Adills S

[Work in progress, comments are welcomed)]

Chroma from Luma (CfL) in AV1
[Work in progress]

PVQ CfL was replaced with normal CfL. As such, this document is
superseded by

https://nbviewer.jupyter.org/github/luctrudeau/VideoExperiments/blob/master/cfl/gain/Ch
roma%20from%20Luma%20(CfL).ipynb

Background

The recent integration of PVQ into the AV1 video codec now allows for other technologies from
the Daala video codec, like Chroma from Luma (CfL), to be integrated into AV1. In Daala, PVQ,
TF and CfL are combined into PVQ-CfL, where the prediction vector used by PVQ for Chroma
coefficients is derived from the reconstructed transformed Luma coefficients.

Introduction

In this living' document, we outline the work performed so far regarding the integration of CfL
into AV1. The scope of this document is not to explain either PVQ, CfL or AV1. The aim is to
document the work accomplished and the findings resulting from the implementation. A special
attention is also given to alterations required to CfL, PVQ and AV1 in order to achieve the
integration.

To quickly access an outline of the current progress of this project the Tasks section contains a
bullet list, where the completed tasks are strikethreughed. In the General Approach section, we
describe general concepts of how CfL can be performed in AV1. There is more than one way to
implement CfL in AV1, as such, the Alternate Implementation section describes concepts related
to a specific variant. The Submitted to Gerrit section lists the current work on CfL that is under
review. The_Merged into AV1 section details the work that has been included upstream into AV1
behind an experimental flag. The Progress section describes the results and findings of the
work done so far. This information is also used to enhance the previous sections.

' Constructive comments are welcomed.
Page 1 of 17

https://nbviewer.jupyter.org/github/luctrudeau/VideoExperiments/blob/master/cfl/gain/Chroma%20from%20Luma%20(CfL).ipynb
https://nbviewer.jupyter.org/github/luctrudeau/VideoExperiments/blob/master/cfl/gain/Chroma%20from%20Luma%20(CfL).ipynb
https://tools.ietf.org/id/draft-cho-netvc-applypvq-01.html
https://people.xiph.org/~unlord/spie_cfl.pdf

[Work in progress, comments are welcomed)]

Tasks

e Prototype 1:
—DBisable ADSF

e Prototype 2:

o Add CFL_PRED as a Chroma Intra mode

o Perform DC_PRED when CFL_PRED is selected

o Generate probabilities for entropy coding of the CFL_PRED mode
e Prototype 3:

o Remove gain prediction
A 22 | scobblocksind:2:0-Cf ot
m Investigate better filters
o Support4:4:4
o Support intra in inter
e General CfL:

Page 2 of 17

Adills S

[Work in progress, comments are welcomed)]

n Experiment-with-transforms-alleowingto-apply H—merge-on-ADST
transtformed-bloeks:
—versetransform-ADSTandforwardtransfermte- DG fersterage
o Intrain Inter
m Adapt keyframe code to inter frame (currently Intra is always assumed)
m Add CfL to Intra mode decision in Inter blocks
o 4:4:4
m Adjust offsets used to compensate for Chroma subsampling
——FastFransfermfor DGPRED
—PcTDBETF

Submitted to Gerrit

fL

8603: [PVQ_CFL] Chroma prediction is average of Luma values in 4:2:0
571 [PVQ_CFL] Removed Gain Prediction

6: [PVQ_CFL] Flip bit

1: [PVQ_CFL] Replace CFL DC by DC_PRED DC

564 [PVQ_CFL] Merge CFL_CTX with cfl_ctx

1: [PVQ_CFL] CfL during RDO

: [PVQ_CFL] Disable uv_mode signaling

: PVQ_CFL Experiment flag

: Chroma from Luma (CfL) for Intra in PVQ

© O

OO|OO

~J
©
S
o

(o¢]
~
~
I\')

