# Наибольший общий делитель двух натуральных чисел и его свойства

*Наибольшим общим делителем двух натуральных чисел* называется наибольшее из натуральных чисел, на которое делится каждое из данных чисел.

Обозначение наибольшего общего делителя чисел a и  $\epsilon$ :  $HOД(a; \epsilon)$ .

Из определения наибольшего общего делителя двух натуральных чисел следует, что  $HO \coprod (a; e) = HO \coprod (e; a)$ ,  $HO \coprod (a; a) = a$ ,  $HO \coprod (a; 1) = 1$ ,  $HO \coprod (a; 0) = a$ .

Если числа a и e взаимно просты (числа, у которых общий делитель 1), то  $HO \mathcal{I}(a;e)=1$ .

Пример. HOД (3; 5) = 1.

Если a — простое число, e — составное число и e не делится на e , то e НОД e (e) = 1.

Пример. HOД (7; 12) = 1.

 $HO\mathcal{I}(-a; e) = HO\mathcal{I}(a; -e) = HO\mathcal{I}(-a; -e)$ . Это связано с тем, что противоположные числа a и -a, e и -e имеют общие делители.

Пусть HOД(a; e) = n, тогда a делится на n и e делится на n (a 
subseteq n),  $a = n\kappa$ ,  $e = p\kappa$ ,  $\kappa$  и p — взаимно простые числа.  $a - e = n(\kappa - p) 
subseteq n$ ,  $a + e = n(\kappa + p) 
subseteq n$ .

Пусть HOД(a; e) = n,  $HOД(a; a - e) = n_1$ , a > e. Тогда a 
subseteq n, (a - e) 
subseteq n. Значит  $n_1 \ge n$ , т. к.  $n_1 = HOД(a; a - e)$ , а n – общий делитель чисел a и a - e.

Т. к.  $HOД(a; a - e) = n_1$ , то  $a 
buildrel n_1$ ,  $(a - e) 
buildrel n_1$ ,  $a - (a - e) = e 
buildrel n_1$ . Значит  $n \ge n_1$ , т. к. n = HOД(a; e), а  $n_1$  – общий делитель чисел a и e. Из того, что  $n_1 \ge n$ ,  $n \ge n_1$ , следует, что  $n = n_1$ , т. е. если a > e, то HOД(a; e) = HOД(a; a - e).

Примеры. 1) HOД (36; 24) = HOД (36; 12) = 12; 2) HOД (n + 5; n + 3) = HOД (n + 5; 2). Если n чётно, то HOД (n + 5; 2) = 1, если n нечётно, то HOД (n + 5; 2) = 2.

Пусть HOД(a; e) = n,  $HOД(e; a - e) = n_2$ , a > e. Тогда e 
subseteq n, (a - e) 
subseteq n. Значит  $n_2 \ge n$ , т. к.  $n_2 = HOД(e; a - e)$ , а n – общий делитель чисел e и a - e.

Т. к. HOД ( $\epsilon$ ;  $a - \epsilon$ ) =  $n_2$ , то  $\epsilon \, \lceil n_2$ , ( $\epsilon - a$ )  $\lceil n_2$ ,  $\epsilon + a - \epsilon = a \, \lceil n_2$ . Значит  $n \ge n_2$ , т. к. n = HOД (a;  $\epsilon$ ), а  $n_2$  – общий делитель чисел a и  $\epsilon$ . Из того, что  $n_2 \ge n$ ,  $n \ge n_2$ , следует, что  $n = n_2$ , т. е. если  $a > \epsilon$ , то HOД (a;  $\epsilon$ ) = HOД ( $\epsilon$ ;  $a - \epsilon$ ).

Примеры. 1) HOД (10; 8) = HOД (10; 2) = 2; 2) HOД (n + 5; n + 4) = HOД (n + 4; 1) = 1.

Пусть HOД(a; e) = n,  $HOД(a; e - a) = n_3$ , e > a. Тогда a 
otin n, (e - a) 
otin n. Значит  $n_3 \ge n$ , т. к.  $n_3 = HOД(a; e - a)$ , а n – общий делитель чисел a и e - a.

Т. к.  $HOД(a; в-a) = n_3$ , то  $a 
buildrel n_3$ ,  $(в-a) 
buildrel n_3$ ,  $в-a+a=в 
buildrel n_3$ . Значит  $n \ge n_3$ , т. к. n = HOД(a; в), а  $n_3$  — общий делитель чисел a и s. Из того, что  $n_3 \ge n$ ,  $n \ge n_3$ , следует, что  $n_3 \ge n$ , т. е. если s > a, то HOД(a; в) = HOД(a; в-a).

Примеры. 1) HOД (12; 14) = HOД (12; 2) = 2; 2) HOД (2n + 1; 3n + 2) = HOД ((2n + 1, n + 1) = HOД (n + 1; 2n + 1) = HOД (n + 1; n + 1) = HOД (n + 1; n + 1) = HOД (n + 1; n + 1) = HOД (n + 1) = HOZ (

Пусть HOД(a; e) = n,  $HOД(e; e - a) = n_4$ , e > a. Тогда  $e \ [n, (e - a) \ [n. 3$ начит  $n_4 \ge n$ , т. к.  $n_4 = HOД(e; e - a)$ , а n – общий делитель чисел e и e - a.

Примеры. 1) HOД (8; 12) = HOД (12; 4) = 4; 2) HOД (n + 2; n + 3) = HOД (n + 3; 1) = 1.

Пусть HOД(a; e) = n,  $HOД(a; a + e) = n_5$ . Тогда a 
subseteq n, e 
subseteq n, e

Т. к.  $HOД(a; a + в) = n_5$ , то  $a 
buildrel n_5$ ,  $(a + в) 
buildrel n_5$ ,  $a + в - a = в 
buildrel n_5$ . Значит  $n \ge n_5$ , т. к. n = HOД(a; в), а  $n_5$  — общий делитель чисел a и s. Из того, что  $n_5 \ge n$ ,  $n \ge n_5$ , следует, что  $n = n_5$ , т. е. HOД(a; s) = HOД(a; a + s).

Пример. HOД(6, 5) = HOД(6, 11) = 1.

Пусть HOД(a; e) = n,  $HOД(e; a + e) = n_6$ . Тогда a 
brace n, e 
 brace n,

Т. к.  $HOД(s; a + s) = n_6$ , то  $s \, \Box \, n_6$ ,  $(a + s) \, \Box \, n_6$ ,  $a + s - s = a \, \Box \, n_6$ . Значит  $n \ge n_6$ , т. к. n = HOД(a; s), а  $n_6$  – общий делитель чисел a и s. Из того, что  $n_6 \ge n$ ,  $n \ge n_6$ , следует, что  $n = n_5$ , т. е. HOД(a; s) = HOД(s; a + s).

Примеры. 1) HOД (6; 5) = HOД (5; 11) = 1; 2) HOД (n; n + 3) = HOД (n, 3). Если n делится на 3, то HOД (n; 3) = 3, если n не делится на 3, то HOД (n; 3) = 1.

Пусть  $a=\epsilon q+r,\ a,\,\epsilon,\,q,\,r$  — натуральные числа,  $HO\!\mathcal{J}(a;\,\epsilon)=d,\ HO\!\mathcal{J}(\epsilon;\,r)=d_1.$  Тогда  $HO\!\mathcal{J}(\epsilon q+r;\,\epsilon)=d,\ (\epsilon q+r)\ [d,\,\epsilon]\ d,\ \epsilon q\ [d,\,\epsilon]\ (\epsilon q+r-\epsilon q)=r\ [d,\,\epsilon]\ d_1\geq d,\,$  т. к.

 $d_1 = HOД(e;r)$ , а d- общий делитель чисел e и r. Т. к.  $HOД(e;r) = d_1$ , то  $e \ [d_1, r \ d_1, r]$ 

Примеры. 1) HOД (38; 12) = HOД (12; 2) = 2, т. к.  $38 = 12 \cdot 3 + 2$ ;

2)  $HOД(n^2+2;n)=HOД(n;2)$ , т. к.  $n^2+2=n\cdot n+2$ . Если n нечётно, то HOД(n;2)=1, если n чётно, то HOД(n;2)=2.

