Console output support for Worklets

Author: Hiroki Nakagawa (nhiroki@chromium.org)
Last update: October 24, 2016

Issue: https://crbug.com/646559

Status: DONE

Visibility: Public

Objective

Console output is now disabled on Worklets because worker’'s debugger infra doesn't
support multiple global scopes on a single thread. This document explains a problem of the
current architecture and proposes a solution.

Note that this addresses only console output support for Worklets. Other features of
DevTools like setting break points are out of scope.

Problem

WorkerThreadDebugger is an implementation of V8's debugger client. The debugger was
designed for inspecting one global scope on one WorkerThread. This is also used for
console output. Figure 1 describes this architecture. WorkerBackingThread is a key class
here. It hosts v8: : Isolate, which is in turn associated with WorkerThreadDebugger.
WorkerThread exclusively hosts just one GlobalScope that inherits
ExecutionContext.

GlobalScope

WorkerThread - -

WorkerBacking *
Thread !
- own WorkerThread
[v8::lsolate | Debugger

Figure 1) Current architecture of WorkerThreadDebugger on Workers

This architecture had worked well until Worklets emerged. Worklets have somewhat
different architecture from traditional workers: multiple WorkerThreads can share a single
WorkerBackingThread (v8: :Isolate) as Figure 2.

mailto:nhiroki@chromium.org
https://crbug.com/646559

GlobalScope GlobalScope

Cannot handle multiple
contexts

WorkerThread WorkerThread [--. _

e . rawpir
~
(.

(%

%

WorkerBackingThread y
own WorkerThread
Debugger

Figure 2) Current architecture of WorkerThreadDebugger on Worklets (not work)

This difference makes WorkerThreadDebugger confused because the debugger cannot
handle multiple global scopes on one v8: : Isolate. This causes a renderer crash when
multiple Worklets run on the same v8: : Isolate, so currently the debugger is disabled (is
not attached with the isolate) on Worklets (see

WorkerThread: :shouldAttachThreadDebugger ())

Solution

To support console output for Worklets, we'll change WorkerThreadDebugger to manage
ID-WorkerThread map so that the debugegr can handle multiple global scopes (see Figure
3). WorkerThreadDebugger looks up an ID provided by a caller in the map, and routes
operation requests to an appropriate context.

id WorkarThraad
GlobalScope GlobalScope J P l
= = L= 10

WorkerThread #* - “WaorkerThread [« =~ t
own
WorkerBackingThread
own WorkerThread
Debugger

Figure 3) Proposed architecture of WorkerThreadDebugger on Worklets

Actually, this ID mechanism has already been in ThreadDebugger interface. The interface
defines the ID as ContextGroupId. MainThreadDebugger uses ContextGroupId for
supporting multiple contexts (frames). On the other hand, WorkerThreadDebugger has
used a fixed ID for the context group ID and usually just ignores it. We need to replace it with
a unique ID among execution contexts on a WorkerBackingThread. Maybe a unique ID
should be assigned per WorkerThread or GlobalScope.

This mechanism also needs to change lifetime of WorkerThreadDebugger. In the current
implementation, WorkerThreadDebugger is created on WorkerThread initialization.
Instead, we need to create it on WorkerBackingThread initialization and add/remove
WorkerThread to/from the map when WorkerThread is initialized/destroyed.

At this point, WorkerThreadDebugger would be ready to work on Worklets, so we enable it
by flipping WorkerThread: : shouldAttachThreadDebugger () for Worklets.

	Console output support for Worklets
	Objective
	Problem
	Solution

