HEIR meeting notes 2025-08-07

2025-08-07

HEIR PRs merged since last time (60)

o O O O O O O

o O O O

o O O

o

AES CGGI demo #1765

CRT support in mod_arith #1928

Layout conversion cost analysis #1967

LWE type migration finished #1972 #2036 #2040

Minor improvements for/from HEIR hackathon #1978 #1979 #2007

Python frontend supports MLIR string as input #1984

Autogenerated documentation examples from lit tests #1987 #2031 Example
screenshot below (help wanted to add more: #2014)

arith.negf -> ckks.negate lowering #1989

Reorganize developer docs #1994

Lowering comparisons in arithmetic pipeline #1999

OpenMP enabled by default now #2010 (nb., openmp not supported on
macO0S...)

Start to lower ckks.relinearize #2013

Worst case CKKS range analysis #2018

Update C++ standard to C++20 #2025, drop support for clang 15/16 and add
clang 20 #2049

Work on new layout system #2048

New builder style from upstream MLIR (now with 100x better IDE support!) #2060
Update CGGI pipeline for e2e loop test #2056

Generalized rotate and reduce op for baby-step-giant-step #2071

In progress PRs

o O O O O O O O

o

o

Add ISL dependency for client side/plaintext packing codegen #2072
First pass layout codegen that will be replaced by ISL #2063
Dockerfile for HEIR dev #2055

Disable openmp on macos #2046

Remove memrefs from CGGI pipeline #1910

Initial SBox implementation #2012

Scheme selection pass #2043

Generalized baby-step-giant-step lowering for rotate-and-reduce op
Migrate layout-propagation to new layout attributes

Notable new issues

New papers
m Aegis #2064
m CHESS #1970
m Rotom #2035
m EinHops #1995

https://github.com/google/heir/pulls?q=is:pr+is:closed+merged:2025-07-10..2025-08-07
https://github.com/google/heir/pull/1765
https://github.com/google/heir/pull/1928
https://github.com/google/heir/pull/1967
https://github.com/google/heir/pull/1972
https://github.com/google/heir/pull/2036
https://github.com/google/heir/pull/2040
https://github.com/google/heir/pull/1978
https://github.com/google/heir/pull/1979
https://github.com/google/heir/pull/2007
https://github.com/google/heir/pull/1984
https://github.com/google/heir/pull/1987
https://github.com/google/heir/pull/2031
https://github.com/google/heir/issues/2014
https://github.com/google/heir/pull/1989
https://github.com/google/heir/pull/1994
https://github.com/google/heir/pull/1999
https://github.com/google/heir/pull/2010
https://github.com/google/heir/pull/2013
https://github.com/google/heir/pull/2018
https://github.com/google/heir/pull/2025
https://github.com/google/heir/pull/2049
https://github.com/google/heir/pull/2048
https://github.com/google/heir/pull/2058
https://github.com/google/heir/pull/2056
https://github.com/google/heir/pull/2071
https://github.com/google/heir/pull/2072
https://github.com/google/heir/pull/2063
https://github.com/google/heir/pull/2055
https://github.com/google/heir/pull/2046
https://github.com/google/heir/pull/1910
https://github.com/google/heir/pull/2012
https://github.com/google/heir/pull/2043
https://github.com/google/heir/issues?q=is:issue%20state:open%20created:%3E@today-30d
https://github.com/google/heir/issues/2064
https://github.com/google/heir/issues/1970
https://github.com/google/heir/issues/2035
https://github.com/google/heir/issues/1995

o O O O

O O O O O

m "Accurate and Composable Noise Estimates for CKKS with Application to
Exact HE Computation" #2011
Generalize affine-map layout notation to use IntegerRelations #2047
Scheme Selection passes #2019
[lwe] add dimension / size to the key attribute #2045
Add a packaged script to lower PyTorch / TF models to HEIR inputs (linalg)
#2038
Generalized baby-step giant-step pass #2027
Slow input example for loop over dot products #2008
Fun issues noticed during Hackathon #2005
pipelines should abort after the current pass if it created errors #2000
Unexpected segfault after compilation error in --convert-to-ciphertext-semantics
#1992
Add pass/pipeline pre-conditions/post-conditions #1985
Enable a dry-run cibuildwheel to be triggered from a PR #1969

