ChainOpera Burn-and-Mint Model

ChainOpera, Inc

Table Of Contents

Table Of Contents
Overview
Consumer Demand for Al Services
Model Training Seekers
Inference Seekers (Model as a Service, Community Model API)
Labeled Data Seekers
Pre-Trained Model Buyers (ML NFT)
Raw Compute Seeker
Al Infrastructure Suppliers
Consumers to Suppliers
Token Supply
Token Funds
Economy Phases
Phase 1: Incentivizing The Growth of Al Infrastructure Supply
Phase 2: Paying Suppliers from Organic Demand for Al Services
Phase 2: Job Rewards
Phase 2: Emissions
Consumer Demand and Total Income
Total Income
Payments
Consumer Payment Mechanism
Supplier Payment Mechanism
Validator Token Payments and Periodic Token Buy-Backs
Calculating Token Supply
Token and Dollar Reserve
Calculating Token Reserve
Calculating Dollar Reserve
Token Price
Platform Token Demand
Calculating Token Price
Supplier Onboarding Fee

O O & 0 0 9 9 9 O & L it A AW W WLWWNDN =D

e e e e T e e e e e
N ND = == O o O O

ChainOpera Job Scheduler and Resource Allocation 12

Supplier Reputation 13

Supplier Bonds 13
Simulations 14

Simulation Setup 14

Simulation Results 15
Table Of Variables 16
Overview

This document discusses the Burn and Mint Equilibrium Model, commonly known as BME, for
Federated Machine Learning. In the ChainOpera ecosystem, consumers demand Al services (such as
training a large language model) provided by a decentralized set of ML infrastructure suppliers.
Consumers pay in fiat currency and burn a variable amount of tokens to get access to this service, and
suppliers receive a mixture of fiat currency and tokens. The token's purpose is to have its price reflect the
overall value of the network. The number of tokens consumers must burn will depend on the current
token price and job price. Likewise, supplier rewards are distributed based on a dynamic emission
schedule and their individual contribution to ML services.

External Price Oracle

(AWS, GCP) Token o=
Payments e
ML Compute
Token Providers
Staking ~
¥ Decisions K() 0o
]
N Dollar + Payment | | -
D + Income; N Data
— Token SCheme Validators | Collectors
Token Buy-Backs

Demand “Central” Treasury Al Infra
For Al Services Supply

Consumer Demand for Al Services

Each customer pays cash in USD, which is stored in a central dollar reserve (described next). In exchange
for cash, consumers get “service credits”, which give them the right to obtain a certain service from the
ChainOpera community (data, train a model, serve a model etc.)

Each consumer class is modeled by a demand time series, with the following standardized fields:

1. Service Type Vector:
a. This is a list of services each consumer wants, corresponding to a specific type of
supplier.
2. Price Vector:
a. This is a list of prices paid by consumers per unit of service provided.
3. Quantity Vector:
a. This is a vector of total units of services demanded.
4. Incentive Vector:
a. Each consumer can bid extra beyond the hourly rate to make their jobs go faster or be
picked with a higher demand by service providers. This is similar to network fees in
Ethereum smart contracts.

We now provide an example list of consumers, which can be flexibly extended as the ChainOpera
ecosystem grows.

Model Training Seekers

1. Service Type Vector
a. This is a vector of the different types of training machines consumers want.
b. Example: [TPU, GPU 1X, GPU 2X, ...]
c. You can get this list from AWS, GCP, or ChainOpera.
2. Price Vector
a. Price for each service in USD per hour.
b. Ideally, these should be cheaper than AWS or GCP for consumers to use ChainOpera.
3. Quantity Vector
a. This is the number of hours demanded by different consumers per service, such as
training on a TPU.
4. Incentive Vector
a. These are set by individual consumers to get their jobs picked with high priority during
peak congestion times.

Inference Seekers (Model as a Service, Community Model API)

This is very similar to model training, but with different hourly rates. Depending on the project, we can
pay per inference query, such as a single question to ChatGPT. Or we can serve a model for a predefined
time or contract.

Labeled Data Seekers

1. Service Type Vector
a. This is a vector of the different types of labels consumers want.
b. Example: [Bounding Boxes, Segmentation Mask, Classification]
c. You can get this list from Scale API or Google Cloud Labeling Service.
2. Price Vector
a. Price for each service in USD per unit (per bounding box etc.)
3. Quantity Vector
a. This is the number of labeled images demanded by different consumers per service.
4. Incentive Vector
a. Same as defined earlier.

