21129-01 미분방정식

[공지사항]

교수 오피스: 3113호

상담: 053)580-5346으로 전화 후 시간 조율하고 에드워드에서 상담 신청 후 방문

교재: https://product.kyobobook.co.kr/detail/S000001529021

오픈톡방: https://open.kakao.com/o/g1QYKnVe

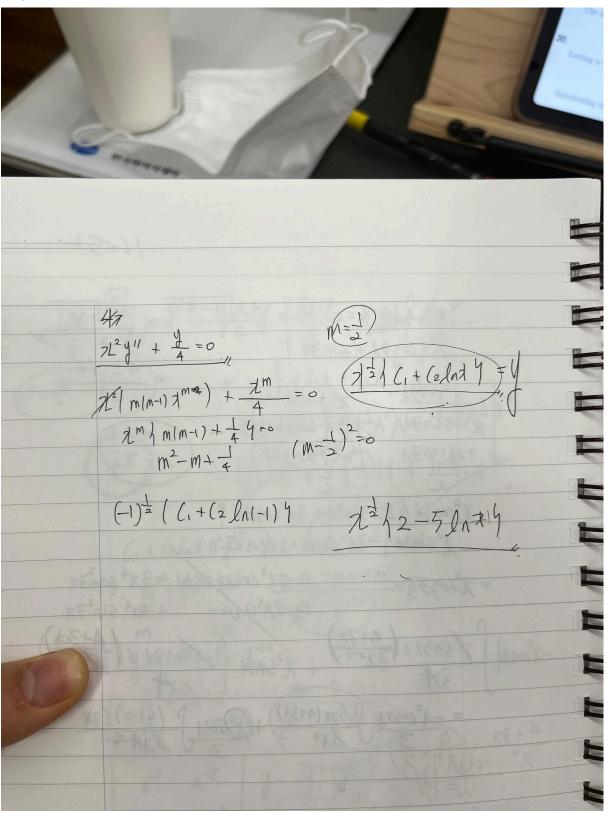
교수와 1:1 톡방:

https://open.kakao.com/o/sYxqB0gd

스마트출석앱: https://attendapp.kmu.ac.kr/

EEPSE 사이트: https://sites.google.com/view/ycahn/lectures-qa

그래프 그리기: https://www.desmos.com/calculator/ifg3mwmqun?lang=ko


강의 계획

	월	호	수	목	금	Chap 1
	26일	27일	28일	29일	30일	1.1 정의와 용어
12월		9	18	27	36	정의 1.1 미분방정식 (p.5)
12 월	3	12	21	30	39	정의 1.2 상미분방정식의 해 (p.8)
	6	5 15	24	33	42	정의 1.3 상미분방정식의 음함수 해 (p.
	2일	3일	4일	5일	6일	1.2 초기값 문제 (p.18)
	45	51	60	69	78	1.3 방정식의 기하학적 의미
	48	54	63	72	81	1.3.1 방향장 (p.21)
	시험1	57				1.3.2 자율 1계 미분방정식 (p.28)
1월	9일	10일	11일	12일	13일	1.4 변수분리 (p.35)
12	87	93	102	111	120	1.5 선형방정식 (p.50)
	90	96	105	114	123	1.6 완전방정식 (p.61)
	시험2	99	108	117	126	1.7 대입법 (p.67)
	16일					
	시험3					Chap 2
						2.1 예비이론: 선형방정식
						2.1.1 초기값 및 경계값 문제 (p. 71)
						2.1.2 제차방정식 (p. 80)
						2.1.3 비제차방정식 (p. 83)
						2.2 계수 낮추기 (p. 86)
						2.3 상수계수의 제차 선형방정식 (p. 94)
						2.4 미정계수법 (p. 108)
						2.5 매개변수 변화법 (p. 116)
						2.6 Cauchy-Euler 방정식 (p. 125)

[질문사항]

- 무기명 사용가능
- 날짜 입력 요망

1/15

p100 19번 문제

Y를 정확하게 구해서 초깃값을 대입해야 하는데 lnx 때문에 x에 -1을 넣을 수가 없습니다.. 저가 잘못 풀었다는 생각은 안들어서.. 질문드립니다

1/14 p95 4,5번은 답변을 6,,7,8,9번은 풀이 유튜브 링크 올려 주실수 있으신가요?

