
HEIR meeting notes 2025-08-07
2025-08-07

●​ HEIR PRs merged since last time (60)
○​ AES CGGI demo #1765
○​ CRT support in mod_arith #1928
○​ Layout conversion cost analysis #1967
○​ LWE type migration finished #1972 #2036 #2040
○​ Minor improvements for/from HEIR hackathon #1978 #1979 #2007
○​ Python frontend supports MLIR string as input #1984
○​ Autogenerated documentation examples from lit tests #1987 #2031 Example

screenshot below (help wanted to add more: #2014)
○​ arith.negf -> ckks.negate lowering #1989
○​ Reorganize developer docs #1994
○​ Lowering comparisons in arithmetic pipeline #1999
○​ OpenMP enabled by default now #2010 (nb., openmp not supported on

macOS...)
○​ Start to lower ckks.relinearize #2013
○​ Worst case CKKS range analysis #2018
○​ Update C++ standard to C++20 #2025, drop support for clang 15/16 and add

clang 20 #2049
○​ Work on new layout system #2048
○​ New builder style from upstream MLIR (now with 100x better IDE support!) #2060
○​ Update CGGI pipeline for e2e loop test #2056
○​ Generalized rotate and reduce op for baby-step-giant-step #2071

●​ In progress PRs
○​ Add ISL dependency for client side/plaintext packing codegen #2072
○​ First pass layout codegen that will be replaced by ISL #2063
○​ Dockerfile for HEIR dev #2055
○​ Disable openmp on macos #2046
○​ Remove memrefs from CGGI pipeline #1910
○​ Initial SBox implementation #2012
○​ Scheme selection pass #2043
○​ Generalized baby-step-giant-step lowering for rotate-and-reduce op
○​ Migrate layout-propagation to new layout attributes

●​ Notable new issues
○​ New papers

■​ Aegis #2064
■​ CHESS #1970
■​ Rotom #2035
■​ EinHops #1995

https://github.com/google/heir/pulls?q=is:pr+is:closed+merged:2025-07-10..2025-08-07
https://github.com/google/heir/pull/1765
https://github.com/google/heir/pull/1928
https://github.com/google/heir/pull/1967
https://github.com/google/heir/pull/1972
https://github.com/google/heir/pull/2036
https://github.com/google/heir/pull/2040
https://github.com/google/heir/pull/1978
https://github.com/google/heir/pull/1979
https://github.com/google/heir/pull/2007
https://github.com/google/heir/pull/1984
https://github.com/google/heir/pull/1987
https://github.com/google/heir/pull/2031
https://github.com/google/heir/issues/2014
https://github.com/google/heir/pull/1989
https://github.com/google/heir/pull/1994
https://github.com/google/heir/pull/1999
https://github.com/google/heir/pull/2010
https://github.com/google/heir/pull/2013
https://github.com/google/heir/pull/2018
https://github.com/google/heir/pull/2025
https://github.com/google/heir/pull/2049
https://github.com/google/heir/pull/2048
https://github.com/google/heir/pull/2058
https://github.com/google/heir/pull/2056
https://github.com/google/heir/pull/2071
https://github.com/google/heir/pull/2072
https://github.com/google/heir/pull/2063
https://github.com/google/heir/pull/2055
https://github.com/google/heir/pull/2046
https://github.com/google/heir/pull/1910
https://github.com/google/heir/pull/2012
https://github.com/google/heir/pull/2043
https://github.com/google/heir/issues?q=is:issue%20state:open%20created:%3E@today-30d
https://github.com/google/heir/issues/2064
https://github.com/google/heir/issues/1970
https://github.com/google/heir/issues/2035
https://github.com/google/heir/issues/1995

■​ "Accurate and Composable Noise Estimates for CKKS with Application to
Exact HE Computation" #2011

○​ Generalize affine-map layout notation to use IntegerRelations #2047
○​ Scheme Selection passes #2019
○​ [lwe] add dimension / size to the key attribute #2045
○​ Add a packaged script to lower PyTorch / TF models to HEIR inputs (linalg)