Pre-Trained Model Buyers (ML NFT)

Customers might also buy a pre-trained ML model for a certain business vertical.

1. Service Type Vector
a. This is a vector of the different types of pre-trained models we have.
b. Example: [Medical, NLP, Automotive]
c. ChainOpera advertises this list on a public dashboard.
2. Price Vector
a. Price for unlimited access to each model (SaaS Fee).
b. It can be fixed or be set by price discovery or an auction.
3. Quantity Vector
a. This is the number of models per domain demanded by each consumer class.
4. Incentive Vector
a. Not readily applicable since this is not a computational task.

Raw Compute Seeker

This is similar to model training, but customers want to rent a GPU, TPU, or storage unit for a predefined
amount of time.

Al Infrastructure Suppliers

Our key step is to (a) delineate the suppliers, and (b) determine how much they are paid in proportion to
their differentiated services.

The ChainOpera ecosystem will have the following (non-exhaustive) list of suppliers:

1. Al Infrastructure Suppliers:
a. Examples include GPU, TPU, CPU, and storage nodes.

2. Labeled Data Suppliers:
a. These are data annotators who provide a labeled training and test dataset.
3. Model Trainers:
a. For example, agents who host a GPU and train a specific model to a predetermined
accuracy on a given dataset.
4. Model Servers for Real-Time Inference:
a. For example, an agent who hosts a community-trained LLM on a specific TPU instance.
5. Model Validators
a. For example, agents who validate that a model achieves a pre-defined accuracy on a
publicly available validation dataset.

Consumers to Suppliers

Our next step is to proportionally pay suppliers based on the amount of consumer demand they attract and
service. To understand the payment scheme, let us take a few examples.

For model servers, the payment is simple. Suppose a specific server S ran their TPU for 5 hours and
served a specific customer C for a total price of $20 (including the gas fee). Then, server S should be
directly paid $20, either in fiat or tokens or a mixture there-of.

However, payments are much more subtle for model trainers. If they contributed to a model of $5 for the
SaaS Fee, and 5 people bought models, they should get the number of SaaS payments times the number of
purchases, which is $25. However, a fraction of this $25 should also be paid to the labelers and validators
who also contributed to the process. This will be based on the “value of data for an Al model”, which can
be assessed using a Data Shapley Model and ChainOpera’s Proof-of-Contribution paper.

We formalize the above two examples by defining a payment matrix. Each row is a different consumer
type. Each column is a different supplier. For $1 of revenue from a specific consumer, we split that dollar
based on the marginal contributions of each supplier, which form the matrix entries. This payment
allocation scheme is publicly advertised from ChainOpera and will be dynamically changed to be
competitive compared to cloud service providers.

The following is an example payment matrix, where each entry is denoted by PriceMatrix[i, k]. Notice
that for the last row (an end-to-end Al pipeline), customer income is split among data providers,
annotators, model trainers, and inference providers.

Dedicated Server
Provider

Model Training

Al Foundry
(dedicated
model serving)

Inference
seekers

Data annotator
Seekers

Training to
serving
pipeline

Annotation to
serving
pipeline

End to End Al
pipeline

Token Supply

Raw Data Data
Provider Annotators

Model Training
Providers

100%

Model Inference
Providers

100%

50%

15% 15%

100%

85%

40%

60%

We have a fixed supply of 1 billion tokens. The native token $ChainOpera is a utility token.

Token Funds

We use a standard split between investors, advisors, and the ChainOpera operations fund. The

15%

10%

10%

ChainOpera operations fund will have 60% of all tokens reserved for it. This is used for token payments

to reward the community for providing decentralized ML services. The token allocation is given below.

Token Fund

Percentage of Total Token
Supply

Purpose

Investors 10% To attract venture capital

investment.

ChainOpera Team 20% Equity for ChainOpera’s core
development team.

Advisors 5% External advisers

ChainOpera Ops Fund 50% Token rewards to the community

to train, serve, and validate ML
models etc. Stored in a token
reserve on the blockchain.

External Business Development | 15% Incentives for open-source
projects or other Web3
companies that ChainOpera
partners with, such as Polygon,
Theta TV etc.