문제 1~9에서는 각각의 미분방정식을 매개변수 변화법 풀어라. 1. $y''+y=\sec x$ 2. $y''+y=\sin x$ 3. $y''+y=\cos^2 x$ 4. $y''-y=\cosh x$ 5. $y''-4y=\frac{e^{2x}}{x}$ 6. $y''+3y'+2y=\frac{1}{1+e^x}$ 7. $y''+3y'+2y=\sin e^x$ 8. $y''+2y'+y=e^{-t}\ln t$ 9. $3y''-6y'+6y=e^x\sec x$

4번을 푸는데

	A A A A
4.	y"-y=coshx y"-y=0 -ym2-1=0 m,,==±1 /c=c1ex+62e2 y1=ex, 1/2=e2
	$g(x) = \cosh x$ $w = \begin{vmatrix} e^{-x} & e^{x} \\ -e^{-x} & e^{x} \end{vmatrix} = 2$ $w_1 = \begin{vmatrix} o & e^{x} \\ \cos hx & e^{x} \end{vmatrix} = -e^{x} \cosh x$ $w_2 = \begin{vmatrix} e^{x} & e^{x} \\ -e^{x} & \cos hx \end{vmatrix} = e^{x} \cosh x$
	$U_1 = -\frac{1}{2} e^{x} \cosh x$ $U_2 = \frac{1}{2} e^{-x} \cosh x$

적분하는 방법을 몰라서 그런데 풀이를 올려주실수 있으신가요? 적분하는 방법을 몰라서 한번 미정계수법으로도 풀어봤는데 yc가 C1e^(-x)+C2e^x인데 yp를 Acoshx + Bsinhx 가 아니라 Axcoshx + Bxsinhx꼴로 푸니까 답지의 답이랑 동일 하더군요 왜 그런지도 설명해주실 수 있으신가요?

5번

5.	Y"-4y=x=e2x -7 m2-41=0 /= (1e2x+c2e2x g(x)=x=e2x y1=e2x y2=e2x)
	$W = \begin{vmatrix} e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} - 4 W = \begin{vmatrix} 0 & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} - \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & 0 \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2x} & e^{2x} & e^{2x} \\ 2e^{2x} & 2e^{2x} \end{vmatrix} = \chi \begin{vmatrix} e^{2$
	$U_1 = \frac{1}{4}x^{-1}b^{4x}$ $U_2 = \frac{1}{4}x^{-1}$

u1 적분을 어떻게 해야 하는지 모르겠습니다. 그리고 과정중에 문제점 있으면 조언 부탁드립니다.

6,7,8,9는 풀이 영상을 올려주실수 있으신가요?

P90의 9번

2.
$$y'' - 10y + 25y$$

3.
$$\frac{1}{4}y'' + y' + y = x^2 - 2x$$

$$4. \quad y'' + 3y = -48x^2e^{3x}$$

5.
$$y''-y'=-3$$

6.
$$y'' - y' + \frac{1}{4}y = 3 + e^{x/2}$$

7.
$$y'' + 4y = 3 \sin 2x$$

8.
$$y'' + y = 2x \sin x$$

9.
$$y''-2y'+5y=e^x\cos 2x$$

10.
$$y'' + 2y' + y = \sin x + 3 \cos 2x$$

11.
$$y'''-6y''=3-\cos x$$

12.
$$y'''-3y''+3y'-y=x-4e^x$$

13.
$$y^{(4)} + 2y'' + y = (x-1)^2$$

문제 14~18에서는 주어진 초기값 문제

14.
$$y'' + 4y = -2$$
, $y(\frac{\pi}{8}) = \frac{1}{2}$, $y'(\frac{\pi}{8}) = 2$

가정한 특수해를 미분해야되는데 (Axe^xcos2x)+(Bxe^xsin2x) 미분하는 과정을 잘 모르겠습니다

12. $x^2y'' + xy' - y = \ln x$

12	x" +xy -y=1nx x"y"+xy-y=0-> m2-1=0-> m=±1 /==(1x"+6xx
	xy"+xy'-y= nx+y"+x"-y"-x"y=x" nx f(x)=x"1/nx y=x" /2=x
	$W = \begin{vmatrix} x^{-1} & x \\ +x^{-2} & 1 \end{vmatrix} = \frac{x^{-1} + x^{-1} - 2x^{-1}}{x^{-1} \ln x} = \begin{vmatrix} x & 0 \\ -x^{-1} & 1 \end{vmatrix} = \frac{x^{-1} \ln x}{x^{-1} \ln x} = \frac{x^{-1}$
	$u'_1 = \frac{1}{2} \ln x$ $u'_2 = \frac{1}{2} x^2 \ln x$ $u_1 = \frac{1}{2} (3x^2 \ln x - x^3)$ $y_2 = \frac{1}{2} x^2 + \frac{1}{18} (3x^2 \ln x - x^4)$
	$y = y_c + y_p = c_1 x^{-1} + c_2 x^{-\frac{11}{2}} x^{-\frac{11}{2}} + \frac{1}{18} (3x^3 \ln x - x^4)$

답지의 yp는 -lnx인데 전 (½)x^(-2)+(1/18)*(3x^3lnx - x4)가 나오는데 답지가 틀린건가요 제가 틀린건가요? 제가 틀렸으면 뭐가 틀렸는지 알려주실 수 있으신가요?

