
Console output support for Worklets 
Author: Hiroki Nakagawa (nhiroki@chromium.org) 
Last update: October 24, 2016 
Issue: https://crbug.com/646559 
Status: DONE 
Visibility: Public 
 

Objective 
 
Console output is now disabled on Worklets because worker’s debugger infra doesn't 
support multiple global scopes on a single thread. This document explains a problem of the 
current architecture and proposes a solution. 
 
Note that this addresses only console output support for Worklets. Other features of 
DevTools like setting break points are out of scope. 
 

Problem 
 
WorkerThreadDebugger is an implementation of V8’s debugger client. The debugger was 
designed for inspecting one global scope on one WorkerThread. This is also used for 
console output. Figure 1 describes this architecture. WorkerBackingThread is a key class 
here. It hosts v8::Isolate, which is in turn associated with WorkerThreadDebugger. 
WorkerThread exclusively hosts just one GlobalScope that inherits 
ExecutionContext. 
 

 
Figure 1) Current architecture of WorkerThreadDebugger on Workers 

 
This architecture had worked well until Worklets emerged. Worklets have somewhat 
different architecture from traditional workers: multiple WorkerThreads can share a single 
WorkerBackingThread (v8::Isolate) as Figure 2. 

mailto:nhiroki@chromium.org
https://crbug.com/646559


 

 
Figure 2) Current architecture of WorkerThreadDebugger on Worklets (not work) 

 
This difference makes WorkerThreadDebugger confused because the debugger cannot 
handle multiple global scopes on one v8::Isolate. This causes a renderer crash when 
multiple Worklets run on the same v8::Isolate, so currently the debugger is disabled (is 
not attached with the isolate) on Worklets (see 
WorkerThread::shouldAttachThreadDebugger()) 
 

Solution 
 
To support console output for Worklets, we’ll change WorkerThreadDebugger to manage 
ID-WorkerThread map so that the debugegr can handle multiple global scopes (see Figure 
3). WorkerThreadDebugger looks up an ID provided by a caller in the map, and routes 
operation requests to an appropriate context. 
 

 
Figure 3) Proposed architecture of WorkerThreadDebugger on Worklets 

 
Actually, this ID mechanism has already been in ThreadDebugger interface. The interface 
defines the ID as ContextGroupId. MainThreadDebugger uses ContextGroupId for 
supporting multiple contexts (frames). On the other hand, WorkerThreadDebugger has 
used a fixed ID for the context group ID and usually just ignores it. We need to replace it with 
a unique ID among execution contexts on a WorkerBackingThread. Maybe a unique ID 
should be assigned per WorkerThread or GlobalScope. 
 



This mechanism also needs to change lifetime of WorkerThreadDebugger. In the current 
implementation, WorkerThreadDebugger is created on WorkerThread initialization. 
Instead, we need to create it on WorkerBackingThread initialization and add/remove 
WorkerThread to/from the map when WorkerThread is initialized/destroyed. 
 
At this point, WorkerThreadDebugger would be ready to work on Worklets, so we enable it 
by flipping WorkerThread::shouldAttachThreadDebugger() for Worklets. 
 


	Console output support for Worklets 
	Objective 
	Problem 
	Solution 