(08}
a1
N
o

PVQ Refactorings

8372: Replace is_keyframe with is_skip_copy in PVQ encoder
8289: Replace is_keyframe with is_skip_copy in PVQ decoder
8502: [PVQ] Don't transform if block skipped

8469: [PVQ] Stop passing NULL reference for PVQ_INFO

Merged into AV1

PVQ Refactorings

8514 (Merged as b6e94d9): Uniform way of accessing mbmi in av1_xform_quant
8130 (Merged as 9e6a960): Merging robust and nodesync in PVQ

8128 (Merged as 9a834c0): Remove frame type dependency in od_pvq_rate
8129 (Merged as 9638228). Remove H/V considerations in pvq_theta

8029 (Merged as 005feb6): Add get_plane_type() helper function.

7166 (Merged as 1c0929): Convert PVQ skip variable to enum

6911 (Merged as 472f63f): Replace Skip with AC/DC coded in PVQ

Page 3 of 17

https://aomedia-review.googlesource.com/8603
https://aomedia-review.googlesource.com/8571
https://aomedia-review.googlesource.com/8566
https://aomedia-review.googlesource.com/8511
https://aomedia-review.googlesource.com/8564
https://aomedia-review.googlesource.com/8541
https://aomedia-review.googlesource.com/7943
https://aomedia-review.googlesource.com/8442
https://aomedia-review.googlesource.com/8510
https://aomedia-review.googlesource.com/8372
https://aomedia-review.googlesource.com/8289
https://aomedia-review.googlesource.com/8502
https://aomedia-review.googlesource.com/8469
https://aomedia-review.googlesource.com/8514
https://aomedia.googlesource.com/aom/+/b6e94d9f4b47c10d5f33420953f869024c1550f1
https://aomedia-review.googlesource.com/8130
https://aomedia.googlesource.com/aom/+/9e6a96078e960e4c47437cb353aa4bbb2f8adaab
https://aomedia-review.googlesource.com/8128
https://aomedia.googlesource.com/aom/+/9a834c035b645f1bf2d6ae97a0d71254f2ed2ff9
https://aomedia-review.googlesource.com/8129
https://aomedia.googlesource.com/aom/+/9638228302231b24e65c26f4bf85791fb3a3c398
https://aomedia-review.googlesource.com/8029
https://aomedia.googlesource.com/aom/+/005feb6bcc01c931805440ce16f5416d62e7ad0d
https://aomedia-review.googlesource.com/7166
https://aomedia.googlesource.com/aom/+/e1c0929f51542e6b018b703fcd0f9e8152660620
https://aomedia-review.googlesource.com/6911
https://aomedia.googlesource.com/aom/+/472f63f4a61fb889f3c812d689ff96f99b70f95d

[Work in progress, comments are welcomed)]

General Approach

DC Prediction

CfL only applies to AC coefficients, another approach must be used to predict the DC. We
propose to use the DC_PRED? intra prediction mode. This approach offers numerous
advantages:
e Low complexity
e Already in AV1
o Hardware acceleration available (see the aom_dc_predictor NxN() functions)
DC does not require DCT (see Fast DCT for DC_PRED)
Widely known mechanism (also In VP8 and VP9)

Fast DCT for DC_PRED

The DC_PRED intra prediction mode produces fills the predicted block with a single value. Let
the get_tx_scale function return 1 if the transform size (tx_size) equals 32x32 and 0 otherwise.
For 32x32 transforms, the DC is obtained by multiplying the single value by 128. For transform
sizes smaller than 32x32, the DC is obtained by multiplying the single value by 8 * the block size
(tx_blk_size). As demonstrated in the following code snippet:

DC = pred[0] * ((get tx scale(tx size)) ? 128 : tx blk size * 8);

AC Prediction

The reconstructed Luma pixels are used as the pixel domain Chroma Intra prediction. This
approach offers numerous advantages:
e Low complexity
o Does not require TF merging
o Does not require compensating for the varying transform scaling
e Compatible with all transform type combinations found in AV1
e Better quality prediction
o No loss incurred by TF merging

When 4:2:0 Chroma subsampling is used, the Chroma pixel is the average of the 4
reconstructed Luma pixels corresponding to that Chroma pixel.