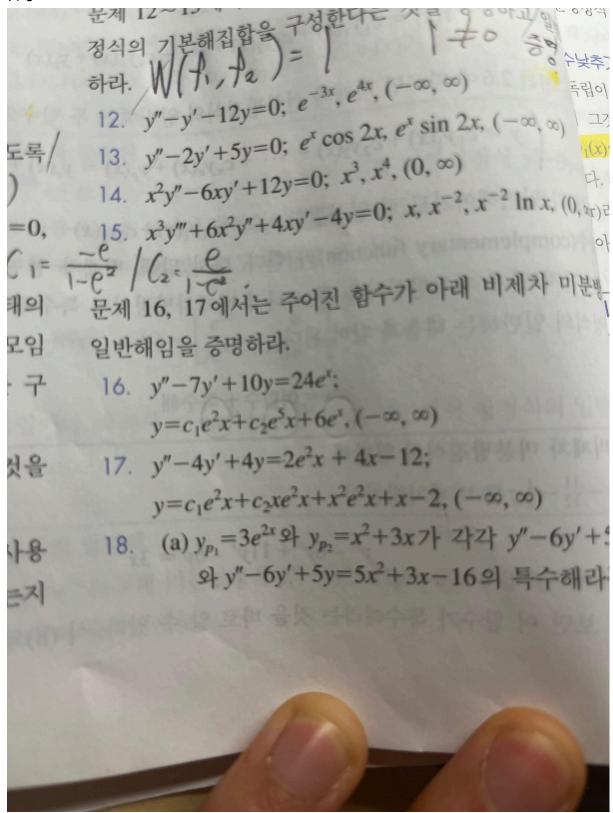
u'1과 u'2에서 u1, u2로 적분하는 과정이 틀렸습니다.

아래의 공식을 사용하여 수정하시면 yp=-Inx로 나옵니다.

자세한 풀이과정은 https://www.youtube.com/watch?v=jG1YjD2ac8c 를 참고해주세요!

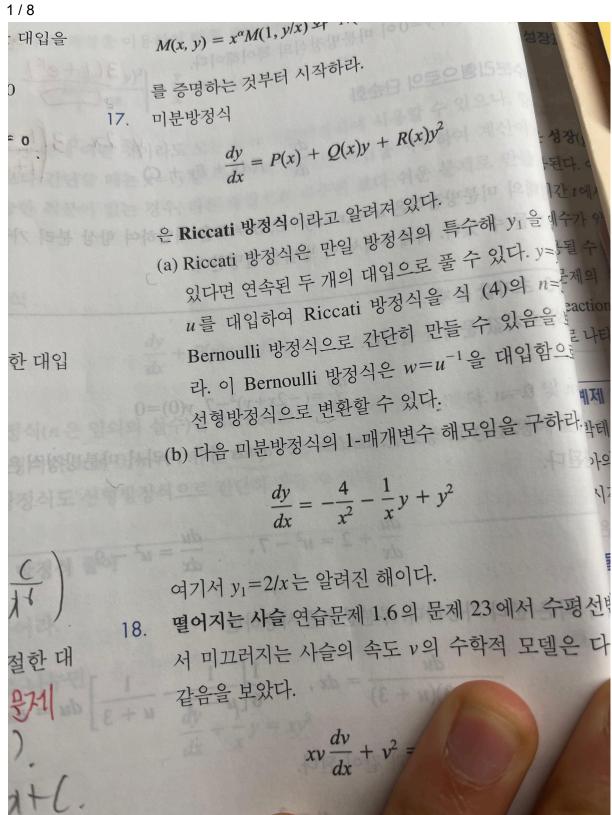
$$8. \quad y'' + y = 2x \sin x$$

9.
$$y'' - 2y' + 5y = e^x \cos 2x$$


10.
$$y'' + 2y' + y = \sin x + 3 \cos 2x$$

8	Y"+y=2xsinx y"+y=0 + m2+1=0 mb2=±i x=c,cosx+csinx
	9(x)=2x5inx /p=(Ax+B)(65x+cx+D)sinx
	Yp'= -(AX+B)sinX+((X+D)cosx +Acosx +csinx
	1/2" = - (AX+B)(OSX-(OX+D)sinx-ACOSX-CSinx-Asinx+(COSX
	$Y_p'' + Y_p = ((-A)(\cos x - (C+A)\sin x))$

yc는 C1cosx+C2sinx, yp는-(½)x^2*cosx +(½)x*sinx가 나오는데 그러면 yp를 (Ax+B)xcosx + (Cx+D)xsinx로 가정을 해야 한다는 건데 g(x)=2xsinx이므로 (Ax+B)cosx + (Cx+D)sinx로 나타 내야하는거 아닌가요? 이미 1차함수를 곱해서 yp가 yc랑 겹치지 않으니까요...


