
Masterblocks: Scaling Blockchain by summarizing
balances for Dash and Bitcoin Cash

[Research Paper DRAFT]
by Alexey Eromenko “Technologov”;

al4321@gmail.com

abstract: this paper shows how it is possible to scale the network by creating multi-genesis
blocks, and shrinking the size of the blockchain by removal of old transactions, adding

balances for “dumb” (i.e. non-programmable) blockchains such as Dash and Bitcoin Cash.
Masterblocks as described here adds a snapshot to cut the length of the historical

blockchain relevant for consensus.
This idea could allow for over 3000 tx/sec on desktop class hardware.

1. Basic idea: I think we may be able to reduce a block chain size dramatically, by adding a
balance summary (every X blocks) of the previous state, last block of it.
Theoretically it will solve the hard disk space issues, And will reduce network bandwidth
requirements for setting up a new Full node. It will not solve new block propagation delays.
New Term: Let's rename our so-called new Summary Block into a Masterblock. (for clarity)
It acts very much like a new genesis block, but with all old balances encoded as unspent
outputs in the new block.

Applicability: “dumb” (non-programmable blockchains) with large blocks, so Ethereum is
incompatible with this proposal. Bitcoin legacy (Core) will not gain much from it.
Bitcoin Cash and Dash (and possibly others) qualify.

Concept:
2017 [block 0]...[block n] --- the last block's balance could transfer into a new Masterblock 2018.
2018 [masterblock 0]

Balances (all utxo) of each address are copied into a new Masterblock as one transaction. Masterblocks are

created in a deterministic fashion, so every node can see it and reproduce the correctness of a

Masterblock.

Afterwards Mining should start build up on the new Masterblock. Just the history of transactions will be

lost.

This idea, if it works, will allow Dash and Bitcoin Cash will beat Visa x 10 transactions easily, with a goal to

break 1 billion transactions per day, in a decentralized way, via on-chain scaling

2. Current method of so-called “blockchain pruning”, where Full Nodes simply remove old
transactions is broken by design, because it disallows new nodes to be added from such
truncated nodes. This forces network to keep Full Nodes for the coin to be operational.

Source:
https://news.bitcoin.com/pros-and-cons-on-bitcoin-block-pruning/
https://news.bitcoin.com/pros-and-cons-on-bitcoin-block-pruning/
3. Summary tables: Currently balances are NOT recorded anywhere, only transactions. By
summing up all transactions up to block X, Full Nodes can calculate balances.

mailto:al4321@gmail.com
https://news.bitcoin.com/pros-and-cons-on-bitcoin-block-pruning/
https://news.bitcoin.com/pros-and-cons-on-bitcoin-block-pruning/


Basic Summary Table example:

Currently only transactions are written in the block-chain:
Alice had 10.0 BTC, pays to Bob 2.0 BTC, Bob pays to Charlie 0.5 BTC, etc…

With summary table, balances will be written as well, like this:

Amount Type

Alice 8.0 Bitcoin Cash

Bob 1.5 Bitcoin Cash

Charlie 0.5 Bitcoin Cash

Extended Summary Table (with colored coins and time locked):

What if a blockchain wanted to add some colored coins, say RedCoin ?
Then every user will have multiple entries in the DB, one for main coin, another for colored
coin.
Let’s say Charlie has 5 RedCoins and sent one to Bob. And Alice got 500 Greencoins
during ICO, but those are Time Locked until Block X.

(address) Amount Coin Type Time Lock

Alice 8.0 Bitcoin Cash

Bob 1.5 Bitcoin Cash

Charlie 0.5 Bitcoin Cash

Alice 500 GreenCoin TimeLocked until Block X

Bob 1.0 RedCoin

Charlie 4.0 RedCoin

*NOTE: important features, like “Coin Type” and “Time lock” may be hard-coded in the
database. Some complex features like MultiSig scripts will go to a separate table; Other
features may be dropped completely.

4. Masterblock must be generated in a deterministic way, to be reproducible by all miners
and all Full Nodes.

5. There could be more types of nodes: Archival node, keeping all history of all the
previous balances, and the Full Node, keeping only the current block chain.
In this scenario, only block explorers and scientists will need to keep an Archival Node. It
is not be needed for payments and verification at all; not part of the consensus.