2 DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row
above A and the column to the left of L

http://blog.webmproject.org/2010/07/inside-webm-technology-vp8-intra-and.html

Page 4 of 17

http://blog.webmproject.org/2010/07/inside-webm-technology-vp8-intra-and.html

[Work in progress, comments are welcomed)]

As for the AC coefficients, they are dequantized Luma coefficients. However, the Luma
transform size and Chroma transform size can differ. In table 2, we indicate how the Chroma
prediction is built based on the offset between the Luma transform size and the Chroma
transform size.

Table 2: Chroma Prediction based on transform size offset

Case 1: The Luma transform size equals Chroma transform size

Since the 4:2:0 Chroma subsampling is used, the transform sizes are equal but the covered
region in the frame is not. The NxN Chroma transform coefficients cover a 2Nx2N region in
the Luma plane. As such, the quartet of NxN Luma blocks corresponding the 2Nx2N region

are TF merged together resulting in a 2Nx2N prediction, of which the upper left NxN
coefficients are used.

Lumma Merged Luma Predicted Chroma
e - - |® .« . . ® 2 3 4.+ o« . . e 2 3 4
5 6 T 8
N | i
I N 9 10 11 121 e e e e 5 6 7 8
. © TP Merge 13 14 151G [. . . !
—> ___________________ :
L] [] 19 10 11 12
13 14 15 16
® Luma DC
@ Chroma DC (from DC_PRED)

Case 2: The Luma transform size is greater than the Chroma transform size
Multiple small NxN Chroma transforms cover the same region as the luma transform size.
Every Chroma block in this region are predicted using the upper left NxN luma coefficients.

Page 5 of 17

Adills S

[Work in progress, comments are welcomed)]

Luma Predicted Chroma
T ®:2 34 ® 31 |@ 2 3 4
|56 7 8 —-- R - ;
Nlg 10 11 12! 5 G 7 8, |5 6 7 8 |
l 13 14 15 16, -

. Luma DC
¢ Chroma DC (from DC_PRED)

Case 3: The Luma transform size is less than the Chroma transform size

The Luma transform size is NxN but the Chroma transform size is CxC, where C = M x N.
Perform a TF merge on every non-overlapping 2Nx2N quartet of NxN luma blocks. As a
results, N := 2N. Continue TF merging quartets of NxN Luma blocks until N == C. When N ==
C, perform case 1.

If PVQ determines that the AC coefficients are skipped, the AC coefficients of the Luma
Intra prediction are stored instead. To allow the decoder to compensate for the eventuality of a
late skip, the decoder stores the AC coefficients of the Luma Intra prediction even when the
block is skipped. When noref is used, the dequantized AC coefficients are zeroed out.

When RDO is performed on the encoder side, multiple Luma modes and transform sizes
are tested followed by Chroma modes and transform sizes. An extra PVQ encode is required
between the Luma and Chroma plane RDO. This extra PVQ encode allows CfL to store the
dequantized luma coefficients with the best encoding parameters.

Assumptions

e Luma intra modes may not be reused for Chroma Intra prediction.
e AV1’s experimental rectangular transforms are disabled.

Uncertainties

e Skipping
o Special skipping for CfL that also manages gain signaling (see with jmspeex)

Page 6 of 17

[Work in progress, comments are welcomed)]

Alternate Implementations

Prototype 1 (CfL Always on):

The Intra prediction mode DC_PRED is always used to predict the DC coefficients for Chroma
Intra blocks. Therefore, the Chroma Intra prediction mode is no longer signaled in the bitstream.

Status

As shown here, TF is not compatible with the ADST. As such, when a transform type other than
DCTxDCT is selected, we must perform the inverse transform and a forward DCT transform.