Economy Phases

ChainOpera’s token economy is divided into two phases per project. A project is defined as a large-scale
engagement with a specific company or Al endeavor, such as decentralized training of a large language
model (LLM). As a running example, we will consider a community-driven LLM training project.

Phase 1 is inflationary, where we reward (“mint”) tokens to the community for setting up valuable
infrastructure. Once we attract substantial consumer demand, we switch to Phase 2, where suppliers are
paid proportionally to the amount of consumer demand that they service.

Notation:

We use the following notation. A specific project is indexed by p. A specific job completed by a supplier
is indexed by j. A specific customer is defined by i. A time step, such as a day, is indexed by ¢ A specific
supplier is indexed by &. Note that a specific supplier k£ can naturally work on several jobs j.

Phase 1: Incentivizing The Growth of Al Infrastructure Supply

Phase 1 is inflationary, where we pay tokens to service providers to incentivize setting up infrastructure.
For each project, ChainOpera will advertise the required/target number of GPUs, TPUs, data annotators,
storage units etc. required to complete the project. Each supplier (e.g., GPU) from the community will
first need to pass a certification test to run ChainOpera’s stack, such as running a small ML training job.
Once certified, they will be rewarded a certification NFT tied to their specific resource type, such as an

NFT indicating they are a ChainOpera certified GPU. Once they stake this certification NFT, they will be
eligible to be rewarded tokens.

In Phase 1, token payments will come from the ChainOpera Ops fund. ChainOpera can select a maximum

of Npmject projects to incentivize in Phase 1, since we have a fixed (limited) token supply. We also want

only Frac. PhaseOneTokens = 60% of the ChainOpera Ops Fund to be paid out in Phase 1. The
remainder is saved for Phase 2 token rewards. Thus, the number of tokens per project is given by:

Frac. PhaseOneTokens X0.60 X MaxTokenSupply

PhaseOneTokensForProject[p] =

project

For any given project, p, the tokens can be equally allocated between the various target suppliers. For
example, training an LLM might require 10 TPUs, 5 GPUs, and 5 data labelers. Each certified supplier
will need to continually stake its token rewards for the duration of Phase 1 to receive cash flows in Phase
2. Once a project reaches the target number of suppliers and/or begins to attract consumer demand, the
project automatically moves into Phase 2.

Phase 2: Paying Suppliers from Organic Demand for Al Services

Once the project attracts consumer demand in Phase 2, each supplier is paid in tokens proportionally to
the number of consumers it serviced. The supplier is also paid additional token rewards from the 40% of
the ChainOpera Ops Fund dedicated to Phase 2. The specific token payments are detailed later in the
whitepaper. To receive token rewards and cash payments, each supplier must pass validation tests from
the community to ensure a high quality of service.

First, we delineate emission rewards in Phase 2. These are extra incentives from the ChainOpera Ops fund
to continue growing the ecosystem. Afterwards, we have a pure burn and mint.

Phase 2: Job Rewards

Job Rewards is a point-based system for suppliers that determines how many tokens a supplier earns on
any particular job from Phase 2 rewards. To calculate the reward for a consumer job, we take the price of
that job and divide that by the current token price. This takes the job price and denominates it in
ChainOpera tokens. From there we divide that by JobRewardModulation, an on-chain variable. By
default, JobRewardModulation will be set to 10. This will set up the Phase 2 emissions so that suppliers
are initially earning roughly 10% extra on the first completed jobs. As time goes on, that number will
diminish as you will see in the graph below. The Job Reward for a specific supplier j for servicing
customer i is given by:

.4 __ JobPriceli] / PriceOfToken]|t]
]obReward[]] - JobRewardModulation

Phase 2: Emissions

Now, that we have found the number of Job Rewards for a supplier j, we calculate the total emitted
tokens. We note these tokens are an added bonus to the supplier on top of their regular token payments,
which are calculated in the next section.

To incentivize suppliers to onboard into the ecosystem, we will reward them with extra tokens in the early
phases of ChainOpera. To calculate the supplier token rewards for a particular job, SupplierReward[j], we
take the total amount of tokens that will be minted in phase 2, 40% of the ChainOpera Ops Fund, and
subtract away the rewards that have already been minted. The below formula has an exponential decay for
the emissions. Essentially, initial suppliers get extra “emitted” tokens in Phase 2, while later suppliers
have diminishing rewards.

Phase2Modulation is an on-chain variable that will modulate the slope of the supplier reward function.
Job rewards will vary depending on the difficulty and length of a job.