Пусть для натуральных чисел а  $u \, \epsilon$  справедлив ряд равенств

$$a = 8q_1 + r_1, \quad 0 < r_1 < 8,$$

$$8 = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$r_2 = r_3q_4 + r_4, \quad 0 < r_4 < r_3,$$
...
$$r_{\kappa-2} = r_{\kappa-1}q_{\kappa} + r_{\kappa}, \quad 0 < r_{\kappa} < r_{\kappa-1},$$

$$r_{\kappa-1} = r_{\kappa}q_{\kappa+1}.$$

Двигаемся по записанным равенствам снизу вверх:

 $r_{\kappa-1} = r_{\kappa} \ q_{\kappa+1}$ , следовательно  $r_{\kappa-1} \ \Box \ r_{\kappa}$ ;

 $r_{\kappa-2} = r_{\kappa-1} \ q_{\kappa} + r_{\kappa}$ , следовательно  $r_{\kappa-2} \ \Box \ r_{\kappa}$ , т. к.  $r_{\kappa-1} \ \Box \ r_{\kappa}$  и  $r_{\kappa} \ \Box \ r_{\kappa}$ ;

.....

 $e=r_1q_2+r_2$ , следовательно  $e \ \ \ r_\kappa$ , т. к.  $r_1 \ \ \ r_\kappa$  и  $r_2 \ \ \ r_\kappa$ ;

 $a= \epsilon q_1 + r_1$ , следовательно  $a \ [ r_\kappa$ , т. к.  $\epsilon \ [ r_\kappa$  и  $r_1 \ [ r_\kappa$ . Значит,  $r_\kappa$  – общий делитель чисел a и  $\epsilon$ .

Пусть  $r_0$  — любой общий делитель чисел a и e, a  $[r_0]$  и e  $[r_0]$ . Двигаемся по записанным равенствам сверху вниз:

$$a = eq_1 + r_1$$
,  $HOД(a; e) = HOД(eq_1 + r_1; e) = HOД(e; r_1)$ ,  $a \vdash r_0$ ,  $e \vdash r_0$ ,  $(eq_1 + r_1) \vdash r_0$ ,

$$\varepsilon q_1 \ [ r_0, (\varepsilon q_1 + r_1 - \varepsilon q_1) = r_1 \ [ r_0;$$

$$e = r_1q_2 + r_2$$
,  $HOД(e; r_1) = HOД(r_1q_2 + r_2; r_1) = HOД(r_1; r_2)$ ,  $r_1 \ [ r_0, \ (r_1q_2 + r_2) \ [ r_0, \ (r$ 

$$(r_1q_2 \ [ r_0, \ (r_1q_2+r_2-r_1q_2) = r_2 \ [ r_0;$$

.....

$$r_{\kappa-2} = r_{\kappa-1} q_{\kappa} + r_{\kappa}, \ HOД (r_{\kappa-2}; r_{\kappa-1}) = HOД (r_{\kappa-1} q_{\kappa} + r_{\kappa}, r_{\kappa-1}) = HOД (r_{\kappa-1}; r_{\kappa}), \ r_{\kappa-1} \sqsubseteq r_0,$$

 $r_{\kappa} \Gamma_0$ ;

$$r_{\kappa-1} = r_{\kappa} q_{\kappa+1}$$
, НОД  $(r_{\kappa} q_{\kappa+1}; r_{\kappa}) = r_{\kappa}$ ,  $r_{\kappa} \sqsubseteq r_{0}$ .

Таким образом,  $HOД(a; e) = HOД(e; r_1) = HOД(r_1; r_2) = \dots = HOД(r_{\kappa-2}; r_{\kappa-1}) =$ 

= 
$$HOД(r_{\kappa-1}; r_{\kappa}) = HOД(r_{\kappa} q_{\kappa+1}; r_{\kappa}) = r_{\kappa}$$
, где  $a = eq_1 + r_1, 0 < r_1 < e$ ,

$$e = r_1 q_2 + r_2, \ 0 < r_2 < r_1,$$

$$r_1 = r_2 q_3 + r_3, \ 0 < r_3 < r_2,$$

$$r_2 = r_3 q_4 + r_4, \ 0 < r_4 < r_3,$$
.....
$$r_{\kappa-2} = r_{\kappa-1} q_{\kappa} + r_{\kappa}, \ 0 < r_{\kappa} < r_{\kappa-1},$$

$$r_{\kappa-1} = r_{\kappa} q_{\kappa+1}.$$

Мы получили алгоритм Евклида: если для натуральных чисел а и в справедлив ряд равенств  $a = \epsilon q_1 + r_1, \ 0 < r_1 < \epsilon,$ 

Пример: Найти НОД (9249, 8568).

| Делимое | Делитель | Частное | Остаток |
|---------|----------|---------|---------|
| 9240    | 8568     | 1       | 672     |
| 8568    | 672      | 12      | 504     |
| 672     | 504      | 1       | 168     |
| 504     | 168      | 3       |         |

Значит, HOД (9249, 8568) = 3.

 $am = \epsilon q_1 m + r_1 m,$ 

Умножим обе части каждого из равентсв алгоритма Евклида на m, получим:

 $= HO\mathcal{J}(r_3m; r_4m) = \dots = HO\mathcal{J}(r_{\kappa-1}m; r_{\kappa}m) = HO\mathcal{J}(r_{\kappa} q_{\kappa+1}m; r_{\kappa}m) = HO\mathcal{J}(r_{\kappa}m; r_{\kappa}m) = HO\mathcal{J}($ 

=  $r_{\kappa}m$ , =  $mHO\mathcal{A}(a; \epsilon)$ , T. K.  $r_{\kappa} = HO\mathcal{A}(a; \epsilon)$ .

Значит, справедлива формула HOД (am; вm) = mHOД (a; в).

Примеры: 1) HOД (24; 26) = HOД (2 · 12; 2 · 13) = 2HOД (12; 13) = 2 · 1 = 2;

2) HOД (3n; 3n + 6) = 3HOД (n; n + 2) = 3HOД (n; 2). Если n нечётно, то 3HOД (n; 2) = 3, если n чётно, то 3HOД (n; 2) = 6.

Пусть  $\varepsilon$  делится на a, т. е.  $\varepsilon = ac$ , тогда  $HOД(a; \varepsilon) = HOД(a; ac) = aHOД(1; c) = a$ . Если  $\varepsilon$  делится на a, то  $HOД(a; \varepsilon) = a$ .

Примеры: 1) HOД (4; 16) = 4; 2) HOД ( $n^2 + 4$ ;  $2n^2 + 8$ ) = HOД ( $n^2 + 4$ ;  $2(n^2 + 4)$ ) =  $n^2 + 4$ .

Пусть  $HO \not \square (a; e) = 1$ ,  $HO \not \square (c; e) = n_1$  тогда  $c \ \square n_1$ ,  $e \ \square n_1$ ,  $e \ \square n_1$ . Пусть  $HO \not \square (ac; e) = n_2$ . Тогда  $n_2 \ge n_1$ , т. к.  $n_1$  – общий делитель чисел ac и e, а  $n_2 = HO \not \square (ac; e)$ .

Т. к.  $HOД(ac; e) = n_2$ , то  $(ac) [n_2, e] n_2$ ,  $(ec) [n_2, T. K. a и e]$  взаимно простые числа и

(ac)  $[ n_2, (вc) [ n_2, \text{то } c [ n_2, \text{Тогда } n_1 \ge n_2, \text{т. к. } n_1 = HOД (c; в), \text{ а } n_2 - \text{общий делитель}$  чисел c и в. Т. к.  $n_2 \ge n_1, n_1 \ge n_2$ , то  $n_1 = n_2$ . Значит , если HOД (a; в) = 1, то HOД (ac; в) = HOД (c; в).

Примеры: 1) HOД (4; 5) = 1, HOД (4 · 2; 5) = HOД (2; 5) = 1;

2) HOД(m; n) = 1. Тогда HOД(5m; n) = HOД(5; n). Если n не делится на 5, то HOД(5; n) = 1, если n делится на 5, то HOД(5; n) = 5.