The current BD-Rate of this prototype is

AV1 (master, with PVQ) vs CFL (with RDO, Slow ADST support)
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

0.7153 | -3.8530 | -1.2560 | 0.6849 | 0.7341 | 0.6705 | -0.3704
https://arewecompressedyet.com/?job=av1_master pvg%402017-01-27T03%3A26%3A26.934Z&job=CfL._RD0O%402017-02-01T18%3A50%3A05.719Z

Further research is required to allow TF when ADST is used, either by adapting TF to the ADST
or converting the ADST to DCT.

Approach

The Intra prediction mode for Chroma is always DC_PRED. As such, we remove the
Chroma Intra prediction mode from the Intra block mode info syntax. The resulting syntax is
described in table 1.

Table1: Intra block mode info syntax (adapted from the VP9 spec)

intra block mode info() { Type
ref frame[0] = INTRA FRAME
ref frame[1] = NONE

if (MiSize >= BLOCK 8X8) {

intra mode T

y mode = intra mode

for(b = 0; b < 4; b++)

sub modes[b] = y mode

} else {

Page 7 of 17

https://arewecompressedyet.com/?job=av1_master_pvq%402017-01-27T03%3A26%3A26.934Z&job=CfL_RDO%402017-02-01T18%3A50%3A05.719Z

[Work in progress, comments are welcomed)]

num4x4 w = num 4x4 blocks wide lookup[MiSize]

num4x4h = num 4x4 blocks high lookup[MiSize]

for(idy = 0; idy < 2; idy += numédx4h) {

for (idx = 0; idx < 2; 1idx += numédx4w)

sub_intra mode

for (y2 = 0; y2 < numédx4h; y2++)

for(x2 = 0; x2 < numidxdw; x2++)

sub modes[(idy+y2) * 2 + idx + x2]

sub_intra mode

}

y mode = sub_ intra mode

}

uv mode = DC PRED

As shown here, TF is not compatible with the ADST. As such, when a transform type other than
DCTxDCT is selected, we must perform the inverse transform and a forward DCT transform
before storing the coefficient. This way only DCTxDCT transformed coefficients are used for
CfL. This also requires that the transform type for Chroma be DCTxDCT.

Prototype 2 (CfL as a Chroma Intra Prediction Mode):

An extra Intra prediction mode CFL_PRED is added to Chroma Intra prediction. When this
mode is chosen the prediction is built using DC_PRED and CfL is used to populate the ACs

when the PVQ function is invoked.

Status

Work as started on adding the CFL_PRED mode. However, managing all the probabilities
required for entropy coding is complicated. Used dummy probabilities to start but the whole

thing segfaults. *** DEBUGGING ***

Page 8 of 17

Adills S

[Work in progress, comments are welcomed)]

Prototype 3 (Spatial Prediction)

In this prototype the CfL prediction is in the pixel domain prediction instead of the frequency
domain prediction. In the context of AV1, a CfL prediction in the pixel domain is simpler to
implement and to maintain and also results in a better rate-distortion ratio.

The reason for the later is that the transform size between Chroma and Luma may be
considerably different. This requires multiple TF merge operations resulting in error propagation
in the frequency domain prediction.

In the pixel domain, TF is not needed as adjacent pixel can be concatenated in order to produce
a prediction of the desired size. Concatenation of adjacent pixel values does not add error to the
prediction.

In Daala, the motivation for TF is that predictions were already in the frequency domain. This is
not the case for AV1. Since PVQ in AV1 already requires that spatial predictions be transformed
into the frequency domain, we argue that, when combined with PVQ, pixel domain CfL does not
incur any supplemental transform operations with the added benefit of not adding error to the
prediction.

Another benefit of this approach is that it facilitates compatibility with the multiple transform
types, transform scales, transform shapes and transform sizes found in AV1.

Status

Work has begun in porting prototype 1 to produce a pixel domain prediction.