—(JobReward[j] + ¥JobRewards[j])
. . . X " Phase2Modulation*——— o ——)
Phase2SupplierReward|j] = PhaseTwoMintAmount — PhaseTwoMintAmount * e — Y PhaseTwoMintedRewards

t

]
—

0 10000 20000 30000

The graph above shows what the Phase 2 token emissions would look like if the mint amount was 10,000.
The y-axis represents the token supply, while the x-axis represents the number of job rewards
accumulated on the platform.

Consumer Demand and Total Income

So far, we have calculated extra incentives of job rewards for new suppliers in Phase 2. We now describe
their nominal payments, which is directly proportional to the amount of customer demand they service.

First, we calculate the demand for a specific supplier k, such as setting up a GPU. This the sum of how
many consumers i we have that require service k as well as the price they pay, given by
PriceMatrix[i, k]:

USDDemandForService[k] = Y, NumConsumer [i] X PriceMatrix[i, k|
i

The total income on a day ¢ is the sum of all demand across all suppliers:

Income[t] = Y USDDemandForService[k]
k

Total Income

The total USD income per day, Income[t], is a weighted sum of the consumer demand. A fraction
ChainOpera Fiat Operations Fraction = 30% of total income is reserved for ChainOpera to finance
and upgrade the ecosystem. This USD income is stored in the dollar reserve, as detailed next. This
fraction is an on-chain variable.

Payments

Consumer Payment Mechanism

Anytime a consumer wants to submit a job, they will have to burn tokens. This process is relatively
straightforward. We take BuybackModulation of each job payment and use that to buy back tokens. If
the consumer doesn’t currently hold any tokens, we will take BuybackModulation of their purchase and
buy back tokens for them via smart contracts.

The on-chain variable BuybackModulation reflects what fraction of income we want to allocate to
token rewards. For example, if it is 100%, we take all net income, buy-back tokens, and pay suppliers
proportionally. If it is 0%, we directly pay fiat currency to suppliers (see SEC regulation note below).

To calculate our daily buyback capital, we take BuybackModulation and multiply that by our total

income for the day. To get our daily USD income, we get the sum of every job created that day multiplied
by the price the consumer paid for that job.

USDBuybackCapital[t] = BuybackModulation * Z(]ob(,’reatedt [i] *]ObPricet[i])
t

This capital goes to token buy-backs and payments.

Next, we calculate how much USD cash flow we have to directly reward suppliers in USD. To calculate
our USD payment capital for any given day, we take one minus BuybackModulation and multiply that
by our total daily cash flow.

USDCapital[t] = (1 — BuybackModulation) * Z(]obsCreatedt[i] *]ObPricet[i])
t

Due to SEC regulations there is a possibility that cash payments could cause legal issues. In that case, we
would increase BuybackModulation to 100% so all of the consumer payments would be strictly in
tokens.

Supplier Payment Mechanism

USDBuybackCapital[t] of the payments distributed by the aforementioned matrix gets denominated in
ChainOpera tokens. The rest gets paid out to suppliers in US dollars. This mint offsets the burn amount
and maintains a Burn Mint Equilibrium. The mint function gets triggered simultaneously with USD
payments. These payments happen once validation for the provided service is complete. If a validator
attempts to check a supplier’s work and it turns out to be faulty, the mint function isn’t triggered, and the
supplier won’t receive any payment.

Once there are no more outstanding consumer jobs, the tokens paid out by ChainOpera each day will
equal the number of tokens consumers bought back added to the daily emission rewards. As the formula
below demonstrates:

BuyBacksUSD[t]
PriceOfToken[t] +APriceofToken|t

SupplierTokensPaid[t] =] + Y Phase2SupplierReward [j]
J

Validator Token Payments and Periodic Token Buy-Backs

Validators will also be rewarded tokens for every successful validation. These tokens will be paid from
the ChainOpera operations fund. Once the ChainOpera ops fund has only

Lower Token Reserve Limit = 10% of tokens left, ChainOpera will buy back tokens from the market
at their market price to increase the reserves back to 20% of the token reserve. This buy-back decision
will be automatically triggered based on the number of tokens in the ChainOpera ops fund. To calculate
the amount of validator tokens we pay out in any given timeframe t, we get the sum of all the validations
we completed in that timeframe and multiply the result by the ValidationModulator, an on-chain
variable.