6. Downsides:



Are there any? Of course.
a. A bunch of features will need to be dropped for this optimization to work. Metadata and
custom scripting may not work, (except though Spicy Table) – Spicy Table is there to solve
complicated edge-cases, where summary tables will not work, where scripting may be
required, such as MultiSig addresses.
This means that Colored Coins (like Omni and CounterParty) will need to be coded in a
different way.
b. MultiSig: because MultiSig addresses require a script, they need to be put in a separate
table that will travel across Masterblocks. This will go in a separate table called a “Spicy
table” (part of the Masterblock).
c. Dash Masternodes: a separate list of Dash Masternodes needs to be kept, and as long
as a Masternode balance keeps it's 1000.0 DASH, the Masternode is considered 'alive'.
This will go in a separate table called a “Spicy table” (part of the Masterblock).
d. Application logic and smart contracts: are part of the block in Ethereum, so by deleting
old data, app logic will get deleted also. This is why this optimization idea is incompatible
with Ethereum.
e. Generating a Masterblock, may cause a delay in the network. (it's better to start
generating it in advance, and finish just on time)
f. TIME Locked transactions may become a special type in the Extended Summary Table.
(like TimeLocked Bitcoin Cash until block X or until time Y).

Therefore a Masterblock will need to have two new tables: a Summary Table (having
balances of ALL standard addresses) and a Spicy table (for special cases).

7. Dust Cleanup:
Let's define 'dust' as unspent transaction outputs (UTXO) below the median fees for the
last 10 blocks. (this removes a bunch of bloat from the blockchain)

Those tiny dust amounts can be distributed to the last 10 miners. (via adding to their
balance’s summary table)

8. Recommended Application and assumptions:
Create a Masterblock summary every year.

Okay, Let's do some maths: (with a few assumptions)

My models assume 4000x on-chain capacity increase over Bitcoin’s (1MB4EVER policy).

1 GB block each 2.5 min = 4 GB in 10 min (equivalent of a 4 GB block in Bitcoin). This will allow us for 1

billion tx/day (=12,000 tx/sec). In Dash it would equal to 576 blocks/day x 1 GB/block = 576 GB/day. (In

Bitcoin it would equal to 144 blocks/day x 4 GB/block = 576 GB/day.)

It's 576 GB/day x 365 (year) = 210 TB-per-year.

Without my idea we will grow into a multi-petabyte territory in 5 years. Will be hard, even with

incentivized Masternodes.

With my idea, it would take only 18 Hard Disks (okay 20 HDDs, with RAID6) to keep an entire block chain

(that's assuming high-capacity 12 TB HDDs; that both Seagate and Western Digital started producing in

2017). (future HDD capacity is projected around 50 TB in late 2020’s assuming a conservative 15% growth

per year; so only 5 or 6 of those will be required, Full node can be run on a high-end desktop PC)



Block propagation ? It takes only 8 seconds on a Google Fiber (1 Gbit/s Internet) -- so I believe it's very

much possible and feasible to grow with on-chain transaction scalability. I assume that 1 Gbit/s Internet

will become common in a decade. (late 2020’s)

The big problem I’m solving is adding new nodes, With my solution, only 210 TB of data needs to be

transferred, in worst case scenario. Without my idea, adding new nodes will require transfer of

multi-petabytes of data.

I do not recommend to remove old blocks immediately after computing a Masterblock, but rather with

delay of several weeks or perhaps even until two Masterblocks are found, so that other hosts can

download blocks, and re-compute the Masterblock in a deterministic way, independently.

Additionally, keep the block headers since the genesis block, so that Proof-of-Work isn't being lost, but

accumulated.

After two Masterblocks, all contents from ALL blocks prior to those two Masterblocks may be safely

deleted. (except Block headers, keeping the PoW)

9. Miner's fee – can be added into it's own balance. (directly to summary table)

10. Security: the idea is to integrate a Masterblock into the chain, so full Proof of Work protection
takes place on the whole chain, including the Masterblock. This way Masterblock cannot be modified
under the nose of the users.

Security is theoretically slightly weaker than standard Bitcoin security model:
Nodes will have about one month’s time to validate the Masterblock, until old blocks get emptied. But in
practice it shouldn’t matter, as long as we don’t experience a global black-out with a one month
duration. This is why removing tx history must be delayed, and not immediate on Masterblock creation.

11. CPU: Various research projects (particularly Gigablock, run by Bitcoin Cash
researchers), came up with the number of 100 tps. It is what an average Intel Core i5/i7
can process on a single thread. This translates to around 32 MB blocks.
Going higher will require either multi-threading -or- developing new hardware - special
ASICs for accelerating signature processing - ECDSA-256.

12. Added bonus idea: use “Snappy” for blockchain compression; Like zip but much faster
algorithm. This can cut blockchain size, summary tables, storage costs and network
bandwidth requirements by half. (by Gil Klein)

Standard Bitcoin Block header

Byt
es Name Data

Type Description

4 version int32
_t

The block version number indicates which set
of block validation rules to follow. See the list of block versions
below.

32 previou
s block

char[
32]

A SHA256(SHA256()) hash in internal byte orderof the
previous block’s header. This ensures no previous block can

https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/consensus-rules
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/glossary/internal-byte-order
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/block


header
hash

be changed without also changing this block’s header.