-> yp를 풀게되면 Axcosx + Bcosx + Cxsinx + Dsinx로 나타내는데 이때 Bcosx와 Dsinx가 중복되게 됩니다(yc의 C1cox와 C2sinx). 그래서 x를 한번더 곱해주어 (Ax+B)xcosx + (Cx+D)xsinx로 가정하게되면 중복되는 경우가 사라지게 됩니다.

자세한 풀이는 https://www.youtube.com/watch?v=LMQlg5g9XKI&t=92s 를 참고해 주세요!

p74 연습문제 16번 일반해를 보면 (지수를 표현할 줄 몰라서 f로 할게요)c1 f1 +c2 f2 + 6e ~ 이렇게 구성되는데 f1 과 f2가 종속이지 않나요??? 근데 이렇게 독립적으로 표현가능항가요?

The functions $y_1 = e^{2x}$ and $y_2 = e^{5x}$ form a fundamental set of solutions of the associated homogeneous equation, and $y_p = 6e^x$ is a particular solution of the nonhomogeneous equation.

P46

17번에 (b) 답지가 없는데 답이랑 풀이과정이 궁금합니다!

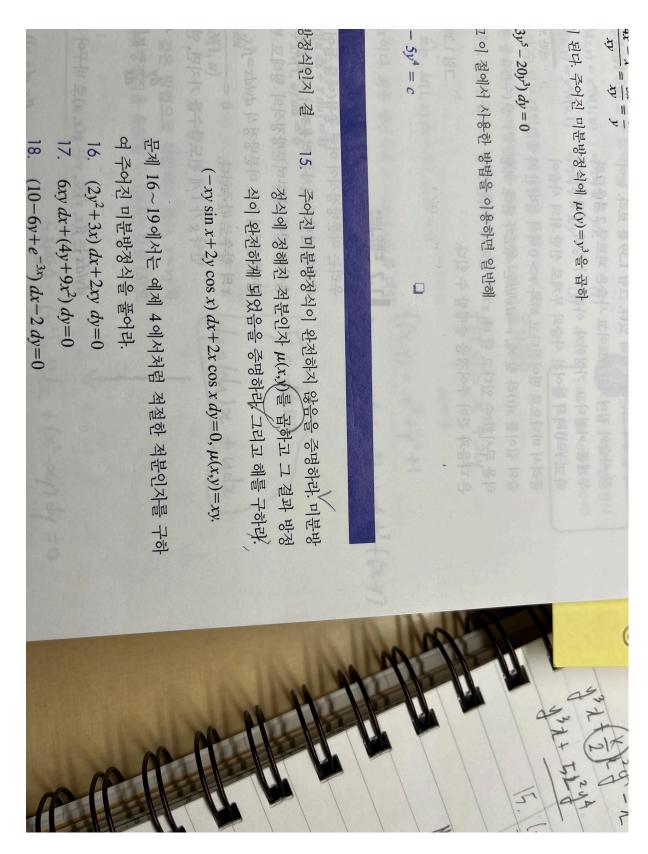
(a) The substitutions $y = y_1 + u$ and

$$\frac{dy}{dx} = \frac{dy_1}{dx} + \frac{du}{dx}$$

lead to

$$\frac{dy_1}{dx} + \frac{du}{dx} = P + Q(y_1 + u) + R(y_1 + u)^2$$
$$= P + Qy_1 + Ry_1^2 + Qu + 2y_1Ru + Ru^2$$

or


$$\frac{du}{dx} - (Q + 2y_1R)u = Ru^2.$$

 $\frac{du}{dx}-(Q+2y_1R)u=Ru^2.$ This is a Bernoulli equation with n=2 which can be reduced to the linear equation

$$\frac{dw}{dx} + (Q + 2y_1R)w = -R$$

by the substitution $w = u^{-1}$.

(b) Identify $P(x) = -4/x^2$, Q(x) = -1/x, and R(x) = 1. Then $\frac{dw}{dx} + \left(-\frac{1}{x} + \frac{4}{x}\right)w = -1$. An integrating factor is x^3 so that $x^3w = -\frac{1}{4}x^4 + c$ or $u = \left[-\frac{1}{4}x + cx^{-3}\right]^{-1}$. Thus, $y = \frac{2}{x} + u$.

P 41 연습문제 1.6 에 15번 문제인데요.

저는 이 미분방정식이 불완전하다는 것은 알게 되었는데 적분인자를 구했는데 답지와 계속 다르게 나와서 적분인자

를 구하는 과정을 보고 싶습니다..