# Наименьшее общее кратное двух натуральных чисел и его свойства

Особый интерес и особую практическую значимость представляет наименьшее общее кратное двух натуральных чисел.

*Наименьшим общим кратным двух натуральных чисел* называется наименьшее из натуральных чисел, которое делится на каждое из данных чисел.

Обозначение наименьшего общего кратного чисел a и e: HOK(a; e).

Из определения наименьшего общего кратного двух натуральных чисел следует, что HOK(a; e) = HOK(e; a), HOK(a; a) = a, HOK(a; 1) = a.

HOK(-a; e) = HOK(a; -e) = HOK(-a; -e). Это связано с тем, что противоположные числа a и -a, e и -e имеют общие кратные.

Пусть HOK(a; e) = M, тогда  $M \sqsubseteq a$  и  $M \sqsubseteq e$ , т. е.  $M = a \cdot \kappa$ ,  $M = l \cdot \kappa$  и  $l - l \cdot \kappa$ 

натуральные числа,  $(a \cdot \kappa) \vdash \mathfrak{s}$ .

Пусть HOД(a; e) = d. Тогда  $a = a_1 \cdot d$ ,  $e = e_1 \cdot d$ ,  $a_1$  и  $e_1$  — взаимно простые числа.

 $(a \cdot \kappa)$  [ в означает, что  $(a_1 \cdot d \cdot \kappa)$  [  $(s_1 \cdot d)$ , из этого следует, что  $(a_1 \cdot \kappa)$  [  $s_1$ . Т. к.  $(a_1 \cdot \kappa)$  [  $s_1$ ,

а  $a_1$  не делится на  $a_1$ , то  $\kappa \ [ a_1$ , тогда  $\kappa = a_1 \cdot t$ , t – натуральное число. Т. к.  $a_1 = \frac{e}{d}$ , то

$$\kappa = \frac{et}{d}$$
.  $M = a \cdot \kappa$ ,  $M = \frac{eta}{d}$  - вид всех общих кратных чисел  $a$  и  $e$ . Т. к. а и в – числа

натуральные, то при t = 1 получим наименьшее общее кратное, которое равно d

 $HOK(a;e) = \frac{a \cdot e}{HO \coprod (a;e)}.$ 

Получим формулу

$$HOK(24;26) = \frac{24 \cdot 26}{HOД(24;26)} = \frac{24 \cdot 26}{2} = 312$$

$$HOK(n+5; n+3) = \frac{(n+5)(n+3)}{HO\mathcal{L}(n+5; n+3)}.$$

Если n чётно, то HOK(n+5; n+3) = (n+5; n+3), если n нечётно, то HOK(n+5; n+3) =  $\frac{1}{2}(n+5; n+3)$ .

Если HOД(a; e) = 1, то наименьшее общее кратное взаимно простых чисел равно их произведению:  $HOK(a; e) = a \cdot e$ .

Примеры: 1)  $HOK(2; 3) = 2 \cdot 3 = 6$ , 2)  $HOK(4; 7) = 4 \cdot 7 = 28$ .

$$HOK(am; вm) = \frac{am \cdot вm}{mHOД(a; в), \text{ то}} = m\frac{a \cdot в}{HOД(a; в)} = m\frac{a \cdot в}{HOД(a; в)},$$

 $HOK(am; \epsilon m) = mHOK(a; \epsilon).$ 

Пример:  $HOK(36; 40) = HOK(4 \cdot 9; 4 \cdot 10) = 4HOK(9; 10) = 4 \cdot 90 = 360.$ 

Пусть в делится на a, т. е. b = ac, тогда HOK(a; b) = HOK(a; ac) = aHOK(1; c) = ac = b.

Если  $\epsilon$  делится на a, то  $HOK(a; \epsilon) = \epsilon$ .

Примеры: 1) HOK (12; 24) = 24; 2) HOK (16; 8) = 16.

Если a – простое число, e – составное число и e не делится на a, то  $HOK(a, e) = a \cdot e$ .

Пример:  $HOK(7; 12) = 7 \cdot 12 = 98$ .

## Решение текстовызх задач с помощью НОД и НОК двух натуральных чисел

Задача 1. В наборе 185 бусинок лилового цвета и 111 бусинок бирюзового. Сколько браслетов для кукол можно сплести из одинакового числа бусин каждого цвета? Сколько бусин каждого цвета в браслете?

## Решение.

1) HOД (185; 111) = HOД (111; 74) = HOД (74; 37) = HOД (37; 37) = 37 браслетов можно сплести;

| Делимое | Делитель | Частное | Остаток |
|---------|----------|---------|---------|
| 185     | 111      | 1       | 74      |
| 111     | 74       | 1       | 37      |
| 74      | 37       | 2       |         |

2) 185 : 37 = 5 бусин лилового цвета;

3) 111 : 37 = 3 бусин бирюзового цвета.

Ответ: 37 браслетов, по 3 и 5 бусин.

Задача 2. Стол размером 480 см на 360 см решили декорировать разноцветными квадратными плитками. Коковы наибольшие размеры плитки? Сколько плиток надо?

## Решение.

- 1) HOД (480; 360) = HOД (120 · 4; 120 · 3) = 120HOД (4; 3) = 120 (см) наибольшие размеры плитки;
- 2)  $480 \cdot 360 = 172800 \text{ (см}^2)$ площадь стола;
- 3)  $120 \cdot 120 = 14400 \text{ (см}^2)$ площадь плитки;
- 4) 172800 : 14400 = 12 плиток надо.

Ответ: 12 плиток по 120 на 120 см.

*Задача 3*. Садовый участок размером 54 м на 48 м по периметру необходимо оградить забором, для этого через равные промежутки надо поставить бетонные столбцы.

Сколько столбцов необходимо привезти для участка, и на каком максимальном расстоянии друг от друга будут стоять столбцы?

## Решение.

1) 
$$2(54 + 48) = 204$$
 (м) = периметр участка;

2) 
$$HO\mathcal{I}$$
 (54; 48) =  $HO\mathcal{I}$  (48; 54 – 48) =  $HO\mathcal{I}$  (48, 6) = 6 (м) – расстояние между столбцами;

3) 204 : 6 = 34 столбца.

Ответ: 34 столбца, на расстоянии 6 м.

Задача 1. Требуется изготовить ящик с квадратным дном для укладки коробок размером 16 см на 20 см. Какова должна быть наименьшаа длина стороны квадратного дна, чтобы уместить коробки в ящик вплотную?

## Решение.

1) 
$$HOK$$
 (16; 20) =  $4HOK$  (4; 5) =  $4 \cdot 20 = 80$  коробок;

2)  $16 \cdot 20 = 320$  (см<sup>2</sup>) – площадь дна одной коробки;

3) 
$$320 \cdot 80 = 25600 \text{ (см}^2)$$
 – площадь квадратного дна;

4)  $x^2 = 25600$ , x = 160 (см) – сторона квадратного дна.

Ответ: 160 см.

Задача 2 На столе лежат книги, число которых меньше, чем 20. Сколько лежит книг, если известно, что их можно связывать пачки по 3 и по 4 штук?

#### Решение

$$x$$
 – количество книг,  $x \mathrel{\sqsubseteq}_{3, x} \mathrel{\sqsubseteq}_{4.}$ 

$$x = HOK(3; 4) = 12.$$

Ответ: 12 книг лежит.

# Задачи на наибольший общий делитель

Покажем, как применяютя свойства наибольшего общего делителя двух натуральных чисел при решении задач повышенной трудности.

## Задачи на нахождение НОД двух натуральных чисел

Покажем, как применяютя свойства наибольшего общего делителя двух натуральных чисел при решении олимпиадных заданий.

$$3a\partial a 4a 1$$
. Найти  $HO \coprod (2^{100} - 1; 2^{120} - 1)$ .

Решение.