ValidatorTokensPaid[t] = ValidationModulator * Y, ValidationsCompleted|v]

v

10

Calculating Total Tokens Paid

Calculating the number of tokens the ChainOpera protocol will be paying out on a particular day is
straightforward. We just take the number of tokens we paid out to suppliers on day t and add it with the
number of tokens we paid out validators on day ¢t

TokensPaid[t] = SupplierTokensPaid[t] + ValidatorTokensPaid|[t]
Calculating Token Supply

To calculate tomorrow's token supply, we take the current supply and add the number of tokens we minted
that day. We then subtract the number of tokens we are buying back as shown by the formula below:

BuyBacksUSD[t]
PriceOfToken[t] +APriceOfToken[t]

Supply[t + 1] = Supply[t] + TokensPaid[t] —

Token and Dollar Reserve

We have two reserves on the blockchain, the token reserve and dollar reserve, denoted by
TokenReserve(t] and DollarReserve[t]. The daily income is stored in the Dollar Reserve and the
Token Reserve starts out from the ChainOpera Operations Bank.

Calculating Token Reserve

We use a similar formula to predict the future token reserve. To calculate the number of tokens we will
have in the reserve tomorrow, we take the number of tokens in the reserve today and subtract the tokens
we paid out, and add the number of tokens we bought back.

BuyBacksUSD|t]

TokenReserve[t + 1] = TokenReserve[t] — TokensPaid[t] + Price0) Token[t] +APrice0) Tokenld]

Calculating Dollar Reserve

Predicting tomorrow’s dollar reserve is also reasonably straightforward. To do this, we take the current
number of dollars in reserve and increase it by the platform’s daily income. Then, we subtract the
buybacks that occurred during that day. By doing this, we can accurately predict how many dollars will be
in the dollar reserve the following day.

DollarReserve[t + 1] = DollarReserve[t] + Income[t] — BuyBacksUSD[t]

11

Token Price

The ChainOpera token price is partially set by investor demand on an exchange, making it subject to
consumer beliefs. However, the primary factors controlling ChainOpera’s token price are the sources of
demand built into the platform itself. Together, these sources of demand and the current supply of tokens
will determine the token price at any given time.

Platform Token Demand

Platform demand for the ChainOpera token comes from four different sources.

The first is a supplier onboarding fee. Any time a supplier wants to start working on the ChainOpera
platform, they must buy back a variable amount of tokens before they can begin. This number is
determined by taking a fraction, OnboardingModulation, of the average supplier income over the
timeframe t — W. OnboardingModulation is an on-chain variable whose value can be voted on by
governance.

The second is the supplier bond feature. Anytime a supplier wants to accept a job on ChainOpera’s
platform, they must post a bond in tokens. If a supplier decides to act maliciously while completing the
consumer's job, their token bond will be confiscated and sent to the ChainOpera token reserve. A supplier
bond is determined by taking a fraction, BondModulation, of a particular job’s price and dividing that
by the current token price. Similar to OnboardingModulation, BondModulation will also be an
on-chain variable controlled by governance.

The third source of token demand comes from the consumer payment mechanism. Anytime a consumer
buys service credits to get access to ChainOpera’s job pool, a fraction of that, BuybackModulation,
goes towards buying back tokens. BuybackModulation is an on-chain variable that determines the
amount of consumer income going toward token buybacks. It’s worth noting that cash payments to
suppliers could become an issue due to SEC regulations. In that case, BuybackModulation will be
increased to 100%, and all supplier payments will be denominated in tokens. The BuybackModulation
variable will be controlled by a governance vote.

The final source of demand for ChainOpera tokens comes from platform governance. Any user who holds

ChainOpera tokens can vote on important decisions regarding the DAO, such as changing the values of
the on-chain variables or implementing a new buyback feature.

12

Calculating Token Demand

Calculating the demand for the ChainOpera token is done by adding up all of the different sources of
demand mentioned above along with ConsumerSentiment|t].

