
Duplicated Encoded Image Data 
hajimehoshi@chromium.org 

Last Updated: 2016-07-11 

Summary 
This document aims to explain the CL https://codereview.chromium.org/2054643003/ to remove 
duplicated encoding image data. ImageResource has a blink::Image object in m_image and 
encoded image data in m_data as SharedBuffer. The problem is that there is also encoded 
image data in m_image’s DeferredImageDecoder in SkRWBuffer. We found that this duplication 
consumes much memory. In theory, decoded data can be recreated from that in SkRWBuffer 
when needed. This CL tries to remove encoded image data in SharedBuffer by changing 
lifetimes of ImageResource’s m_image and m_data. 

What the CL does 
●​ Changes the lifetime of ImageResource::m_data to be cleared soon after m_image is 

created. 
●​ Changes the lifetime of ImageResource::m_image not to be discarded even when 

pruning. 
●​ Changes ImageResource::resourceBuffer to return Image::data when m_data is not 

present. 
●​ Overrides BitmapImage::data() to return its ImageSource::data(). 
●​ Adds DeferredImageDecoder::data() to return SharedBuffer generated from 

SkRWBuffer. 

Objects 
Resource: A class for a HTTP response. One Resource instance exists for one HTTP 
response.  
ImageResource: A subclass of Resource and represents an image resource. 
 
Resource::m_data: A SharedBuffer representing HTTP response body content. In general this 
is not purged as long as no error happens. 
ImageResource::m_data: Same as Resource::m_data. If the response is multipart, m_data 
represents one part of them. m_data is discarded soon after m_image is created and is 
recreated each time when another part is received. Note that m_data’s lifetime is much different 
between non-multipart and multipart. This is shared by blink::Image as m_encodedImageData. 

mailto:hajimehoshi@chromium.org
https://codereview.chromium.org/2054643003/


ImageResource::m_image: A blink::Image. This is destroyed when pruning and revived when 
updateImage is called when the resource is used again. 
 
m_data is the original data and m_image is a cache. 
 
blink::Image: Represents an image. This has encoded image data and a reference to a 
decoder, and might have decoded image data. 
blink::BitmapImage: a subclass of blink::Image for bitmap images. This has encoded image 
data in DeferredImageDecoder’s SkRWBuffer and might have decoded image data there. 
Decoded image data can be destroyed when pruning. 
blink::SVGImage: a subclass of blink::Image for SVG image. SVGImage is not affected by the 
CL and this means encoded image data in SVG is still duplicated. 
blink::Image::m_encodedImageData: Represents an encoded image data (SharedBuffer). 
This is passed from ImageResource::m_data. 
blink::Image::m_source: An ImageSource. 
blink::ImageSource: Has DeferredImageDecoder as a member. 
blink::DeferredImageDecoder: Has encoded image data (SkRWBuffer) and a reference to an 
actual decoder and might have decoded image data. 
 

 



Lifetimes 

Before the CL 
Note that black bold lines in the below figures indicate the state of reference by ImageResource. 
Even after m_data is derefed from an ImageResource, that data might live because other 
objects might have a reference to it.  

Non-multipart 
 

 
ImageResource::m_data is basically not discarded but m_image is. m_image is recreated from 
m_data when necessary. 



Multipart 

 
ImageResource::m_data is discarded aggressively after each part of the multipart image is 
received. 



After the CL 

Non-multipart 

 
 
In multipart, lifetimes of the objects are not changed. For good or bad, m_data is purged soon 
after m_image is created. 

Misc 

Errors 
After any error occurs in an ImageResource, m_data and m_image should be cleared (= 
de-refed from the ImageResource). The CL doesn’t change this behavior. 

Revalidation 
Revalidation can run when the Resource is cached and the new HTTP Response status code is 
not ‘304 not modified’. In ImageResource, only failure case of revalidation should be considered 
and in this case m_data and m_image must be cleared. The CL doesn’t change the lifetimes of 
objects regarding the revalidation. 

LoFi 
ImageResource can be reloaded when the first loading is LoFi. In this case, Chromium can try 
to load high-quality image. 
 



1.​ ResourceFetcher::reloadLoFiImages is called 
2.​ ImageResource::reloadIfLoFi is called. m_image is recreated here if necessary. m_data 

is cleared after m_image recreation. 
3.​ ResourceFetcher::startLoad is called. 
4.​ ResourceFetcher::didFinishLoading is called. 
5.​ ImageResource::finish is called and m_image is updated with new m_data. 

 
After the CL, m_image is always present and no need to make sure that m_image exists. 

Performance Concern 
After the CL, BitmapImage::data() returns SharedBuffer generated by SkRWBuffer and this 
might cause performance regression. This can be used by clipboard, MHTML serialization and 
WebGL. I tested WebGL tests with telemetry (result). It’s a little difficult to say there is no 
performance regression with the results, and I couldn’t get a more stable result on my local 
machine. There seem to be regressions for some tests (e.g. Earth.html), but as the code says, 
the tests don't access encoded image data so often. 

Result 
There are some significant improvements in PartitionAlloc memory usage: 
 
1. https://drive.google.com/file/d/0BwW8PrCcts4WT1ctTFhTVmNZNWc (desktops on Tumblr, 
Pinterest and Instagram) 

http://www.googledrive.com/host/0BwW8PrCcts4WS1hIdkx4Z1pkZGM
https://drive.google.com/file/d/0BwW8PrCcts4WT1ctTFhTVmNZNWc


 
2. https://drive.google.com/file/d/0BwW8PrCcts4WT1ctTFhTVmNZNWc (mobiles on Pinterest 
and Google+) 
 

https://drive.google.com/file/d/0BwW8PrCcts4WT1ctTFhTVmNZNWc



	Duplicated Encoded Image Data 
	Summary 
	What the CL does 
	Objects 
	Lifetimes 
	Before the CL 
	Non-multipart 
	Multipart 

	After the CL 
	Non-multipart 


	Misc 
	Errors 
	Revalidation 
	LoFi 

	Performance Concern 
	Result 