Page 9 of 17

[Work in progress, comments are welcomed)]

Progress

Establishing a baseline

In Disable ADST, we modify AV1 to remove ADST, all blocks are transformed using DCT_DCT.
This will serve as our baseline for development. Transform type signaling is not removed as
ADST support will be added later on.

A configure flag named dct_only is added to build AV1 using only the DCT. Asserts are added to
both the encoder and decoder to validate the only DCT is used.

The BD-Rates of AV1 and AV1 without ADST for subset1 are as follows:

AV1 vs AV1 without ADST
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

3.9636 | 2.9882 | 2.9406 | 3.3386 | 3.8011 | 3.7404 | 3.3981
https://arewecompressedyet.com/?job=avl _master pvq%402016-12-23&{ob=DCT only%402016-12-23T14%3A59%3A21.4437

Preparing for CfL

In Remove Chroma Intra, we remove Chroma Intra prediction signaling in the bitstream and
force the use of DC_PRED.

A configure flag named cfl is added to build AV1 using DC_PRED only (and other CfL features
in later releases). Asserts are added to both the encoder and decoder to validate the only
DC_PRED is used.

The resulting BD-Rates for subset1 are as follows:

AV1 without ADST vs Removing Chroma Intra signaling
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

1.5922 | 2.4575 | 3.7760 | 1.6213 | 1.5675 | 1.5131 | 2.2787
https://arewecompressedyet.com/?job=Remove Chroma_Intra Pred%402016-12-23&job=DCT _only%402016-12-23T14%3A59%3A21.443Z

Page 10 of 17

https://github.com/luctrudeau/aom/tree/Disable_ADST
https://arewecompressedyet.com/?job=av1_master_pvq%402016-12-23&job=DCT_only%402016-12-23T14%3A59%3A21.443Z
https://github.com/luctrudeau/aom/tree/Remove_Chroma_Intra
https://arewecompressedyet.com/?job=Remove_Chroma_Intra_Pred%402016-12-23&job=DCT_only%402016-12-23T14%3A59%3A21.443Z

Adills S

[Work in progress, comments are welcomed)]

Enable key frames

In Remove Gain Prediction, we remove gain prediction for the Chroma planes. To do so, we
enable the keyframe variable in PVQ. However, we disable PVQ features like CfL and skipping
the DC.

Enabling keyframe code also enables skip zero, which zeros out the prediction when quantized
gain is 0.

The resulting BD-Rates for subset1 are as follows:

Removing Chroma Intra signaling vs Removing gain prediction
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000
-0.0193 | 0.2353 | 0.0368 | —o 0117 | —o 0125 | —0 0150 | 0.0574

CfL Flip Bit

In Elip Bit, we signal a flip bit to indicate whether to flip the sign of the AC coefficients. Checks
are made to ensure that flipping does not occur during RDO as CfL is not currently applied
during RDO.

When CfL is enabled, the dot product of the CfL prediction and the reference is measured this
allows to determine if flipping the sign of the prediction results in a better prediction than using
the original prediction.

Barebone CfL vs CfL with bit flipping
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000
-0. 7497 | —5 5682 | -3. 4322 | -0. 6781 | —o 7819 | -0.7453 | -2.3553

Page 11 of 17

https://github.com/luctrudeau/aom/tree/Remove_Gain_Prediction
https://arewecompressedyet.com/?job=Remove_Chroma_Intra_Pred%402016-12-23&job=No_Chroma_No_Gain%402017-01-09T20%3A53%3A17.436Z
https://github.com/luctrudeau/aom/tree/Flip_Bit
https://arewecompressedyet.com/?job=Barebone-CfL%402017-01-10T16%3A30%3A48.410Z&job=CfL-FlipBit%402017-01-10T19%3A21%3A31.742Z

Adills S

[Work in progress, comments are welcomed)]

CfL

In Barebone CfL, we replace the AC coefficients of the forced DC_PRED prediction of Chroma
Intra blocks with the AC coefficients of the dequantized transformed luma coefficients.