Demand[t] = ConsumerSentiment[t] + Y SupplierOnboardingFees [k] + Y SupplierBondPurchases[k] + USDBuybackCapital[t] + GovernanceValue[t]
k k

Calculating Token Price

The price of the ChainOpera token at any point in time, t, is calculated by taking all of the current
demand for the token, and dividing it by the amount of tokens actively in circulation. Thus, the overall
ChainOpera token price is given by:

PriceOfToken[t] = %

Supplier Onboarding Fee

To create some barriers to entry for suppliers on the ChainOpera platform, we will implement a one-time
buyback fee to gain access to consumer jobs. This fee will disincentivize malicious suppliers from trying
to join the network. The supplier onboarding fee is calculated by taking the platform's total income over a
set period and dividing that by the total number of suppliers. This metric is the average amount each
supplier earns over that specified period. We then multiply that result by OnboardingModulation.
OnboardingModulation is an on-chain variable that will modulate the onboarding fee for suppliers. We
then divide that by the current token price to convert that number from USD to ChainOpera tokens.

¢
Y. PlatformIncome|t]

SupplierOnboardingFeek[t] = OnboardingModulation X (<=) / PriceOfToken|[t]
Y. Suppliers[k]

t=w

Once the supplier gets onboarded, the tokens they purchased will be sent to the ChainOpera treasury.

ChainOpera Job Scheduler and Resource Allocation

ChainOpera will develop a novel real-time scheduler that maps consumer jobs to ML infrastructure
suppliers. For example, a customer job originating in Los Angeles to run LLM inference within 500
milliseconds will be routed to nearby cloud GPUs in the Western USA with appropriate compute
specifications. In essence, each incoming job will contain metadata about its required compute, deadline,

13

required model, and gas fees. Then, the ChainOpera scheduler will match it to a filtered list of appropriate
compute infrastructure with the required SLA and geography. The filtered list will be sorted by the
supplier reputation formulas below

Suppliers work gets validated through a secure Proof-of-Training, Proof-of-Inference, and
Proof-of-Contribution mechanism. If the suppliers’ service is not validated, they will not receive token
rewards or fiat payment for that work.

The nodes with the highest reputation will get priority for incoming jobs. Reputation will depend on the
number of jobs completed and the job validation rate described below.

Supplier Reputation

Supplier reputation decides who has priority to incoming jobs. Suppliers with the highest reputation will
get more access to jobs, rewarding the best participants on your platform and helping to ensure product
quality. To calculate the supplier reputation, we take the number of jobs a supplier k has gotten validated
over their last j — W jobs, j is the most recent job the supplier has finished. We then divide that by the
number of jobs they have completed in that same window. This will give us the supplier's validation to
completion percentage over j — W amount of jobs.

j
j_ZWNumberOf]obsValidatedj[k]

j

» NumberOf]obsCompletedj [k]
j-w

SupplierReputationj[k] =

If two suppliers have the same reputation the queue will be ordered by the total amount of jobs a supplier
has completed.

SupplierOrder =Y NumberOfJobsCompleted [k]
t

This method will make it easier for new suppliers to onboard onto the platform if they are successfully
training models. However, it will still reward consistent early adopters of your platform as the job queue
gets ordered by the number of jobs a supplier has completed if two suppliers have the same validation to
job completion ratio.

Supplier Bonds

When a supplier takes a consumer job, they must post a bond in tokens. This bond is taken from the
supplier and transferred to the ChainOpera treasury if their work fails during the validation phase. This
bond acts as another mechanism to disincentivize malicious behavior from suppliers on the ChainOpera

14

platform. To calculate the supplier bond for a specific consumer job, k, we take BondModulation, an
on-chain variable, and multiply that by the original job price. We then divide that number by the current
token price PriceOfToken[t]. This gives us the supplier bond amount for that specific job in tokens.

BondModulation * JobPriceli]
PriceOfToken|[t]

SupplierBond[k] =

Simulations

Simulation Setup

We obtain prices from Google Cloud Platform and Scale API to use as our reference prices. ChainOpera
may change these to lower values to undercut the market rate, but at least setting the costs at market level
makes them competitive in the market.

JOB COSTS Image TPU Training™* GPU Training** Inference **
Labeling*
Job Rates $0.06 / Image $18.00 / hour $3.15 per node $1.25 per node
hour hour
Average job 1000 Images 3 hours of 8 hours of 24 hours
sizes*** training training inference
Cost per Job $60 / job $54 / job $25.2/job $30/ job

* Taken from scale ai pricing https://scale.com/pricing
** Taken from gcp pricing https://price2meet.com/gep/docs/vision_automl pricing.pdf

We used these job costs as the basis and created a demand time series for each of the consumer types.
Each class’s demand is modeled as a linear time series with gaussian noise added to it to model market
variability.