Let $M = -x^2y^2\sin x + 2xy^2\cos x$ and $N = 2x^2y\cos x$ so that $M_y = -2x^2y\sin x + 4xy\cos x = N_x$. From $f_y = 2x^2y\cos x$ we obtain $f = x^2y^2\cos x + h(y), h'(y) = 0$, and h(y) = 0. A solution of the differential equation is $x^2y^2\cos x = c$.

1/7

문제 9, 10에서 지정된 함수 $y_1(x)$ 는 연계 제차방정식의 한 해 이다. 비제차방정식의 일반해를 구하라.

9.
$$y''-4y=2$$
;

$$y_1 = e^{-2x}$$

10.
$$y'' - 3y' + 2y = 5e^{3x}$$
; $y_1 = e^x$

$$y_1 = e^x$$

9번과 10번에 y"+P(x)y'+Q(x)y=0꼴이 아닌 y"+P(x)y'+Q(x)y=c꼴이고 y1값이 주어줬을 때 이 경우는y2를 y"+P(x)y'+Q(x)y=0로 가정을 하고 푸는것을 알게 되었습니다. 일반해를 구하려면 yp를 알아야하는데 yp는 어떻게 구하나요?

대입법으로 문제를 푸는데 어떤 경우에 y=ux, 또는 x=vy를 넣는지 잘 모르겠습니다. 예시를 들어 설명해주실 수 있나요?

9.

Define $y = u(x)e^{-2x}$ so

$$y' = -2ue^{-2x} + u'e^{-2x}, \quad y'' = u''e^{-2x} - 4u'e^{-2x} + 4ue^{-2x}$$

and

$$y'' - 4y = e^{-2x}u'' - 4e^{-2x}u' = 0$$
 or $u'' - 4u' = 0$.

If w = u' we obtain the linear first-order equation w' - 4w = 0 which has the integrating factor $e^{-4\int dx} = e^{-4x}$. Now

$$\frac{d}{dx}[e^{-4x}w] = 0 \quad \text{gives} \quad e^{-4x}w = c.$$

Therefore $w = u' = ce^{4x}$ and $u = c_1e^{4x}$. A second solution is $y_2 = e^{-2x}e^{4x} = e^{2x}$. We see by observation that a particular solution is $y_p = -1/2$. The general solution is

$$y = c_1 e^{-2x} + c_2 e^{2x} - \frac{1}{2}.$$

Define $y = u(x)e^x$ so

$$y' = ue^x + u'e^x$$
, $y'' = u''e^x + 2u'e^x + ue^x$

and

$$y'' - 3y' + 2y = e^x u'' - e^x u' = 5e^{3x}.$$

If w = u' we obtain the linear first-order equation $w' - w = 5e^{2x}$ which has the integrating factor $e^{-\int dx} = e^{-x}$.

Now

$$\frac{d}{dx}[e^{-x}w] = 5e^x$$
 gives $e^{-x}w = 5e^x + c_1$.

Therefore $w = u' = 5e^{2x} + c_1e^x$ and $u = \frac{5}{2}e^{2x} + c_1e^x + c_2$. The general solution is

$$y = ue^x = \frac{5}{2}e^{3x} + c_1e^{2x} + c_2e^x.$$

1/6

오늘 수업으로 일반해하고 특수해의 차이점을 확실히 알아야한다고 판단이 되었습니다. 책으로 설명하는 일반해하고 특수해의 정의에 대해서 이해가 잘 안되는데 식을 예시로 설명을 해주실 수 있으신가요?

-> 예를들어 아래와 같은 미분방정식을 한번 푼다면

$$\frac{dy}{dx} = 2x + 3$$

아래와 같은 해를 도출할 수 있습니다.

$$y = x^2 + 3x + C$$

여기서 C는 값이 특정되지 않은 경우 입니다.

이러한 형태의 해를 일반해라고 합니다.

일반적인 형태? 정도로 이해하시면 될 것같습니다.

하지만 여기서 만약 y(1)=2 라는 초기조건이 문제에서 추가로 주어진다면

$$y(1) = 2$$

 $y(1) = 1^2 + (3 \times 1) + C = 2$
 $C = -2$

이러한 초기조건에 의해 **C**값을 특정지을 수 있습니다.

$$y = x^2 + 3x - 2$$

그렇다면 이러한 형태의 해를 구할 수 있는데 y(1)=2라는 특정 초기조건에서 C=-2이기 때문에 C값을 정해준 형태의 해를 특수해로 말할 수있습니다. 간단하게 특수해와 일반해의 차이는 초기조건이 주어진 경우로 생각하면 될 것 같습니다. (초기조건이 없는 미분방정식을 풀어서 C가 포함된 해를 구하면 일반해 초기조건이 주어진다면 C를 구할 수 있고 일반해 형태에서 이를 적용한 것이 특수해)

DIFFERENTIAL EQUATIONS

예제 1.7.1 동차 미분 방정식의 풀이

 $(x^2 + y^2)dx + (x^2 - xy)dy = 0$ 을 풀어라.