ISL - jkun
Lowering core crypto primitives in HEIR - alex viand
m Finish lowering relin
m Most efficient keyswitch implementation
m Special topics meeting soon?
| |
Scheme selection pass
m Starting point for scheme switching
m Guidance for inexperienced users who don’t know different schemes
m Has to be done early
m Scheme switching will partition code and do scheme selection on each
part
m No real cost models comparable across all schemes
e github.com/heir-compiler/heir has partitioning + cost model?
e Seems hard coded
m Simple cost model: infinite cost if not implemented (=
m Infra side: how can we support work on this, no way to expose what is
supported to the cost model?
m Maybe first step is to consider cost tradeoff for simple IRs
e IR with a single comparison.
e Matvec mul + small decision tree
m Currently counts ops by type, annotate func with counts, hard coded
decision based on that
m Maybe start by just running all these ops to get a blended cost?
m Openfhe-binfhe (public fork, haven’t had time to upstream)
e Definitely won’t be the best CGGI implementation
e Still want to lower CGGI to LLVM (with PBS) to do proper scheme
switching

https://github.com/google/heir/issues/2011
https://github.com/google/heir/issues/2047
https://github.com/google/heir/issues/2019
https://github.com/google/heir/issues/2045
https://github.com/google/heir/issues/2038
https://github.com/google/heir/issues/2035
https://github.com/google/heir/issues/2027
https://github.com/google/heir/issues/2008
https://github.com/google/heir/issues/2005
https://github.com/google/heir/issues/2000
https://github.com/google/heir/issues/1992
https://github.com/google/heir/issues/1985
https://github.com/google/heir/issues/1969
http://github.com/heir-compiler/heir
https://github.com/raghav198/heir

e But openfhe-binfhe upstreaming should only take ~1 day and
having it as a playground for working on scheme switching will be
useful.

o How can we support profiling/benchmarking in first-party?
m Define an output format for profiling information
m Low level instrumentation seems hard but necessary for ASICs/FPGAs
m For library backends can we just insert timing code around each
statement?
m Timing.start timing.stop ops and emit at high level
Can we benchmark NTT-lowering in HEIR vs lattigo?
Can we cheaply enable AVX extensions in HEIR after lowering to LLVM?
https://stackoverflow.com/questions/22548397/can-i-generate-avx-vectorized-cod
e-using-llvm-jit
e htitps://github.com/j2kun/patfind
FYI: LLVM Developer Meeting 2025 registration is open:
https://llvm.swoogo.com/2025devmtg

Timing.time {
Linalg.matvec

}

Timing.time “linalg.matvec” {
Timing.time “tensor_ext.rotate” {

}
Timing.time “arith.addi” {

}

Timing.start

linalg.matvec

Timing.end

Timing.start “linalg.matvec”
linalg.matvec

Timing.end “linalg.matvec”

https://stackoverflow.com/questions/22548397/can-i-generate-avx-vectorized-code-using-llvm-jit
https://stackoverflow.com/questions/22548397/can-i-generate-avx-vectorized-code-using-llvm-jit
https://github.com/j2kun/patfind
https://llvm.swoogo.com/2025devmtg

Example

Command: heir-opt ”_oximation tests/Transforms/polynomial_approximation/doctest.mlir

Input:

func.func @test_exp(¥x: f32) -> £32 {
%@ = math.exp %x {
degree = 3 : i32,
domain_lower = -1.@ : f64,
domain_upper = 1.8 : 64} : f32
return %@ : f32

OQutput:

#ring_f64 = #polynomial.ring<coefficientType = f64>
Ipoly = Ipolynomial.polynomial<ring = #ring_f64>
module {

func.func @test_exp(%argh: f32) -»> 32 {

%@ = polynomial.eval #polynomial<typed_float_polynomial <@.99457947632469512 + ©.9956677189276301x + ©.542972788!
return %0 : f32

	HEIR meeting notes 2025-08-07
	2025-08-07
	