Our phase 1 period is 30 days, and we run the full simulation for 180 days. Phase 1 mints out 60% of its
total supply with a token reserve of 2 million.

Simulation Results

15

https://scale.com/pricing
https://price2meet.com/gcp/docs/vision_automl_pricing.pdf

175000

150000

125000

100000

75000

50000

25000

Tokens (FEDML)
g8 & g

Simulation Plots - (BME CONTROL, 2 - Consumer(s))

Demand Buybacks 1e6 Total Supply
— = GPU Trainer Demand P2 ' ! H 2001 —~ GPU Provider Tokens 7
~ = TPU Trainer Demand P2 A R | | !‘ ~ = TPU Provider Tokens ’
— Phase 1End I“l i 1 g ¥ 1751 — - Inference Provider Tokens 7
— Phase 2 End “i po— | | i |‘| I ~ = Investor Supply b
| | 1) H o i i i v 1501 i~ Advisor Supply »
i | "m P i | | Al l"l ! ‘ 125]| Team Supply ,/
T 1 100000 ¢ — Phase 1End
‘ £ MR 1 * : .l'h y 1k ! 2 — Phase 2 End 4
| [f ! | Ia 1M ! Groofy : ?
o [1 2 - iR o 3 x 7’ -
! | . 80000 | = ,l‘ F r # “ : F - I l ,’«’ ”
n y
1 v
| A w0 || I Al !\"" | A oso] | | B s
Ly '\-\: L L’”' H 'l Total Buybacks § 4{\ i ! - A
i HA] = | oas ae’
i o000 || 4 v'\‘\ ,"/ | — Phase 1€nd 5“‘"' & | pn |
i | r i— Phase 2 End 66 'rsz: ______ T' __________________
0 %0 150 200 250 300 E) 1%0 150 200 250 %0 E) 100 150 200 250 %0
Time (Days)
1e6 Dollar Reserve Token Price Token Reserve
1 ! 5) = Token Price Phase 2 i 3 ! — = Token Price Phase 3
| | 2 | s Token Price Phase 3 v | — Phase 1End
i 1 i — Phase 1 End 1 H 1 — Phase 2 End
! I s =4 - I —_ Ph::: 2 E:d i i I I Rl
= A 1
i i e I | it 5 [I
H H > s | . I\ 1 .
| | Pt g4 | | v ke |
1 i 2| . I I y :
| | i - | j & | |
- H F H : | 2 35000 N\ :
i i e i i ‘ i i i
. < x SN :
| 1 -7 L e I\ |
5 . .
i ’T 30000 PN i
2 aAr C. = = Dolllar Reserve : . 2 .
[-~ | — Phase 1 End | R |
'r i | — Phase 2 End 25000 I B -1 _________________
1
0 100 150 200 250 300 E) 30 o E) 0 150 250 30
Tokens (FEDML)
T T I 10 10
. —~ Emission rewards
I | — Phase 1 End
l H = Phase 2 End
| 08 08
i i
i i os s
[i
[N | 0a 08
< \ <
| \ |
: \ H
. -
! ~
| s e e . .
0 %0 150 200 250 300 00 02 o4 06 08 Lo 00 02 o4 06 08 o

Time (Days)

In this plot we can see that the token price is rising as the consumer demand is much higher than the token

supply put into the system. It is interesting to note that the Dollar Reserve and Token Reserve remain
relatively the same in both of the plots. The reason is because BME wants to keep the net change of
Token Supply / Dollar reserve at 0. Our key insight is that, even though interest in TPU training (orange,
top left) wanes, the token price is robust since the income from GPU training remains increasing.

Tables Of Variables

Modulation Variables

These are all on-chain variables that represent fractions in key formulae.

Variable

Meaning

BuybackModulation

An on-chain variable that determines the
percentage of income going towards token
buybacks

16

OnboardingModulation

An on-chain variable that will modulate the
supplier onboarding fee formula

Phase2Modulation An on-chain variable used to modulate the Phase 2
supplier job reward formula
BondModulation An on-chain variable used to modulate the
Supplier Bond formula
JobRewardModulation An on-chain variable used to modulate the Job

Reward formula

Consumer Variables

Variable Meaning
] obCreatedt [i] Job’s created on day t indexed by consumer i
] obPricet[i] Job prices of jobs created on day t indexed by

consumer i

Y. NumConsumer [i]
i

The total amount of consumers on ChainOpera’s
platform

PriceMatrix[i, k]