Обозначим 
$$HOД(2^{100}-1; 2^{120}-1) = HOД(2^{120}-1; 2^{100}-1) = n.$$

Воспользуемся алгоритмом Евклида:

$$2^{120}-1=2^{100}\cdot 2^{20}-1=2^{100}\cdot 2^{20}-1+2^{20}-1+2^{20}-2^{20}=2^{20}(2^{100}-1)+(2^{20}-1),$$
 значит,  $n=HO\mathcal{I}$  ( $2^{100}-1; 2^{20}-1$ ).  $2^{100}-1=2^{80}\cdot 2^{20}-1+2^{80}-2^{80}=2^{80}(2^{20}-1)+(2^{80}-1),$  значит,  $n=HO\mathcal{I}$  ( $2^{20}-1; 2^{80}-1$ ) =  $HO\mathcal{I}$  ( $2^{80}-1; 2^{20}-1$ ).  $2^{80}-1=2^{60}\cdot 2^{20}-1+2^{60}-2^{60}=2^{60}(2^{20}-1)+(2^{60}-1),$  значит,  $n=HO\mathcal{I}$  ( $2^{20}-1; 2^{60}-1$ ) =  $HO\mathcal{I}$  ( $2^{60}-1; 2^{20}-1+2^{60}-2^{60}=2^{60}(2^{20}-1)+(2^{60}-1),$  значит,  $n=HO\mathcal{I}$  ( $2^{20}-1; 2^{60}-1$ ) =  $HO\mathcal{I}$  ( $2^{60}-1; 2^{20}-1+2^{40}-2^{40}=2^{40}(2^{20}-1)+(2^{40}-1),$  значит,  $n=HO\mathcal{I}$  ( $2^{20}-1; 2^{40}-1$ ) =  $HO\mathcal{I}$  ( $2^{40}-1; 2^{20}-1$ ).  $2^{40}-1=2^{20}\cdot 2^{20}-1+2^{20}-2^{20}=2^{20}(2^{20}-1)+(2^{20}-1),$  значит,  $n=HO\mathcal{I}$  ( $2^{20}-1; 2^{20}-1$ ) =  $2^{20}-1$ .  $2^{20}-1$ 

*Задача 2*. Найти *НОД* (11...11; 11...11).

100 единиц 60 единиц

Решение.

# Воспользуемся алгоритмом Евклида:

$$11...11 = 11...11 \cdot 10...00 + 11...11$$

100 единиц 60 единиц 40 единиц 40 единиц

$$11...11 = 11...11 \cdot 10...00 + 11...11$$

60 единиц 40 единиц 20 единиц 20 единиц

$$11...11 = 11...11 \cdot 10...00 + 11...11$$

40 единиц 20 единиц 20 единиц 20 единиц

Значит, HOД (11...11, 11...11) = 11...11.

100 единиц 60 единиц 20 единиц

Ответ: 11...11.

20 единиц

 $3a\partial a + a 3$ . Натуральные числа a и e взаимно просты. Найти все значания HOД (ae; a + e).

## Решение.

Т. к. числа a и e взаимно просты, то  $HO \not \bot (a; e) = 1$ . Значит,  $HO \not \bot (a; a + e) = 1 = 1$ 

 $=HO\mathcal{I}(ae; a+e)=HO\mathcal{I}(e; a+e)=HO\mathcal{I}(a; e)=1.$ 

Воспользовались свойствами: HOД(a; e) = HOД(a; a + e); если HOД(a; e) = 1, то HOД(ac; e) = HOД(c; e); HOД(a; e) = HOД(e; a + e).

Ответ: 1.

 $3a\partial a + 4$ . Натуральные числа a и e взаимно просты. Найти все значания  $HO\mathcal{I}(a+e;a^2-ae+e^2)$ .

## Решение.

Воспользуемся тем, что, HOД (as; a + s) = 1 (см. задачу 3) и свойством: если HOД (a; s) = 1, то HOД (ac; s) = HOД (c; s), получим: HOД ( $as \cdot 3$ ; a + s) = HOД ( $as \cdot 3$ ; a + s) = 1 или 3.

*Ответ*: 1 или 3.

 $3a\partial a 4a$  5. Найти все значания наибольшего общего делителя чисел 8p+3 и 5p+2, где p — натуральное число.

## Решение.

Воспользуемся свойством: HOД(a; e) = HOД(a; a + e):

$$HO\mathcal{J}(8p+3; 5p+2) = HO\mathcal{J}(5p+2; 8p+3) = HO\mathcal{J}(5p+2; 5p+2+3p+1) =$$
 $= HO\mathcal{J}(5p+2; 3p+1) = HO\mathcal{J}(3p+1; 5p+2) = HO\mathcal{J}(3p+1; 3p+1+2p+1) ==$ 
 $= HO\mathcal{J}(3p+1; 2p+1) = HO\mathcal{J}(2p+1; 3p+1) = HO\mathcal{J}(2p+1; 2p+1+p) =$ 
 $= HO\mathcal{J}(2p+1; p) = HO\mathcal{J}(p; 2p+1) = HO\mathcal{J}(p; p+p+1) = HO\mathcal{J}(p; p+1) =$ 
 $= HO\mathcal{J}(p; 1) = 1.$ 

Ответ: 1.

 $3a\partial a 4a$  6. Натуральные числа a и b взаимно просты. Найти все значения наибольшего общего чисел 11a + 2b и 18a + 5b.

## Решение.

Обозначим HOД (11a+2e; 18a+5e)=n. По определению наибольшего общего делителя (11a+2e) [n, (18a+5e)] [n, (18a+5e)] [n, (18a+5e)] [n, (18a+5e)]

$$11(18a + 5e) = (198a + 55e) [n, (198a + 55e - (198a + 36e)) = 19e [n]$$

$$5(11a + 2e) = (55a + 10e) \ [n, 2(18a + 5e) = (36a + 10e) \ [n, (55a + 10e - (36a + 10e)) = (36a + 10e)] \ [n, (55a + 10e - (36a + 10e)) = (36a + 10e)]$$

= 19a [ n. Т. к. числа a и b взаимно просты, то 19 [ n. Значит, n = 1, или n = 19.

Ответ: 1 или 19.

Мы создали викторину «Наибольший общий делитель двух натуральных чисел» в приложении Приложание

# Задачи на сокращение дробей

Сокращение дроби гораздо проще ввыполнить, если найти наибольший общий делитель числителя и знаменателя. Покажем, как на основании свойств HOД чисел и с помощью алгоритма Евклида можно сокращать дроби.

 $3a\partial a 4a \ 1.$  На какое число и при каких натуральных значениях n сократима дробь  $\frac{12n+1}{30n+2}$ ?

## Решение

Способ 1. НОД (12n+1; 30n+2) = HOД (12n+1; 18n+1) = HOД (12n+1; 6n) = HOД (6n; 6n+1) = HOД (6n; 1) = 1, значит, дробь несократима.

Воспользовались свойствами: если  $\varepsilon > a$ , то  $HOД(a; \varepsilon) = HOД(a; \varepsilon - a)$ ;

если  $a > \epsilon$ , то  $HOД(a; \epsilon) = HOД(\epsilon; a - \epsilon); HOД(a; \epsilon) = HOД(a; a + \epsilon).$ 

 $\frac{12n+1}{30n+2}$  Способ 2. Если дробь  $\frac{30n+2}{12n+1}$  можно сократить на некоторое число, то и дробь  $\frac{30n+2}{12n+1}$  также можно сократить на это же число.

$$\frac{30n+2}{12n+1} = 1 + \frac{18n+1}{12n+1} = 1 + 1 + \frac{6n}{12n+1} = 2 + \frac{6n}{12n+1}.$$

Если дробь  $\frac{30n+2}{12n+1}$  сократима на некоторое число, то и дроби  $\frac{6n}{12n+1}$  и  $\frac{12n+1}{6n}$  сократимы на это же число.  $\frac{12n+1}{6n}=1+\frac{6n+1}{6n}=2+\frac{1}{6n}$ .

Всё зависит от того, сократима ли дробь  $\frac{1}{6n}$ , а дробь  $\frac{1}{6n}$  несократима.

Ответ: дробь несократима.