풀이과정에서 0이 적분되어 상수가 되고 이후 Inc가 된 것은 계산하기 편하게 만들기 위한 것인가요?

1/5 p46

연습문제 1.7

문제 1~7의 미분방정식은 동차 미분방정식이다. 적절한 대입을 이용해서 주어진 미분방정식을 풀어라.

2.
$$xdx + (y-2x) dy = 0$$

인데 y=ux 혹은 x=uy꼴로 바꾸어서 풀어 봤는데 값이 답지의 답 (x-y)lnlx-yl=y+ c(x-y)가 나옵니다 제가 푼 답과 많이 달라서 그런데 뭐로 치환하여 대입해서 푸나요?
-> y=ux, x=vy 두가지 방법 모두 적용하여 풀수있습니다.

x=vy를 적용한 풀이 방법은 <u>https://www.youtube.com/watch?v=nGi-GOI5ArE</u> 를 참고해주세요

7.
$$(x+ye^{y/x}) dx-xe^{y/x} dy=0, y(1)=0$$

p46 이 문제는 처음부터 어떻게 대입해야할지 감이 안옵니다. 조언을 부탁드립니다. -> y=ux로 치환하여 접근하면 될것같습니다.

https://www.youtube.com/watch?v=Cp-uZxYgBE0 를 참고해주세요!

8.
$$(x^2y^3 - \frac{1}{1+9x^2})\frac{dy}{dx} + x^3y^2 = 0$$

p41의 문제 8번입니다. M(x,y), N(x,y)꼴로 바꾸어서 푸는데 (dM/dy)와 (dN/dx)의 값이 일치하지 않는데 답지에는 답이 $(x^3)^*(y^3)$ -arctan (3^*x) =c라고 나옵니다. 이건 불완전 미분방정식인데 완전 미분방정식처럼 풀 수 있는 것입니까? 아니면 제가 (dM/dy)와 (dN/dx)의 값을 잘못 구한 걸까요?

-> https://www.youtube.com/watch?v=5EZOVJh_IHs 영상참고 하시면 도움이 될 것 같습니다. dy/dx가 아닌 dx/dy로 적용하여 푸시면 (x^3)*(y^3)-arctan(3*x)=c 답이 나옵니다. 문제 오류인 것 같습니다.

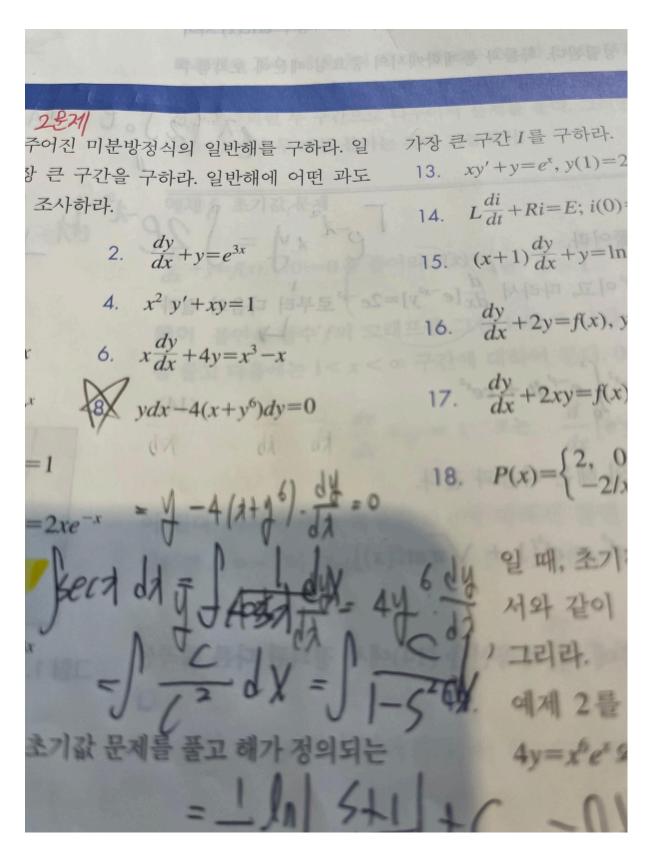
-> 이 문제에서 1/1+9x^2이 어떻게 적분되는지 설명해주실 수 있나요?

$$\int \frac{dx}{a^2+x^2} \cdot \text{OI와 같은 형태의 적분은} \int \frac{dx}{a^2+x^2} = \int \frac{1}{1+\left(\frac{x}{a}\right)^2} \frac{dx}{a^2} \cdot \text{ 로 형태를 바꿔서}$$
 적분할 수있습니다. $u=\frac{x}{a}$ 라고 둔다면 $du=\frac{dx}{a}$ 로 나타낼 수 있고
$$\int \frac{dx}{a^2+x^2} = \frac{1}{a} \int \frac{du}{1+u^2}$$

$$= \frac{1}{a} \arctan u + C$$
 최종적으로
$$= \frac{1}{a} \arctan \left(\frac{x}{a}\right) + C \cdot \text{ 와 같은 형태로 적분이 됩니다.}$$

