetric quantum mechanics; Authors: Sebastian Deffner, Avadh Saxena; Source: arXiv:1501.06545
  119. Title: Measuring work and heat in ultracold quantum gases; Authors: G. De Chiara, A. J. Roncaglia, J. P. Paz; Source: arXiv:1412.6116
  120. Title: Quantum nonequilibrium equalities with absolute irreversibility; Authors: Ken Funo, Yûto Murashita, Masahito Ueda; Source: New J. Phys. 17 (2015) 075005, arXiv:1412.5891
  121. Title: Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments; Authors: Michele Campisi, Jukka Pekola, Rosario Fazio; Source: arXiv:1412.0898