Таким образом, используя свойства наибольшего общего делителя двух натуральных чисел, можно быстрее сокращать дробь.

 $\frac{3a\partial a + a}{3n+4}$ ? На какое число и при каких натуральных значениях n сократима дробь

## Решение.

$$HOД\left(2n+5;\,3n+4\right)=HOД\left(2n+5;\,2n+5+n-1\right)=HOД\left(2n+5;\,n-1\right)=$$

 $= HOД(n-1) \cdot 2 + 7; n-1) = HOД(n-1; 7) = 1$  или 7. Значит, если данная дробь сократима, то только на 7. Найдём все натуральные значения n, при которых дробь сократима на 7.

Дробь сократима на 7 при n=1, n=8, n=15, n=22 и т. д. Общий вид таких значений  $n=1+7\kappa, \kappa=0,1,2,3,\ldots$ 

Воспользовались свойствами: HOД(a; e) = HOД(a; a + e); если a = eq + r, a, e, q, r - натуральные числа, то HOД(a; e) = HOД(eq + r; e) = HOД(e; r).

*Ответ*: на 7 при  $n = 1 + 7\kappa$ ,  $\kappa = 0, 1, 2, 3, \dots$ 

 $\frac{3a\partial a4a}{4n^3+7n^2+4n+3}$ ?

Решение.

Воспользуемся алгоритмом Евклида.

Обозначим HOД  $(4n^3 + 7n^2 + 4n + 3, 4n^2 + 7n) = p$ .

$$-\frac{4n^{3}+7n^{2}+4n+3}{4n^{3}+7n^{2}} | \frac{4n^{2}+7n}{n} - \frac{4n^{2}+7n}{4n^{2}+3n} | \frac{4n+3}{n}$$

Значиит,  $p = HOД (4n^2 + 7n; 4n + 3) = HOД (4n + 3; 4n) = HOД (4n; 3) = 1 или 3.$ 

Значит, если данная дробь сократима, то только на 3. Найдём все натуральные значения n, при которых дробь сократима на 3.

Дробь сократима на 3 при n = 3, n = 6, n = 9, n = 12 и т. д. Общий вид таких значений  $n = 3\kappa$ ,  $\kappa = 1, 2, 3, \dots$ 

*Ответ:* на 3 при  $n = 3\kappa$ ,  $\kappa = 1, 2, 3, ...$ 

 $\frac{3a\partial a + a}{n+1}$  На какое число и при каких натуральных значениях n сократима дробь  $\frac{n^2+1}{n+1}$ ?

## Решение.

Обозначим  $HOД(n^2 + 1; n + 1) = p$ .

Воспользуемся свойством: если a = eq + r, a, e, q, r – натуральные числа, то HOД(a, e) = HOJ(eq + r; e) = HOJ(e; r).

$$n^2 + 1 = (n+1) \cdot n + 1 - n$$
. Значит,  $p = HOД (n+1; 1-n)$ .

Воспользуемсмя свойством: HOД(a; e) = HOД(a; a + e).

$$p = HOД(n+1; 1-n) = HOД(n+1; n+1+1-n) = HOД(n+1; 2) = 1$$
или 2.

Значит, если данная дробь сократима, то только на 2. Найдём все натуральные значения n, при которых дробь сократима на 2.

Дробь сократима на 2 при n=1, n=3, n=5, n=7 и т. д. Общий вид таких значений  $n=2\kappa+1,\ \kappa=0,1,2,3,\ldots$ 

*Ответ:* на 2 при  $n = 2\kappa + 1$ ,  $\kappa = 0, 1, 2, 3, ...$ 

$$9m + 7n$$

3ada4a 5. На какие натуральные числа можно сократить дробь 3m+2n , если известно, что числа m и n взаимно просты?

## Решение.

Воспользуемся свойствами: если  $a > \epsilon$ , то  $HOД(a; \epsilon) = HOД(e; a - \epsilon)$ ; если  $\epsilon > a$ , то  $HOД(a; \epsilon) = HOД(a; \epsilon - a)$ .

$$HOД$$
  $(9m + 7n; 3m + 2n) = HOД$   $(3m + 2n; 6m + 5n) = HOД$   $(3m + 2n; 3m + 3n) = HOД$   $(3m + 2n; n)$ .

Воспользуемся свойством: если a = eq + r, a, e, q, r – натуральные числа, то HOД(a; e) = HOД(eq + r; e) = HOД(e; r).

HOД (3m + 2n; n) = HOД  $(n \cdot 2 + 3m; n) = HOД$  (n; 3m) = HOД (3m; n). Т. к. числа m и n взаимно просты, то HOД (m; n) = 1.

Воспользуемся свойством: если HOД(a; e) = 1, то HOД(ac; e) = HOД(c; e)

$$HOД(3m; n) = HOД(m \cdot 3; n) = HOД(3; n) = 1$$
 или 3.

Значит, если данная дробь сократима, то только на 3.

Ответ: на 3.

## Задачи на доказательство

Задача 1. Доказать, что наибольший общий делитель любых двух последовательных чётных натуральных чисел равен 2.

## Доказательство.

Ваоспользуемся свойствами: HOД(am; em) = mHOД(a; e); HOД(a; e) =

$$= HO \coprod (a; a + e). HO \coprod (2n; 2n + 2) = 2HO \coprod (n; n + 1) = 2 \cdot 1 = 2.$$

3aдача 2. Доказать, что HOД (5a + 3e; 13a + 8e) = HOД (a; e).

## Доказательство.

Воспользуемся свойством: если a = eq + r, a, e, q, r – натуральные числа, то HOД(a; e) = HOД(eq + r; e) = HOД(e; r).

$$13a + 8e = (5a + 3e) \cdot 2 + 3a + 2e,$$

$$5a + 3e = (3a + 2e) \cdot 1 + 2a + e$$
,

$$3a + 2e = (2a + e) \cdot 1 + a + e.$$

$$HOД$$
  $(5a + 3e; 13a + 8e) = HOД$   $(13a + 8e; 5a + 3e) = HOД$   $(2a + e; a + e) =$ 

$$=HO\mathcal{I}(a+\epsilon;2a+\epsilon)=HO\mathcal{I}(a+\epsilon;a+\epsilon+a)=HO\mathcal{I}(a+\epsilon;a)=HO\mathcal{I}(a;\epsilon).$$

 $3a\partial a 4a 3$ . Доказать, что при любом натуральном значении n числа  $n^5 + 4n^3 + 3n$  и  $n^4 + 3n^2 + 1$  взаимно просты.

## Доказательство.

Воспользуемся алгоритмом Евклида.

$$HO\mathcal{J}(n^5 + 4n^3 + 3n; n^4 + 3n^2 + 1) = HO\mathcal{J}(n^4 + 3n^2 + 1; n^3 + 2n) =$$
  
=  $HO\mathcal{J}(n^3 + 2n; n^2 + 1) = HO\mathcal{J}(n^2 + 1; n) = HO\mathcal{J}(n; 1) = 1.$ 

 $3a\partial a 4a$  4. Доказать, что если  $HO \mathcal{I}(a; e) = 1$ , то  $HO \mathcal{I}(a + e; a^2 + e^2) = 1$  или 2.

## Доказательство.

Обозначим 
$$HOД(a + \epsilon; a^2 + \epsilon^2) = HOД(a^2 + \epsilon^2; a + \epsilon) = p.$$

$$a^{2} + e^{2} = (a + e)^{2} - 2ae = (a + e)(a + e) - 2ae$$
.

Воспользуемся свойствами: если  $a = \epsilon q + r$ , a,  $\epsilon$ , q, r – натуральные числа, то  $HOД(a; \epsilon) = HOД(\epsilon q + r; \epsilon) = HOД(\epsilon; r)$ ;  $HOД(a; -\epsilon) = HOД(a; \epsilon)$ .

$$p = HOД ((a + в)(a + в) - 2as; a + в) = HOД (a + в; -2as) = HOД (a + в; 2as).$$

 $HO\mathcal{I}(ae; a + e) = 1$  (см. задачу 3 из раздела «Задачи на нахождение  $HO\mathcal{I}$  двух натуральных чисел»).

