Power Laws in isotropic linear least squares

aka, Spectral Origins of Power-Law Learning: A Triple Descent Phenomenon in
Kaczmarz and SGD

Background

Suppose you train your neural network. Should you expect loss to decay

1. Exponentially with time
2. Power-law

Many optimization results are exponential



https://chatgpt.com/c/68b1bd8d-84d8-8324-bf01-594c29c22afa

t=time
d=dimensions

1. t->infinity, d=fixed (classical optimization) t>>d

2. t=fixed, d->infinity (NTK) d>>t
3. t=d, t->infinity, d->infinity (this work) d=t

Main take away

For uniform linear least squares


https://chatgpt.com/c/68b1bd8d-84d8-8324-bf01-594c29c22afa

wedn S . [N \/ QP o C\Ag

I

QM% (ngc\aS\)

Setup

Model

1. Realizable linear regression <xi, w> = bi forall xi foriin 1..N
d dimensions

Minimize least squares loss, one example at a time.



Initialization

2. Isotropically initialized -- random w0 such that every wO-w* is equally likely
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WLOG ||w0-w*||=1 if we care about relative drop
WLOG w*=0
squared error at step_i = [|wi||*2

Dataset + step size

Xi isotropic

3. Normalize data, such that ||xi||=1 for all i and use step-size=1

equivalent to Kaczmarz
equivalent to batch-size=1 SGD with greedy line search for each batch

10



Key question

How does mean squared loss behave as a function of time?

The math

Each step is a projection.

w1 = (I-xx")w0



After going through the whole epoch, it's the same as initial error vector by this matrix:
https://mathoverflow.net/questions/475439/spectrum-of-prod-id-lefti-x-ix-it-right-for-isotropic-x-i

Suppose x; € R? are IID isotropic random vectors with Lx,l = 1 and matrix 4, is defined as
follows:

d

Tl

1

mean squared loss after s epochs =

eSs!

1. Exponential in the head

3. Exponential in the tail


https://mathoverflow.net/questions/475439/spectrum-of-prod-id-lefti-x-ix-it-right-for-isotropic-x-i

Triple Descent in Loss of Kaczmarz (d =m = 256)
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History

1. Trying to get closed form,
https://mathoverflow.net/questions/475439/spectrum-of-prod-id-lefti-x-ix-it-right-for-isotropic-x-i

2. Chris Re/Chris DeSa
- got closed form using free probability
- results for other step-sizes


https://mathoverflow.net/questions/475439/spectrum-of-prod-id-lefti-x-ix-it-right-for-isotropic-x-i

Expected Trace vs Step Size (m = d = 2048)
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Figure 6: Empirical validation of Theo-
rem 4.1 by running SGD for various « on
a random linear regression problem.

Thomas Ahle:
- generalize beyond flip-flop
- shuffling strategies (shuffling hurts)
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Figure 2: Empirical Test Loss Normalized by /epochs. We plot the mean and quartiles at 1000
independent runs of the four shuffling methods discussed. In particular Flip-Flop (red) and Single
Shuffle (green) can be seen to closely follow the theorems above. At epoch n = 1 we have loss 1/e

for both methods, while for larger n they follow the asymptotics of 1/4/27n and 1/(2/7n).
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