32
merkle
roothas
h

char[
32]

A SHA256(SHA256()) hash in internal byte order. The merkle
root is derived from the hashes of all transactions included in
this block, ensuring that none of those transactions can be
modified without modifying the header. See the merkle trees
section below.

4 time uint3
2_t

The block time is a Unix epoch time when the miner started
hashing the header (according to the miner). Must be strictly
greater than the median time of the previous 11 blocks.
Full nodeswill not accept blocks with headers more than two
hours in the future according to their clock.

4 nBits uint3
2_t

An encoded version of the target
threshold this block’s header hash must be less than or equal
to. See the nBits format described below.

4 nonce uint3
2_t

An arbitrary number miners change to modify the header hash
in order to produce a hash less than or equal to the target
threshold. If all 32-bit values are tested, the time can be
updated or the coinbase transaction can be changed and
the merkle root updated.

Source: https://bitcoin.org/en/developer-reference#block-headers

Modified Scalable Masterblock header, with removed transactions:

Byt
es Name Data

Type Description

4 version int32
_t

The block version number indicates which set
of block validation rules to follow. See the list of block versions
below.

32

previou
s block
header
hash

char[
32]

A SHA256(SHA256()) hash in internal byte orderof the
previous block’s header. This ensures no previous block can
be changed without also changing this block’s header.

32 Summa
ry hash

char[
32]

A SHA256(SHA256()) hash in internal byte order. The hash is
a calculated hash on the summary addresses table and a
Spicy table. (this replaces the Merkle root, and instead of a
transactions summary hash, provides a balances summary
hash)

https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/merkle-root
https://bitcoin.org/en/glossary/merkle-root
https://bitcoin.org/en/glossary/internal-byte-order
https://bitcoin.org/en/glossary/merkle-root
https://bitcoin.org/en/glossary/merkle-root
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/developer-reference#merkle-trees
https://bitcoin.org/en/developer-reference#merkle-trees
https://bitcoin.org/en/glossary/block
https://en.wikipedia.org/wiki/Unix_time
https://bitcoin.org/en/glossary/mining
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/mining
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/node
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/mining
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/merkle-root
https://bitcoin.org/en/developer-reference#block-headers
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/consensus-rules
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/developer-reference#term-previous-block-header-hash
https://bitcoin.org/en/glossary/internal-byte-order
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/internal-byte-order


4 time uint3
2_t

The block time is a Unix epoch time when the miner started
hashing the header (according to the miner). Must be strictly
greater than the median time of the previous 11 blocks.
Full nodeswill not accept blocks with headers more than two
hours in the future according to their clock.

4 nBits uint3
2_t

An encoded version of the target
threshold this block’s header hash must be less than or equal
to. See the nBits format described below.

4 nonce uint3
2_t

An arbitrary number miners change to modify the header hash
in order to produce a hash less than or equal to the target
threshold. If all 32-bit values are tested, the time can be
updated or the coinbase transaction can be changed and
the merkle root updated.

8
sumtabl
e_lengt
h

uint6
4

Summary table may grow huge in the future in several
decades, potentially with billions of users.

8
spicytab
le_lengt
h

uint6
4

Spicy table may grow huge in the future in several decades,
potentially with billions of users.

- sumtabl
e

varia
ble Summary table (all standard addresses' balances go here)

- spicytab
le

varia
ble Spicy table (special cases)

Masterblock contains NO transactions whatsoever, only balances + a Spicy table keeping
special cases, such as MultiSig scripts and Dash Masternode list.

What will a new Blockchain look like?

[Block] → [Block] → [Masterblock] → [Block] → [Block]
...
New normal blocks should treat Masterblock like a Genesis block. A block with balances,
but no history.

UPDATE on 09.09.2018, Thanks to Meni Rosenfeld, he proved that my ideas is not new,
and a similar idea was presented back in 2012:
https://bitcointalk.org/index.php?topic=74559.15

-06.Jan.2018. By Alexey Eromenko. “technologov”; al4321@gmail.com
Original idea: https://github.com/dashpay/dash/issues/1380

Changelog: [v1.1] 10.01.2018: Added two features: Colored coins and Time locking.

https://bitcoin.org/en/glossary/block
https://en.wikipedia.org/wiki/Unix_time
https://bitcoin.org/en/glossary/mining
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/mining
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/node
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/block
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/mining
https://bitcoin.org/en/glossary/block-header
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/nbits
https://bitcoin.org/en/glossary/coinbase-transaction
https://bitcoin.org/en/glossary/merkle-root
https://github.com/dashpay/dash/issues/1380


Changelog: [v1.2] 07.02.2018: Added new feature: CPU and ASICs