Воспользуемся свойством: если HOД(a; e) = 1, то HOД(ac; e) = HOД(c; e).

$$HOД(a + \epsilon; 2a\epsilon) = HOД(a\epsilon \cdot 2; a + \epsilon) = HOД(2; a + \epsilon) = 1$$
 или 2.

*Задача 5*. Доказать, что если a - e = 2 и числа a и e не являются взаимно простыми, то HOД(a; e) = 2.

## Доказательство.

По условию задачи a - e = 2, a = e + 2, HOД(a; e) = 2, HOД(e + 2; e) = HOД(2; e) = 2.

## Уравнения, содержащие НОД чисел и их системы

*Задача 1*. Решить уравнение HOД(x; 8) = 4.

Решение.

По определению наибольшего общего делителя  $x \ [4, 8 \ [4]$ 

На 4 делятся числа 4, 8, 12, 16, ....

$$HO \coprod (4; 8) = 4, HO \coprod (12; 8) = 4 HO \coprod (3; 2) = 4, HO \coprod (20; 8) = 4 HO \coprod (5; 2) = 4,$$

HOД (28; 8) = 4HOД (7; 2) = 4, HOД (36; 8) = 4HOД (9; 2) = 4, HOД (44; 8) = 4HOД (11; 2) = 4.

$$4 = 2 \cdot 2 \cdot 1$$
,  $12 = 2 \cdot 2 \cdot 3$ ,  $20 = 2 \cdot 2 \cdot 5$ ,  $28 = 2 \cdot 2 \cdot 7$ ,  $36 = 2 \cdot 2 \cdot 9$ ,  $44 = 2 \cdot 2 \cdot 11$ .

Значит,  $x = 2 \cdot 2 \cdot n$ ,  $n = 2\kappa + 1$ ,  $\kappa = 0, 1, 2, 3 \dots$ 

$$x = 4(2\kappa + 1), \kappa = 0, 1, 2, 3, \dots$$

*Ombem*:  $x = 4(2\kappa + 1)$ ,  $\kappa = 0, 1, 2, 3, ...$ 

*Задача 2*. Решить уравнение HOД(x; 8) = x - 10.

## Решение.

По определению наибольшего общего делителя x = x - 10, 8 = x - 10.

8 делится на 1, 2, 4, 8. Осуществим перебор вариантов:

$$x - 10 = 1$$
,  $x = 11$ , НОД (11; 8) = 1,  $11 - 10 = 1$ ;

$$x - 10 = 2$$
,  $x = 12$ , HOД (12; 8) = 4, 12 – 10 = 2;  
 $x - 10 = 4$ ,  $x = 14$ , HOД (14; 8) = 2, 14 – 10 = 4;  
 $x - 10 = 8$ ,  $x = 18$ , HOД (18; 8) = 2, 18 – 10 = 8.  
*Omeem*:  $x = 11$ .

*Задача 3*. Найти все пары натуральных чисел, сумма которых равна 288, а наибольший общий делитель — 36.

## Решение.

Пусть a и s – искомые натуральные числа. По условию задачи составим и решим  $\begin{cases} a+s=288,\\ HO\mathcal{J}(a;s)=36. \end{cases}$  систему уравнений

По определению наибольшего общего делителя  $a=36\kappa$ , в=36n,  $\kappa$  и n- взаимно простые числа. Значит  $36\kappa+36n=288$ ,  $\kappa+n=8$ .

1) 
$$\kappa = 7$$
,  $n = 1$ , тогда  $a = 252$ ,  $e = 36$ ; 2)  $\kappa = 1$ ,  $n = 7$ , тогда  $a = 36$ ,  $e = 252$ ;

3) 
$$\kappa = 5$$
,  $n = 3$ , тогда  $a = 180$ ,  $e = 108$ ; 4)  $\kappa = 3$ ,  $n = 5$ , тогда  $a = 108$ ,  $e = 180$ .

Ombem: (252; 36), (36; 252), (180; 108), (108; 180).

Задача 4. Найти все пары натуральных чисел, произведение которых равно 8400, а наибольший общий делитель – 20.

#### Решение.

Пусть a и s – искомые натуральные числа. По условию задачи составим и решим  $\begin{cases} as = 8400, \\ HOД(a;s) = 20. \end{cases}$  систему уравнений

По определению наибольшего общего делителя  $a=20\kappa$ , в=20n,  $\kappa$  и n- взаимно простые числа. Значит  $400\kappa n=8400$ ,  $\kappa n=21$ .

1)  $\kappa = 3$ , n = 7, тогда a = 20, e = 140; 2)  $\kappa = 7$ , n = 3, тогда a = 140, e = 20;

3) 
$$\kappa = 1$$
,  $n = 21$ , тогда  $a = 20$ ,  $e = 420$ ; 4)  $\kappa = 21$ ,  $n = 1$ , тогда  $a = 420$ ,  $e = 20$ .

Omeem: (20; 140), (140; 20), (20; 420), (420; 20).

# Задачи на наименьшее общее кратное

Покажем, как применяютя свойства наибольшего общего делителя двух натуральных чисел при решении задач повышенной трудности.

## Задачи на нахождение НОК двух натуральных чисел

3адача 1. Найти HOK (n; n + 3).

Решение.

$$HOK(a;e) = \frac{ae}{HO\mathcal{I}(a;e)}.$$

Воспользуемся свойством

HOД(n; n+3) = HOД(n; 3) = 1 или 3. Если n не делится на 3, то HOД(n; n+3) = 1; если n делится на 3, то HOД(n; n+3) = 3.

Значить, если n не делится на 3, то HOK(n;n+3) = n(n+3); если n делится на 3, то  $HOK(n;n+3) = \frac{n(n+3)}{3}.$ 

*Ответ*: если n не делится на 3, то HOK(n;n+3) = n(n+3); если n делится на 3, то  $HOK(n;n+3) = \frac{n(n+3)}{3}$ .

 $3 a \partial a u a 2$ . Найти HOK (n + 4; n + 6).

Решение.

$$HOK(a;e) = \frac{ae}{HO\mathcal{I}(a;e)}.$$

Воспользуемся свойством

HOД (n+4; n+6) = HOД (n+4; 2) = 1 или 2. Если n нечётно, то HOД (n+4; n+6) = 1; если n чётно, то HOД (n+4; n+6) = 2.

Значить, если n нечётно, то HOK(n+4;n+6)=(n+4)(n+6); если n чётно то  $HOK(n+4;n+6)=\frac{(n+4)(n+6)}{2}.$ 

*Ответ*: если n нечётно, то HOK(n+4;n+6)=(n+4)(n+6); если n чётно, то  $HOK(n+4;n+6)=\frac{(n+4)(n+6)}{2}.$ 

3адача 3. Найти HOK (3n; 3n + 6).

Решение.

 $HOK(a;e) = \frac{ae}{HO \square(a;e)}.$  Воспользуемся свойством

HOД (3n, 3n + 6) = 3HOД(n, n + 2) = 3HOД(n, 2). Если n нечётно, то 3HOД(n, 2) = 3, если n чётно, то 3HOД(n, 2) = 6.

 $HOK(3n;3n+6) = \frac{3n(3n+6)}{3} = \frac{9n(n+2)}{3} = 3n(n+2)$  если

 $HOK(3n;3n+6) = \frac{9n(n+2)}{6} = \frac{3n(n+2)}{2}.$ 

*Ответ*: если n нечётно, то HOK(3n;3n+6) = 3n(n+2) если n чётно то  $HOK(3n;3n+6) = \frac{3n(n+2)}{2}$ .

## Задачи с числами

Задача 1. Натуральное число при делении на 2, 3 даст в остатке соответственно 1,2. Найти наименьшее такое число и общий вид таких чисел.

