
Waiting for kfree_rcu()
Paul E. McKenney
Uladzislau Rezki

Boqun Feng
Neeraj Upadhyay

Jason A. Donenfeld
Jakub Kicinski
Vlastimil Babka
June 12, 2024
June 13, 2024
July 3, 2024

August 8, 2024

Back in the old days, rcu_barrier() would block until all pre-existing callbacks were
invoked, which included waiting for all memory previously passed to kfree_rcu() to be freed.
Perhaps as early as 2019, rcu_barrier() was no longer guaranteed to wait for the freeing of
kfree_rcu() memory. This was not a problem because only memory allocated via
kmalloc(), vmalloc(), and friends could be passed to kfree_rcu(). Other memory, in
particular, that obtained from kmem_cache_alloc(), had to be freed via explicit RCU
callbacks queued using call_rcu().

This last restriction has recently been lifted because now kfree() can free memory returned
from kmem_cache_alloc().

However, if a module creates a kmem_cache containing RCU-protected objects that are freed
using kfree_rcu(), that module has no way to wait for all memory to be freed before passing
that kmem_cache to kmem_cache_destroy().

This document looks at ways of handling this situation.

Approaches
The following sections cover possible approaches, listing advantages and disadvantages.

Status Quo
Document the current state, which is that a module must use call_rcu() rather than
kfree_rcu() on memory obtained from kmem_cache_alloc() if that module calls
kmem_cache_destroy() on that kmem_cache structure. This works, but adds extra code to

this use case, and the penalty for incorrect use of kfree_rcu() is subtle memory-corruption
bugs. It is only to be hoped that we can do better.

However, in the short term, this is the world we live in.

rcu_barrier() Waits for kfree_rcu()
Revert back to the pre-2019 semantics in which rcu_barrier() waits for the freeing of
kfree_rcu() memory,

This adds complexity, overhead, and latency to rcu_barrier() that is unnecessary in most
use cases. This approach is nevertheless worth looking into, and can be obtained by adding to
rcu_barrier() an invocation of the kfree_rcu_barrier() function described in the next
section. The big advantage of this approach is that it allows RCU/slab users to get their jobs
done without dealing with yet more API members, which should earn it a high score on the
Rusty Scale.

kfree_rcu_barrier() Waits for kfree_rcu()
Add a new kfree_rcu_barrier() function that waits for the freeing of all memory that has
previously been passed to kfree_rcu().

The simplest known way to implement this is to add an rcu_head structure to the
kvfree_rcu_bulk_data structure. A call to kfree_rcu_barrier() would then traverse
lists of in-flight kvfree_rcu_bulk_data structures, passing them to call_rcu() along with
a callback function that would free them. This would be followed by a call to rcu_barrier()
that would wait for all this memory to be freed.

Except that this approach fails to account for the low-memory behavior of
kfree_rcu_mightsleep(), which involves a call to synchronize_rcu() and then
kfree(). This case can be handled using a new srcu_struct, along with an
srcu_read_lock() preceding the synchronize_rcu() and an srcu_read_unlock()
following the kfree(). Given this infrastructure, could then invoke synchronize_srcu()
to wait on all in-flight low-memory invocations of kfree_rcu_mightsleep().
​
The reason that the above paragraph has been struck out is that rcu_barrier() only waits
for call_rcu() invocations that have returns before that call to rcu_barrier(). We will
also apply this rule to kfree_rcu_mightsleep(), which means that in the low-memory
case, the memory will already be freed. There is therefore no need to explicitly wait for such
calls to kfree_rcu_mightsleep() to free their memory.

As described, there would need to be mutual exclusion (presumably a mutex) between
concurrent calls to kfree_rcu_barrier(). The same sort of batching optimizations used in
rcu_barrier() might also be useful for kfree_rcu_barrier().

This is likely to work reasonably well. However, one potential drawback is that this approach
waits on all kfree_rcu() memory when it really only needs to wait for that kfree_rcu()
memory associated with the kmem_cache structure that is to be passed to
kmem_cache_destroy() prior to module unloading. (Of course, this might well turn out to be
an advantage if there are modules creating and destroying large numbers of slabs of
RCU-protected objects.)