1/(1+9x^2)에 적용한다면 분모항 1+9x^2 = 1+(3x)^2, u=3x -> du = 3dx -> du/3 = dx ∫1dx/(1+9x^2) = ∫1dx/(1+(3x)^2) = ⅓ ∫1du/(1+u^2) = ⅓ arctan(u) = ⅓ arctan(3x)

5 8.	$(x^{2}y^{3} - \frac{1}{1+9x^{2}})\frac{dy}{dx} + x^{3}y^{2} = O \rightarrow (x^{3}y^{2})dx + O^{2}y^{3} - \frac{1}{1+9x^{2}})dy = o M(x,y) = (x^{2}y^{2}) N(x,y) = (x^{2}y^{3} - \frac{1}{1+9x^{2}})$
4	$\frac{dM}{dy} = 2x^3y = \frac{dN}{dx} = (xx)^3 -$
7	
2	


1/3

4.
$$(x^2-y^2)dx+(x^2-2xy)dy=0$$

4,	$(x^2-y^2)dx+(x^2-2xy)dy=6$ $M(x,y)=(x^2-y^2)$ $N(x,y)=(x^2-2xy)$ $\frac{4}{5}x=-2y=\frac{4}{5}x$
	$f(x,y) = \int N(x,y)dy + h(x) \int N(x,y)dy = \int (x^2-2xy)dy = x^2y - xy^2$
	$h'(x) = M(x, y) - \frac{\partial}{\partial x} \int N(x, y) (y = (x^2 - 2xy) - \frac{\partial}{\partial x} [x^2y - xy^2] = (x^2 - 2xy) - (2xy - y^2) = x^2 + y^2 + 4xy$
	$h(x) = \frac{1}{3}x^3 + xxy^2 + 2x^2y + (1+(x_1y) = 3x^2y + \frac{1}{3}x^3 + (=0)$
ALZ RESERVED	

p41의 4번 문제인데 제가 푼 답과 답지의 답이 달라서 그런데 답지의 답은x*y^3+(y^2)*cos(x)-(½)x^2+c=0인데 납득이 안가서 그렇습니다. 제가 풀이가 잘못된건지 아니면 답지가 잘못된건지 알려주세요 제가 풀이가 잘못했으면 고칠점도 적어주셨으면 좋겠습니다.

- -> dN/dx의 값이 잘못되었습니다. (x^2-2xy)를 x에대해 편미분을 한다면 2x-2y이므로 -2y의 값과는 다릅니다.
- -> 그러면 완전미분방정식 형태가 아닌데 문제가 완전미분방정식형태인지 확인하고 그것의 해를 구하라인데 답지에 왜 답이 나와 있나요?

선형방정식 단원 p 34 8번 문제인데 어떻게 푸는지 잘 모르겠습니다.. 도와주세요 ㅠ

>>>

적분인자법 꼴로 바꿔주면 됩니다. dy/dx로 했을때 풀리지 않으면 dx/dy꼴로 바꿔보세용

p.8 3,4번

3.
$$\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
4.
$$(\sin\theta)y''' - (\cos\theta)y' = 2$$

선형 비선형 구분하는 문제인데 이 두 문제에서는 왜 선형이고 비선형인지 잘 모르겠습니다 >>> 3번 문제에 dy/dx가 2차 거듭제곱이기때문에 비선형입니다.

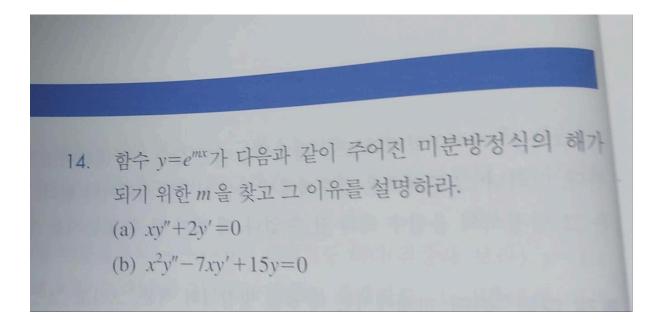
4번 문제는 y"'와 y'가 아닌 계수부분이 삼각함수로 되어있기때문에 선형이라고 할 수 있습니다!

12/31

10.
$$\frac{dy}{dx} = \frac{xy + 3x - y - 3}{xy - 2x + 4y - 8}$$

p27의 10번은 어떻게 풀어야 할지 처음부터 감이 잡히지 않습니다. 어떤 방식으로 풀어야하나요?