#### Решение.

 $a = 2 \cdot 6 + 1$ , e - натуральное число. Т. к. число a при делении на 3 даст остаток 2, то a =

Пусть a – искомое число. Т. к. число a при делении на 2 даст остаток 1, то

 $a = 2 \cdot 6 + 1$ , e - натуральное число. 1. к. число a при делении на 3 даст остаток 2, то  $a = 3 \cdot c + 2$ , c - натуральное число.

a+1=2a+2  $\Box$  2, a+1=3c+3  $\Box$  3. По определению наименьшего общего кратного a+1=HOK (2; 3) = 6, a=5 — наименьшее число, которое при делении на 2, 3 даст соответственно остатки 1 и 2.

Находим общий вид таких чисел: HOK(2n; 3n) = nHOK(2; 3) = 6n. a + 1 = 6n, a = 6n - 1, n - натуральное число.

*Ответ*: 6n - 1, n - натуральное число.

Задача 2. Найти наименьшее натуральное число, которое при делении на 7 и 11 даст соответственно отсатки 5 и 9.

## Решение.

Пусть a – искомое число. Т. к. число a при делении на 7 и 11 даст соответственно отстатки 5 и 9, то a = 7e + 5, a = 11e + 9, e и e – натуральные числа.

a+2=76+7 делится на 7, a+2=11c+11 делится на 11. По определению наименьшего общего кратного a+2=HOK (7; 11) = 77, a=77-2=75.

Ответ: 75.

*Задача 3*. Найти все пары натуральных взаимно простых чисел, меньших 225, наименьшее общее кратное которых равно 225.

## Решение.

Пусть a и e – искомые взаимно простые числа. Тогда HOK(a; e) = ae.

$$ae = 225 = 3^2 \cdot 5^2$$
  $HOK (9; 25) = 225$ ,  $HOK (3; 75) = 75$ ;  $HOK (5; 45) = 45$ ;  $HOK (15; 15) = 15$ .

Ответ: 9 и 25.

Задача 4. Натуральное число при делении на 4 даст остаток 3, при делении на 5 даст остаток 4 а на 7 делится без остатка. Найти наименьшее такое число.

#### Решение.

Пусть a — искомое число. Т. к. число a при делении на 4 даст отстаток 3, при делении на 5 даст остаток 4, а на 7 делится без остатка, то a = 4e + 3, a = 5c + 4, a = 7p, e, e и e — натуральные числа.

a+1=4s+4 делится на 4, a+1=5c+5 делится на 5. По определению наименьшего общего кратного a+1=HOK (4; 5) = 20, a=19. Общий вид чисел, ктоторые при делении на 4 и 5 дают соответственно остатки 4 и 5 равен HOK (4n; 5n) = 20n, a+1=20n, a=20n-1, n-1 натуральное число. По условию задачи 20n-1 должно делится на 7.

При n = 6 a = 20n - 1 = 119 делится на 7.

Ответ: 119.

Задача 5. Может ли наименьшее общее кратное двух чисел равняться их сумме? Решение.

Пусть существуют такие x и y, что HOK (x; y) = x + y. Обозначим HOK (x; y) = m, тогда m делится на x и m делится на y, x + y делится на x и x + y делится на y. Т. к. x + y делится на x, то y делится на x. Т. к. x + y делится на y, то x делится на y. Т. к. x делится на y и y делится на x, то x = y. HOK (x; y) = x + y, HOK  $(x; x) = x \neq x + x = 2x$  противоречит условию задачи.

Ответ: не может.

Уравнения, содержащие НОК чисел и их системы

*Задача 1*. Решить уравнение HOK(x; 6) = 18.

Решение.

По определению наименьшего общего кратного  $x \ [ 18, 6 \ [ 18.$ 

18 делится на 1, 2, 3, 6, 9, 18.

 $HOK(1; 6) = 6 \neq 18$ ;  $HOK(2; 6) = 6 \neq 18$ ;  $HOK(3; 6) = 6 \neq 18$ ; HOK(9; 6) = 18; HOK(18; 18) = 18.

Ответ: 9; 18.

 $3a\partial a 4a$  2. Решить уравнение HOK(x; 8) = 9x - 9.

Решение.

По определению наименьшего общего кратного  $x \ [9x - 9, 8 \ [9x - 9]]$ 

Обозначим HOK(x; 8) = m, тогда m = x, m = 8. На 8 делятся числа 8, 16, 24, 32, 40, 48, . . . .

 $HOK(a;e) = \frac{ae}{HO \coprod (a;e)}.$ Воспользуемся свойством

$$HOK(x;8) = \frac{8x}{HOД(x;8)}.$$

HOД(x; 8) может быть равен 1, 2, 4 и 8. Тогда HOK(x; 8) может быть равен 8x, 4x, 2x и x.

1) 
$$8x = 9x - 9$$
,  $x = 9$ ; 2)  $4x = 9x - 9$ ,  $x = 9/5$ ; 3)  $2x = 9x - 9$ ,  $x = 9/7$ ; 4)  $x = 9x - 9$ ,  $x = 1,125$ .

Ответ: 9.

$$\begin{cases} a : в = 5 : 7, \\ HOK(a; в) = 140. \end{cases}$$

## Решение.

a = 5n, e = 7n, тогда HOK(a; e) = HOK(5n; 7n) = nHOK(5; 7) = 35n = 140, n = 4. Значит, a = 20, e = 28.

Ответ: (20; 28).

Задача 4. Найти все пары натуральных чисел, произведение которых равно 40, а наименьшее общее кратное – 20.

Решение.

Пусть a и b – искомые натуральные числа. По условию задачи составим и решим

$$\begin{cases} a \varepsilon = 40, \\ HOK(a; \varepsilon) = 20. \end{cases}$$
 систему уравнений

$$HOK(a; e) = \frac{ae}{HO\mathcal{I}(a; e)} = \frac{40}{HO\mathcal{I}(a; e)} = 20,$$

 $20HOД(a; в) = 40, HOД(a; в) = 2, a = 2\kappa, в = 2n, \kappa$  и n взаимно простые числа.

HOK (a; e) = HOK  $(2\kappa; 2n) = 2HOK$   $(\kappa; n) = 20$ , HOK  $(\kappa; n) = 10$ . Т. к. к и п взаимно простые числа, то HOK  $(\kappa; n) = \kappa n$ ,  $\kappa n = 10$ ,

1) 
$$\kappa = 1$$
,  $n = 10$ , тогда  $a = 2$ ,  $e = 20$ ; 2)  $\kappa = 10$ ,  $n = 1$ , тогда  $a = 20$ ,  $e = 2$ ;

3) 
$$\kappa=2,\,n=5,\,$$
тогда  $a=4,\, в=10;\, 4)$   $\kappa=5,\,n=4,\,$ тогда  $a=10,\, в=4.$ 

Omsem: (2; 20), (20; 2), (4; 10), (10; 4).

# Совместные задачи на наибольший общий делитель и наименьшее общее кратное

 $3a\partial a 4a$  1. Найти наименьшую дробь, при делении которой на каждую из дробей  $\frac{21}{25}$   $\frac{14}{15}$  получаются натуральные числа.

## Решение.

Обозначим искомую дробь  $\frac{a}{s}$ , где a и s взаимно простые числа.

$$\frac{a}{e}: \frac{21}{25} = \frac{25a}{21e}, \quad \frac{a}{e}: \frac{14}{15} = \frac{15a}{14e}.$$
 Т. к.  $\frac{25a}{21e}$  и  $\frac{15a}{14e}$  - натуральные числа, то  $25a$   $\boxed{21e}$ ,  $15a$   $\boxed{14e}$ ,

Значит, a = HOK (21; 14) = 3HOK (7; 2) =  $3 \cdot 14 = 42$ , e = HOД (25; 15) = 5HOД (5; 3) = 5.

Значит, искомая дробь равна  $\frac{a}{e} = \frac{42}{5}$ .

Ombem:  $\frac{42}{5}$ .