The following sections look at some possible approaches that wait only on this one
kmem_cache structure. In theory. In practices, these later approaches will likely have the slab
allocator call something like a kfree_rcu_barrier() in order to do the needed waiting.

kmem_cache_destroy() Lingers for kfree_rcu()
“Just make the slab allocator handle it!” Here, kmem_cache_destroy() checks for memory
not yet freed, and if there is any, arranges to defer the actual slab deallocation until all memory
is freed.

This approach’s downsides include losing valuable memory-leak debugging in the non-RCU
case. Note that fully evaluating the advantages and disadvantages of this and the remaining
approaches requires assistance from the slab maintainers. This document currently simply lists
them.

One way of preserving this debugging information is to splat if all of the slab’s memory has not
been freed within a reasonable timeframe, perhaps the same 21 seconds that causes an RCU
CPU stall warning (perhaps augmented by well-timed checks invoked from the kfree_rcu()
workings). Note also that this lingering destruction might benefit non-RCU synchronization
mechanisms, including reference counters and hazard pointers.

This approach appears to be the current direction.

kmem_cache_destroy() Lingers for kfree_rcu() and rcu_barrier()
This is the same as “kmem_cache_destroy() Lingers for kfree_rcu()” above, except
that in the SLAB_TYPESAFE_BY_RCU case, kmem_cache_destroy() also lingers for
rcu_barrier(). This lingering for rcu_barrier() is currently done in a batched fashion,
courtesy of 657dc2f97220 ("slab: remove synchronous rcu_barrier() call in memcg cache
release path").

https://lore.kernel.org/all/e926e3c6-05ce-4ba6-9e2e-e5f3b37bcc23@suse.cz/

Going back to per-kmem_cache_destroy() synchronous calls to rcu_barrier() would
likely disappoint the cgroups use cases that motivated the change to use batching.

kmem_cache_destroy_rcu() Lingers for kfree_rcu()
“Just make the slab allocator supply another API to handle it!” Here, there is a new
kmem_cache_destroy_rcu() that acts as described in the preceding section so that the
original kmem_cache_destroy() function can retain its memory-leak debugging functionality.

kmem_cache_free_barrier() Waits for kfree_rcu()
Add a kmem_cache_free_barrier() that has roughly the same semantics as does
kfree_rcu_barrier(), but is confined to the specified slab. Again, the original
kmem_cache_destroy() function can retain its memory-leak debugging functionality.

kmem_cache_destroy_wait() Waits for kfree_rcu()
Add a kmem_cache_destroy_wait() that waits for all memory in the specified slab to be
freed, then destroys that slab. Given a kmem_cache_free_barrier(), this could be
implemented as follows:

kmem_cache_free_barrier(myslab);
kmem_cache_destroy(myslab);

kmem_cache_destroy_rcu/_barrier()

The idea here is to provide a asynchronous kmem_cache_destroy_rcu() as described
above along with a kmem_cache_destroy_barrier() that waits for the destruction of all
prior kmem_cache instances previously passed to kmem_cache_destroy_rcu().
Alternatively, could return a cookie that could be passed into a later call to
kmem_cache_destroy_barrier(). This alternative has the advantage of isolating which
kmem_cache instance is suffering the memory leak.

SLAB_DESTROY_ONCE_FULLY_FREED
Instead of adding a new kmem_cache_destroy_rcu() or kmem_cache_destroy_wait()
API member, instead add a SLAB_DESTROY_ONCE_FULLY_FREED flag that can be passed
to the existing kmem_cache_create() function. Use of this flag would suppress any
warnings that would otherwise be issued by a call to kmem_cache_destroy() on the
resulting kmem_cache if there was still slab memory yet to be freed, and it would also spawn
workqueues (or timers or whatever) to do any needed cleanup work.

Your Ideas Here!!!

	Waiting for kfree_rcu()
	Approaches
	Status Quo
	rcu_barrier() Waits for kfree_rcu()
	kfree_rcu_barrier() Waits for kfree_rcu()
	kmem_cache_destroy() Lingers for kfree_rcu()
	kmem_cache_destroy() Lingers for kfree_rcu() and rcu_barrier()
	kmem_cache_destroy_rcu() Lingers for kfree_rcu()
	kmem_cache_free_barrier() Waits for kfree_rcu()
	kmem_cache_destroy_wait() Waits for kfree_rcu()
	kmem_cache_destroy_rcu/_barrier()
	SLAB_DESTROY_ONCE_FULLY_FREED
	Your Ideas Here!!!