#2038
○​ Generalized baby-step giant-step pass #2027
○​ Slow input example for loop over dot products #2008
○​ Fun issues noticed during Hackathon #2005
○​ pipelines should abort after the current pass if it created errors #2000
○​ Unexpected segfault after compilation error in --convert-to-ciphertext-semantics

#1992
○​ Add pass/pipeline pre-conditions/post-conditions #1985
○​ Enable a dry-run cibuildwheel to be triggered from a PR #1969

●​ Topics
○​ ISL - jkun
○​ Lowering core crypto primitives in HEIR - alex viand

■​ Finish lowering relin
■​ Most efficient keyswitch implementation
■​ Special topics meeting soon?
■​

○​ Scheme selection pass
■​ Starting point for scheme switching
■​ Guidance for inexperienced users who don’t know different schemes
■​ Has to be done early
■​ Scheme switching will partition code and do scheme selection on each

part
■​ No real cost models comparable across all schemes

●​ github.com/heir-compiler/heir has partitioning + cost model?
●​ Seems hard coded

■​ Simple cost model: infinite cost if not implemented 🙂
■​ Infra side: how can we support work on this, no way to expose what is

supported to the cost model?
■​ Maybe first step is to consider cost tradeoff for simple IRs

●​ IR with a single comparison.
●​ Matvec mul + small decision tree

■​ Currently counts ops by type, annotate func with counts, hard coded
decision based on that

■​ Maybe start by just running all these ops to get a blended cost?
■​ Openfhe-binfhe (public fork, haven’t had time to upstream)

●​ Definitely won’t be the best CGGI implementation
●​ Still want to lower CGGI to LLVM (with PBS) to do proper scheme

switching

https://github.com/google/heir/issues/2011
https://github.com/google/heir/issues/2047
https://github.com/google/heir/issues/2019
https://github.com/google/heir/issues/2045
https://github.com/google/heir/issues/2038
https://github.com/google/heir/issues/2035
https://github.com/google/heir/issues/2027
https://github.com/google/heir/issues/2008
https://github.com/google/heir/issues/2005
https://github.com/google/heir/issues/2000
https://github.com/google/heir/issues/1992
https://github.com/google/heir/issues/1985
https://github.com/google/heir/issues/1969
http://github.com/heir-compiler/heir
https://github.com/raghav198/heir

●​ But openfhe-binfhe upstreaming should only take ~1 day and
having it as a playground for working on scheme switching will be
useful.

○​ How can we support profiling/benchmarking in first-party?
■​ Define an output format for profiling information
■​ Low level instrumentation seems hard but necessary for ASICs/FPGAs
■​ For library backends can we just insert timing code around each

statement?
■​ Timing.start timing.stop ops and emit at high level

○​ Can we benchmark NTT-lowering in HEIR vs lattigo?
○​ Can we cheaply enable AVX extensions in HEIR after lowering to LLVM?

https://stackoverflow.com/questions/22548397/can-i-generate-avx-vectorized-cod
e-using-llvm-jit

●​ https://github.com/j2kun/patfind
●​ FYI: LLVM Developer Meeting 2025 registration is open:

https://llvm.swoogo.com/2025devmtg

Timing.time {
Linalg.matvec
}

Timing.time “linalg.matvec” {
Timing.time “tensor_ext.rotate” {

}
Timing.time “arith.addi” {​

}
...
}

Timing.start
linalg.matvec
Timing.end

Timing.start “linalg.matvec”
linalg.matvec
Timing.end “linalg.matvec”

https://stackoverflow.com/questions/22548397/can-i-generate-avx-vectorized-code-using-llvm-jit
https://stackoverflow.com/questions/22548397/can-i-generate-avx-vectorized-code-using-llvm-jit
https://github.com/j2kun/patfind
https://llvm.swoogo.com/2025devmtg

	HEIR meeting notes 2025-08-07
	2025-08-07
	