The resulting BD-Rates are as follows:

Removing gain prediction vs Barebone-CfL

¥ 03 a4 (5] EX) [3) 98 (3] 1

PSNR Cr: (A) removing gain prediction (C) Barebone-CfL

PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

-0.2032 | -1.3154 | -2.2157 | =-0.2731 | -0.2246 | -0.2454 | -0.4316
https://arewecompressedyet.com/?job=No_Chroma No_Gain%402017-01-09T20%3A53%3A17.436Z&job=Barebone-CflL. %402017-01-10T14%3A41%3A08.607Z

Barebone-Cfl with and without gain prediction

[8 [i] 07 [[1 1

CIEDE 2000: (B) Barebone-CfL with gain prediction, (C) Barebone-CfL without gain prediction
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

-7.8430 | -5.1001 | -5.2241 | -8.2927 | -7.8688 | -7.9671 | -7.5249
https://arewecompressedyet.com/?job=Barebone-Cfl %402017-01-06T18%3A46%3A12.624Z&job=Barebone-Cfl %402017-01-10T14%3A41%3A08.607Z

Page 12 of 17

https://github.com/luctrudeau/aom/tree/Barebone_CfL
https://arewecompressedyet.com/?job=No_Chroma_No_Gain%402017-01-09T20%3A53%3A17.436Z&job=Barebone-CfL%402017-01-10T14%3A41%3A08.607Z
https://arewecompressedyet.com/?job=Barebone-CfL%402017-01-06T18%3A46%3A12.624Z&job=Barebone-CfL%402017-01-10T14%3A41%3A08.607Z

Al S

[Work in progress, comments are welcomed]

AV1 Without ADST vs CFL with bit flipping

[(5 [[[[[[1

PSNR Cb: (B) AV1 without ADST, (C) CfL with bit flipping
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

0.6084 | -4.4272 | -2.0530 | 0.6673 | 0.5464 | 0.5234 | -0.5253
https://arewecompressedyet.com/2job=DCT_only%402016-12-23T14%3A59%3A21.4437&iob=Cfl-FlipBit%402017-01-10T19%3A21%3A31.742Z

Page 13 of 17

https://arewecompressedyet.com/?job=DCT_only%402016-12-23T14%3A59%3A21.443Z&job=CfL-FlipBit%402017-01-10T19%3A21%3A31.742Z

Adills S

[Work in progress, comments are welcomed)]

CfL is performed every time PVQ is called for Chroma

To add CfL in RDO section of AV1 an extra PVQ encode is required. This PVQ encode is
performed after all Luma intra modes have been tested, but before Chroma intra modes are
tested. The PVQ encode uses the best Luma Intra mode and stores the dequantized Luma
coefficient as prediction for Chroma during Chroma Intra mode testing.

The buffer used to store the CfL prediction is now zeroed out when on the first luma store of a
partition. It was discovered that certain edge condition caused stale memory reads. Zeroing out
these value solves this problem.

The BD-Rates of AV1 without ADST and CfL (with RDO) for subset1 are as follows:
AV1 Without ADST vs CFL (with RDO)

PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000
0.4033 | -5.7431 | -3.0341 | 0.3989 | 0.3933 | 0.3254 | -1.1425
https://arewecompressedyet.com/290b=DCT onlvy$402016-12-23T14%3A59%3A21.4437&70b=CfT,_RDO%402017-01-20T17%3A26%3A01.8512

Page 14 of 17

https://arewecompressedyet.com/?job=DCT_only%402016-12-23T14%3A59%3A21.443Z&job=CfL_RDO%402017-01-20T17%3A26%3A01.851Z

[Work in progress, comments are welcomed]

ADST and TF

In this experiment, we transformed blocks using AV1’s ADST and TF-merged 2Nx2N quartets of
NxN blocks. It can be seen from the following image that ADST and TF are not compatible.
More research is required to determine if an approximation is possible in order to allow TF on
ADST or convert the ADST to a DCT.