 $\begin{cases} HOД(a; e) = 13, \\ HOK(a; e) = 1989. \end{cases}$ 

## Решение.

$$HOK(a; s) = \frac{as}{HOД(a; s)} = \frac{as}{13}$$
. Т. к.  $HOД(a; s) = 13$ , то  $a \ \Box 13$ ,  $s \ \Box 13$ ,  $a = 13x$ ,  $s = 13y$ , где

x и y — взаимно простые числа. Тогда

$$HOK(a; e) = \frac{13x \cdot 13y}{13} = 13xy,$$
  $13xy = 1989, xy = 153.$ 

$$\begin{cases} a = 13x, \\ e = 13y, \\ HO\mathcal{I}(x; y) = 1, \\ xy = 153. \end{cases}$$

Имеем систему: xy = 153

1)  $153 = 153 \cdot 1$ . HOД (153; 1) = 1. Тогда  $a = 13 \cdot 1 = 13$ ,  $e = 13 \cdot 153 = 1989$ , или  $a = 13 \cdot 153 = 1989$ ,  $e = 13 \cdot 1 = 13$ .

2) 
$$153 = 9 \cdot 17$$
.  $HOД$  (9; 17) = 1. Тогда  $a = 13 \cdot 9 = 117$ ,  $a = 13 \cdot 17 = 221$ , или  $a = 13 \cdot 17 = 221$ ,  $a = 13 \cdot 9 = 117$ .

3) 
$$153 = 3 \cdot 51$$
.  $HOД(3; 51) = 3HOД(1; 17) = 3 \neq 1$ .

*Ombem*: (13; 1989), (1989; 13), (117; 221), (221; 117).

*Задача 3*. Сколько пар натуральных чисел (a; e), где  $a \le e$ , удовлетворяет равенству  $HOK(a; e) = HO\mathcal{I}(a; e) + 10$ ?

#### Решение.

Обозначим HOД (a; e) = n, тогда  $a 
cap n, e 
cap n, a = n\kappa, e = nm, \kappa$  и m взаимно простые числа.

- 1) n=1, as=11. Тогда a=1, s=11. т. к.  $a \le s$ . HOK(1;11)=11=HOД(1;11)+10=11.
- 2) n = 2, ae = 24. Тогда:
- a) a = 1, e = 24, T. K.  $a \le e$ .  $HOK(1; 24) = 24 \ne HO \coprod (1; 24) + 10$ ;
- б) a = 2, e = 12, т. к.  $a \le e$ . HOK(2; 12) = 12 = HOД(2; 12) + 10 = 2 + 10 = 12;
- в) a = 3, e = 8, т. к.  $a \le e$ .  $HOK(3; 8) = 24 \ne HOД(3; 8) + 10 = 1 + 10 = 11;$
- г) a = 4, e = 6, т. к.  $a \le e$ . HOK(4; 6) = 12 = HOД(4; 6) + 10 = 2 + 10 = 12.
- 3) n = 5, ae = 75. Тогда:
  - a) a = 1, e = 75, f. K.  $a \le e$ .  $HOK(1; 75) = 75 \neq HOД(1; 75) + 10 = 11;$
  - б) a = 3, e = 25, т. к.  $a \le e$ .  $HOK(3; 25) = 75 \neq HOД(3; 25) + 10 = 11;$
  - в) a = 5, e = 15, т. к.  $a \le e$ . HOK(5; 15) = 15 = HOД(5; 15) + 10 = 15.
- 4) n = 10, ae = 200. Тогда:
  - a) a = 1, e = 200, f. K.  $a \le e$ .  $HOK(1; 200) = 200 \ne HO \cancel{I}(1; 200) + 10 = 11$ ;
  - б) a = 2, e = 100, т. к.  $a \le e$ .  $HOK(2; 100) = 100 \ne HOД(2; 100) + 10 = 12;$
  - в) a = 4, e = 50, т. к.  $a \le e$ .  $HOK(4; 50) = 200 \ne HOД(4; 50) + 10 = 11;$
  - г) a = 5, e = 40, т. к.  $a \le e$ .  $HOK(5; 40) = 40 \ne HOД(5; 40) + 10 = 15;$
  - д) a = 10, e = 20, т. к.  $a \le e$ . HOK(10; 20) = 20 = HOД(10; 20) + 10 = 30;
  - e) a = 20, e = 20, T. K.  $a \le e$ .  $HOK(20; 20) = 20 \ne HO\mathcal{I}(20; 20) + 10 = 30$ .

Ответ: 5 пар.

 $3a\partial a + 4$ . Существуют ли такие два натуральных числа a и e, у которых  $HO \square (a; e) = 110$ , а  $HO \square (a; e) = 2000$ ?

## Решение.

Т. к.  $HO\mathcal{D}(a; e) = 110$ , то  $a \ \Box \ 110$ ,  $e \ \Box \ 110$ , a = 110n, e = 110m, e

110nm = 2000. Т. к. 2000 не делится на 110, то чисел a и e, у которых HOД (a; e) = 110a, HOK (a; e) = 2000, не существует.

 $3a\partial a 4a$  5. Найти все пары натуральных чисел a и b таких, длля которых верно равенство  $HOK(a; b) - HOД(a; b) = \frac{ab}{5}$ .

## Решение.

Воспользуемся тем, что HOK(a;e) делится на  $HO\mathcal{I}(a;e)$  и  $HOK(a;e) = \frac{ae}{HO\mathcal{I}(a;e)}$ .

Обозначим HOД (a; e) = n. Тогда  $HOK(a; e) = \frac{ae}{n}$ . HOK (a; e) = n, значит, HOK  $(a; e) = \kappa n$ ,  $\kappa$  — натуральное число. По условию задачи имеем:  $\kappa n - n = \frac{\kappa n \cdot n}{5}$ ,  $5\kappa n - 5n = \kappa n^2$ ,  $5n(\kappa - 1) = \kappa n^2$ ,  $5(\kappa - 1) = \kappa n$ ,  $5\kappa - \kappa n = 5$ ,  $\kappa(5 - n) = 5$ . Т. к.  $\kappa$  и n натуральные числа, то  $\kappa = 5$ , n = 4. Значит, HOД (a; e) = 4, HOK (a, e) = 20, HOД (4; 20) = 4, HOK (4; 20) = 20, a = 4, a = 20, a

Ответ: (4; 20).

 $3a\partial a va \ 6$ . Натуральные числа m и n таковы, что HOK(m; n) + HOД(m; n) = m + n. Доказать, что одно из чисел m или n делится на другое.

## Доказательство.

Обозначим HOД(m; n) = d, тогда  $m \ [d, n \ [d, m = xd, n = yd, x \ и \ y \ взаимно простые числа.$ 

$$HOK(m;n) = \frac{mn}{HO\mathcal{I}(m;n)} = \frac{xd \cdot yd}{d} = xyd.$$
  $HOK(m;n) + HO\mathcal{I}(m;n) = m + n \Leftrightarrow xyd + d = xd + yd,$ 

$$d(xy+1) = d(x+y), \quad \underline{xy} + 1 - \underline{x} - y = 0, \quad x(y-1) - 1(y-1) = 0, \quad (x-1)(y-1) = 0, \quad x = 1$$
 или  $y = 1$ .

Если x = 1, то m = d, HOД(m; n) = m, значит n делится на m. Если y = 1, то n = d, HOД(m; n) = n, значит m делится на n.

Задача 7. Наибольший общий делитель двух натуральных чисел в 8 раз меньше их наименьшего общего кратного. Доказать, что одно из этих чисел делится на другое.

## Доказательство.

$$HOД(a; e) < HOK(a; e)$$
 в 8 р  $\Leftrightarrow HOK(a; e) > HOД(a; e)$  в 8 р.

Значит, HOK(a; e) = 8HOД(a; e). Обозначим HOД(a; e) = d. Тогда  $a \ [d, e \ [d, a = md]$ 

$$e=nd$$
,  $m$  и  $n$  взаимно простые числа.  $HOK(a;e)=\frac{ae}{HO\mathcal{I}(a;e)}=\frac{md\cdot nd}{d}=mnd$ ,

Имеем: mnd = 8d, mn = 8. Т. к. m и n взаимно простые числа, то m = 1, n = 8, или m = 8, n = 1.

- 1) Если m = 1, n = 8, то a = d, e = 8d, e делится на e.
- 2) Если m = 8, n = 1, то a = 8d, e = d, a делится на e.