=> 분자항은 (y+3)으로 묶고 분모항은 (y-2)항으로 묶게 되면


dy/dx = x(y+3)-(y+3)/x(y-2)+4(y-2) dy/dx = (x-1)(y+3)/(x+4)(y-2) 으로 정리한뒤 변수분리법으로 ∫(y-2)dy/(y+3) = ∫(x-1)dx/(x+4) 풀면 됩니다.

p27의 9번을 풀고 P-P^2=ce^t꼴로 나왔는데 이것을 P= 형태로 바꾸고 싶습니다. 이것을 어떻게 해야 P=꼴로 바꿀 수 있나요?

$$9. \frac{dP}{dt} = P - P^2$$

->원본문제를 한번 올려주실래요? (https://www.youtube.com/watch?v=3ZukR6US-kM) 영상 참고하시면 도움이 되실 것 같습니다.

p8의 연습문제 1.1의 14번 문제

		mal 2	
a) (2)	$mx = -m^2$ $m^2 = 0$ $m^2 = 0$ $mx = -m^2$ $mx = -m^2$	2
Ь) 27	n=emx-nocmemx+15emx=0 x2m2-ncm=-15	

a번은 mx=-2 까지 구했으나 여기서 어떻게 m값을 도출하는지 모르겠고 b번은 식을 풀었으나 그 이후에는 어떻게 풀어야하는지 모르겠습니다. => 변수 x에 대한 언급이 따로 없으므로 m에 x를 포함시켜서 푸시면 될 것 같습니다. a는 m=0, m=-2/x 가 되고 b는 판별식을 이용해 (m-A(x))(m-B(x))=0으로 풀어 m=A(x), m=B(x)의 형태가 됩니다.

12/28

자연로그함수의 도함수

- ▶ 예제 7.6 로그를 이용한 미분
 - $f(x) = x^x$, x > 0의 도함수를 구하여라.

f(x)를 미분하게 되면 (x^x)(lnx)(1)이 맞나요?

=>네, (x^x)(lnx+1)이 됩니다

=>혹시 (Inx+1)은 어디서 나오는지 설명해주실 수 있나요?

 $=> y=x^x \rightarrow \ln y=x \ln x \rightarrow dy/dx * 1/y = \ln x + 1 \rightarrow dy/dx = (\ln x + 1) * y = (\ln x + 1)x^x$

12/27

80

6번 y=e^(-x/2)일때 y'=-(½)*e^(-x/2)이고 2y'+y=0을 계산하면 -e^(-x/2)+e^(-x/2)=0이라서 검증이 되는데 이런 유형의 정의구간은 (-∞,<x<∞)인가요?

=> 정의구간은 (-∞<x<∞)가 맞습니다

10번

$$\frac{dX}{dt} = (X-1)^{\frac{1}{2}} = -(2X-1)(X-1) \quad \ln\left(\frac{2X+1}{X-1}\right) = t \quad d = \frac{2X-1}{X-1} \quad d = 2(X-1)^{\frac{1}{2}} = \frac{1}{(X-1)^2}$$

$$\frac{dX}{dt} = 2(X-1)^{\frac{1}{2}} = 1$$

$$\frac{dX}{dt} = 2(X-1)^{\frac{1}{2}} = \frac{1}{(X-1)^2}$$

여기서 dx/dt가 이렇게 나오는게 맞는지 아니면 다른 방법이 있는지 x=(e^t-1/)(e^t-2)이 나오던데 어떻게 유도했는지 모르겠습니다.

=> 원본 문제를 보여주실래요?

10. 오른쪽에 주어진 식이 주어진 1계 미분방정식의 음함수 해임을 검증하라. 각각의 경우에 대해 적어도 하나의 양함수 해 $y=\phi(x)$ 를 구하라. 각 해 ϕ 의 정의구간 I를 결정하라.

$$\frac{dX}{dt} = (X - 1)(1 - 2X); \ln\left(\frac{2X - 1}{X - 1}\right) = t$$

$$\begin{split} & \ln[(2X-1)/(X-1)] = t \\ & (2X-1)/(X-1) = e^t \\ & 2X-1 = (X-1)*e^t \\ & 2X-X*e^t = 1-e^t \\ & X*(2-e^t) = 1-e^t \\ & X = (1-e^t)/(2-e^t) = (e^t-1)/(e^t-2) \\ & \ln[(2X-1)/(X-1)] = \ln(2X-1) - \ln(X-1) = t \\ & (2/(2X-1))*dX/dt - (1/(X-1))*dX/dt = 1 \\ & dX/dt*((2*(X-1)-(2X-1))/((2X-1)(X-1))) = 1 \\ & dX/dt*(-1) = (2X-1)(X-1) \\ & dX/dt = (X-1)(1-2X) \end{split}$$