TF and ADST

DCT -> TF -> iDCT
4x4 -> 8x8

ADST -> TF -> ADST
4x4 -> 8x8

Ty rrry.

ICEIE AL L LR EEEREEE RS E R
I EEEL AR R EEEREEE R L LT

YA AL LR LR ERERERE RS S SR T
IRERL AL LR LR LR LR R R R RS RS RSB LD
IR AL LR LR LR SR DESREENED

-
v
IRAAAAAAARASPE
T rrrrrrs
IEEEEEEEEEEY)T

Iy rr

LLLLL oL L L &

EEREAAE S D

ity G

Ll AEBEEEREER R AR AR RIS SRS
IEEEEE A TELESEE RIS E RS LR L LS DS

ADST -> TF -> iDCT
4x4 -> 8x8

DCT -> TF -> iDCT
8x8 -> 16x16

ADST -> TF -> ADST
8x8 -> 16x16

IﬂﬂJﬂﬂﬂ
12444442
14422
14442
14444

1944

a4 J
184444y JDEJJ,"E')JJJJJ
g Wadaaaaadddd

ad

ADST -> TF -> IiDCT
8x8 -> 16x16

DCT -> TF -> iDCT
16x16 -> 32x32

/ﬂJJ " vﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ).)

ADST -> TF -> ADST
16x16 -> 32x32

ADST -> TF -> iDCT
16x16 -> 32x32

Page 15 of 17

https://github.com/luctrudeau/VideoExperiments/tree/master/tf/adst

Adills S

[Work in progress, comments are welcomed)]

Fast DCT for DC_PRED
As explained here, the DC of a DC_PRED prediction can be computed using Y = 128 xofor
32x32 blocks and Y0 =8N xOfor smaller block sizes. In DC_PRED, we implement this approach

in AV1 master and obtain the following results

AV1 master vs Fast DCT for DC_PRED
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000
0.1266 | 0.0056 | -0.0100 | 0.1836 | 0.1733 | 0.1642 | 0.0992
nttps://arewe d jo pvVa %4 -01- 03%3A26%3A 47&job=Fa | Q Q PRED%4 -01- A38

23A32%3A38

om/?

This regression is caused by two factors:
1. Bias is added to the forward transform, to reduce the rounding error. However, the
resulting transform does not have all ACs at zero all the time for DC_PRED.

2. AV1 applies a %scaling factor to the DC. This is done by multiplying by cos(%)to the

DC which results in rounding error. This rounding error is compounded in a 2D DCT as
this scaling factor is performed with on the DC.

Fixing the DC Rounding Error

Rounding error on the DC should be limited to the rounding error of%since (%)2 = =.In

@ z
FIX_DC, we compute a separate DC which is scaled by %and we replace the DC of the 2D
DCT with it. FIX_DC is implemented in AV1 master and the following BD-Rate is obtained

AV1 master vs Fix Rounding Error on DC
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000
0.0129 | 0.0085 | -0.1475 | 0.0592 | 0.0220 | 0.0518 | -0.0122
hitps://arewecompressedyet.com/?2jo master_pvg%a4 -0]- A26%3A &job=D - V 4

------ 934 ob o) %4 =0 0%3A48%3A09.0

Fixing the DC causes a slight regression. Best guess for now is that the rounding error on the
DC acts like a quantizer... To be continued.

Page 16 of 17

https://github.com/luctrudeau/aom/tree/DC_PRED
https://arewecompressedyet.com/?job=av1_master_pvq%402017-01-27T03%3A26%3A26.934Z&job=Fast_Transform_For_DCPRED%402017-01-27T13%3A32%3A38.574Z
https://aomedia.googlesource.com/aom/+/d803cb96d9576ec9260dd9609c01e77ddf86e9ca/aom_dsp/x86/fwd_txfm_impl_sse2.h#110
https://aomedia.googlesource.com/aom/+/d803cb96d9576ec9260dd9609c01e77ddf86e9ca/aom_dsp/x86/fwd_txfm_impl_sse2.h#110
https://aomedia.googlesource.com/aom/+/d803cb96d9576ec9260dd9609c01e77ddf86e9ca/aom_dsp/x86/fwd_txfm_impl_sse2.h#110
https://github.com/luctrudeau/aom/tree/FIX_DC
https://arewecompressedyet.com/?job=av1_master_pvq%402017-01-27T03%3A26%3A26.934Z&job=DCT_DC_plus1%402017-01-31T20%3A48%3A09.043Z