The supplier, k, payment distribution for a
particular consumer, i, job

Supplier Variables

Variable

Meaning

USDDemandForService[k]

The demand for a particular supplier’s service, k,
denominated in dollars

PriceMatrix[i, k]

The supplier, k, payment distribution for a
particular consumer, i, job

SupplierTokensPaid|t]

The amount of tokens we are paying out to
suppliers on day ¢t

Phase2SupplierReward|j]

The supplier Phase 2 token reward for a particular
job j

17

JobReward|j]

The supplier job reward for a particular job, j

SupplierOnboardingFeek[t]

The onboarding fee in tokens for a particular
supplier, k, on day t

t
Y Suppliers[k]
t-w

The total number of suppliers active on the
ChainOpera platform during the last t — W
days

SupplierReputationj [k]

The supplier, k, reputation after their most recent
job, j, completion

J
> NumberOf]obsValidatedj[k]
j-w

The total number of jobs, j, a supplier, k, has
gotten validated over their last j — W jobs

j
D NumberOf]obsCompletedj[k]
j-w

The total number of jobs, j, a supplier, k, has
completed over their last j — W jobs

Y NumberOfJobsCompleted [k]
t

The total number of jobs a supplier, k, has
completed on the ChainOpera platform

SupplierBond|k] The amount of ChainOpera tokens a supplier, k,
will have to post as a bond to accept a particular
consumer job

BME Variables
Variable Meaning
USDBuybackCapital|[t] The dollar amount from day t’s income that is
going toward token buybacks
USDCapital|t] Day t USD income that isn’t going to token
buybacks

BuyBacksUSD|t] The amount of tokens we bought back on day ¢t
denominated in dollars

PriceOfToken[t] The price of the ChainOpera token on day t

APriceOfToken|t] The extra incentive price we pay to buy back
tokens from the market

18

Y Phase2SupplierReward [j]
t

Tokens rewarded to suppliers on day t from the
Phase 2 emission formula

PhaseTwoMintAmount The amount of tokens that will be minted during
Phase 2 emissions
Supply|t] The supply of ChainOpera token’s on day ¢t
TokensPaid|[t] The total amount of ChainOpera token’s paid out
on day t to suppliers and validators
TokenReserve[t] The amount of tokens in ChainOpera’s token
reserve on day t
DollarReserve|t] The amount of dollars in ChainOpera’s dollar
reserve on day t
Incomelt] Total income for the ChainOpera platform on day

t

t

Y. Platformincomel|t]
t—w

The total platform income over the lastt — W
days where t is the starting point and W is how far
in the past we are indexing

Project Variables

Variable

Meaning

PhaseOneTokensForProject[p]

The amount of token’s a particular project, p, will
receive out of the ChainOpera Ops fund during the
Phase 1 token rewards

project

The number of projects ChainOpera is funding
through its ops fund.

19

	ChainOpera Burn-and-Mint Model
	Table Of Contents
	Overview
	Consumer Demand for AI Services
	Model Training Seekers
	Inference Seekers (Model as a Service, Community Model API)
	Labeled Data Seekers
	Pre-Trained Model Buyers (ML NFT)
	Raw Compute Seeker

	AI Infrastructure Suppliers
	Consumers to Suppliers
	Token Supply
	Token Funds

	Economy Phases
	Notation:
	Phase 1: Incentivizing The Growth of AI Infrastructure Supply
	Phase 2: Paying Suppliers from Organic Demand for AI Services
	Phase 2: Job Rewards
	Phase 2: Emissions
	Consumer Demand and Total Income
	Total Income

	Payments
	Consumer Payment Mechanism
	Supplier Payment Mechanism
	Validator Token Payments and Periodic Token Buy-Backs
	Calculating Total Tokens Paid
	Calculating Token Supply

	Token and Dollar Reserve
	Calculating Token Reserve
	Calculating Dollar Reserve

	Token Price
	Platform Token Demand
	Calculating Token Demand
	Calculating Token Price

	Supplier Onboarding Fee
	ChainOpera Job Scheduler and Resource Allocation
	Supplier Reputation
	Supplier Bonds

	Simulations
	Simulation Setup
	Simulation Results

	Tables Of Variables
	Modulation Variables
	Consumer Variables
	Supplier Variables
	BME Variables
	Project Variables