Adills S

[Work in progress, comments are welcomed)]

Slow ADST support

In Slow ADST, when a transform type other than DCTxDCT is chosen, we perform the inverse
transform and forward DCTxDCT before storing the coefficient. This way, the stored transformed
Luma coefficients are always transformed with the DCTxDCT. As for the Chroma transform, it
remains an implicit DCTxDCT.

AV1 (master, with PVQ) vs CFL (with RDO, Slow ADST support)
PSNR | PSNR Cb | PSNR Cr | PSNR HVS | SSIM | MS SSIM | CIEDE 2000

0.7153 | -3.8530 | -1.2560 | 0.6849 | 0.7341 | 0.6705 | -0.3704
https://arewecompressedyet.com/?job=av1_master pvg%402017-01-27T03%3A26%3A26.934Z&job=CfL._RD0O%402017-02-01T18%3A50%3A05.719Z

Converting from ADST to DCTxDCT

Since we know that we will perform an inverse ADST (iADST) and a forward DCT (fDCT) we
can combine both transform into a single transform. The motivation is that, once combined, it
might be possible to factor out some parts of these functions.

In AV1, the 1D transforms can be mixed together to form 2D transforms resulting in the following
2D transforms: ADSTxADST, ADSTxDCT, DCTxADST and DCTxDCT. Let ADST_2 DCT be a
transform that perform both an iIADST and a fDCT, the following table show the steps required to
go from a given transform type to the DCTxDCT.

Tx type Step 1 Step 2 Step 3
ADSTXADST iIADST ADST_2_DCT fDCT
ADSTxDCT iDCT ADST_2 _DCT fDCT
DCTxADST ADST_2 DCT
DCTxDCT

In the following experiment, we show that compared to the combined number of operations of
the iIADST and fDCT, combining them allows to remove about 20% of those operations.

Further up work is needed on this experiment, as Unlord indicated the for planar rotations can
be achieved using 3 multiplies instead of 4.

Page 17 of 17

https://github.com/luctrudeau/aom/tree/Slow_ADST
https://arewecompressedyet.com/?job=av1_master_pvq%402017-01-27T03%3A26%3A26.934Z&job=CfL_RDO%402017-02-01T18%3A50%3A05.719Z
https://github.com/luctrudeau/VideoExperiments/tree/master/adst/adst2dct

	Chroma from Luma (CfL) in AV1​[Work in progress]
	PVQ CfL was replaced with normal CfL. As such, this document is superseded by https://nbviewer.jupyter.org/github/luctrudeau/VideoExperiments/blob/master/cfl/gain/Chroma%20from%20Luma%20(CfL).ipynb
	Background
	Introduction
	Tasks
	Submitted to Gerrit
	Merged into AV1
	General Approach
	DC Prediction
	Fast DCT for DC_PRED

	AC Prediction
	Assumptions
	Uncertainties

	Alternate Implementations
	Prototype 1 (CfL Always on):
	Status
	Approach

	Prototype 2 (CfL as a Chroma Intra Prediction Mode):
	
	
	Prototype 3 (Spatial Prediction)
	Status
	
	
	Progress
	Establishing a baseline
	Preparing for CfL
	
	
	Enable key frames
	 CfL Flip Bit
	
	
	CfL
	CfL is performed every time PVQ is called for Chroma
	
	
	ADST and TF
	
	
	Fast DCT for DC_PRED
	Fixing the DC Rounding Error

	
	
	Slow ADST support
	Converting from ADST to DCTxDCT

